Localization of Multi-Dimensional Wigner Distributions

Elliott H. Lieb and Yaron Ostrover

August 10, 2010 *

Abstract

A well known result of P. Flandrin states that a Gaussian uniquely maximizes the integral of the Wigner distribution over every centered disc in the phase plane. While there is no difficulty in generalizing this result to higher-dimensional poly-discs, the generalization to balls is less obvious. In this note we provide such a generalization.

1 Introduction

The Wigner quasi-probability distribution was introduced by Wigner [16] in 1932 in order to study quantum corrections to classical statistical mechanics. Nowadays it lies at the core of the phase-space formulation of quantum mechanics (Weyl correspondence), and has a variety of applications in statistical mechanics, quantum optics, and signal analysis, to name a few. In this note we consider the localization problem of the *n*-particle Wigner distribution in the 2n-dimensional phase space. We state our results precisely in Theorem 1 below.

Equip the classical phase space \mathbb{R}^{2n} with coordinates (x, y) with $x, y \in \mathbb{R}^n$. The Wigner quasi-probability distribution on \mathbb{R}^{2n} , associated with a wave function $\psi \in L^2(\mathbb{R}^n)$ and its complex conjugate ψ^* , is defined by

$$\mathcal{W}_{\psi}(x,y) = (2\pi)^{-n} \int_{\mathbb{R}^n} \psi(x+\tau/2)\psi^*(x-\tau/2)e^{-i\tau \cdot y} \, d\tau \tag{1.1}$$

The function \mathcal{W}_{ψ} possesses many of the properties of a phase space probability distribution (see e.g., [4]); in particular, it is real. However, \mathcal{W}_{ψ} is not a genuine probability distribution as it can assume negative values.

The localization problem, i.e., estimating the integral of the Wigner distribution over a subregion of the phase space, and the closely related problem of the optimal simultaneous concentration of ψ and its Fourier transform $\hat{\psi}$, have received much attention in the literature both in quantum mechanics, mathematical time-frequency analysis, and signal

^{*© 2010} by the authors. This paper may be reproduced, in its entirety, for non-commercial purposes.

processing (see e.g. [1, 2, 3, 4, 5, 6, 9, 10, 12, 13, 11], and the references within). Bounds on the L^p norms were found in [7]. More precisely, the problem of interest for us is:

The Wigner Distribution Localization Problem: given a measurable set $D \subset \mathbb{R}^{2n}$, find the best possible bounds to the localization function

$$\mathcal{E}(D) := \sup_{\psi} \int_{D} \mathcal{W}_{\psi} \, dx dy, \tag{1.2}$$

where the supremum is taken over all the functions $\psi \in L^2(\mathbb{R}^n)$ with $\|\psi\|_2 = 1$.

The quantity $\mathcal{E}(D)$ is invariant under translations in the phase space, and under the action of the group of linear symplectic transformations (see e.g. [15]). There is no upper bound on $\mathcal{E}(D)$; it can be infinite. Indeed, there is a $\psi \in L^2(\mathbb{R})$ such that $\int |\mathcal{W}_{\psi}| dx dy = \infty$ [4, sect. 4.6]. An example is $\psi(x) = 1$ if $-\frac{1}{2} < x < \frac{1}{2}$ and $\psi(x) = 0$ otherwise. On the other hand, the L^p norm of \mathcal{W}_{ψ} is bounded [7] for $p \geq 2$ and we can use this information to show that $\mathcal{E}(D)$ is bounded by powers of the volume |D|. E.g., the L^{∞} norm is at most π^{-n} , so $\mathcal{E}(D) \leq \pi^{-n} |D|$.

For certain D, however, $\mathcal{E}(D)$ is not only finite, it is even less than 1. In [2], Flandrin conjectured this to be true for all convex domains, and he showed that for all centered two-dimensional discs $B^2(r)$ of radius r, the standard normalized Gaussian function $\pi^{-1/4} \exp(-x^2/2)$ is the unique maximizer of (1.2). In particular $\mathcal{E}(B^2(r)) = 1 - e^{-r^2}$ (see [2], cf. [4]). It follows immediately from the definition of the Wigner distribution that Flandrin's proof can be easily generalized to higher dimensional poly-discs because the maximization problem then has a simple product structure. A less obvious case is the 2ndimensional Euclidean ball $B^{2n}(r)$. The following is the generalization of Flandrin's result, and our main result:

Theorem 1. The standard normalized Gaussian $\pi^{-n/4} \exp(-x^2/2)$ in $L_2(\mathbb{R}^n)$ is the unique maximizer of the Wigner distribution localization problem for any 2n-dimensional Euclidean ball centered at the origin. In particular,

$$\mathcal{E}\left(B^{2n}(r)\right) = \frac{1}{\pi^n} \int_{B^{2n}(r)} e^{-\sum_{i=1}^n (x_i^2 + y_i^2)} \, dx \, dy = 1 - \frac{\Gamma(n, r^2)}{(n-1)!},\tag{1.3}$$

where $\Gamma(s,x) = \int_x^\infty t^{s-1} e^{-t} dt$ is the upper incomplete gamma function.

Remarks: (1.) Owing to the translation covariance of the Wigner distribution, equation (1.3) also applies to a ball of radius r centered anywhere in \mathbb{R}^{2n} . It is only necessary to multiply the Gaussian by an appropriate linear form $\exp(a \cdot x)$. Moreover, since the localization function (1.2) is invariant under the action of the group of linear symplectic transformations, Theorem 1 can also be adapted to any image of the Euclidean ball under linear symplectic maps.

(2.) Another generalization is to replace the integral over the ball with the integral over \mathbb{R}^{2n} , but with a weight that is a symmetric decreasing function (i.e., a radial and non-increasing function of the radius $\sqrt{x^2 + y^2}$). By the "layer cake representation" [8, sect. 1.13] the standard Gaussian again maximizes uniquely.

2 Proof of Theorem 1

We start with the following preliminaries. Recall that the mixed Wigner distribution of two states $\psi_1, \psi_2 \in L^2(\mathbb{R}^n)$ is defined by

$$\mathcal{W}_{\psi_1,\psi_2}(x,y) = (2\pi)^{-n} \int_{\mathbb{R}^n} \psi_1(x+\tau/2) \psi_2^*(x-\tau/2) e^{-i\tau y} \, d\tau \;. \tag{2.1}$$

Note that in contrast to (1.1), $\mathcal{W}_{\psi_1,\psi_2}$ is not generally real, but, nevertheless, Hermitian i.e., $\mathcal{W}_{\psi_1,\psi_2} = \mathcal{W}^*_{\psi_2,\psi_1}$. Moreover, it is not hard to check that the mixed Wigner distribution is sesquilinear.

Next, let $\mu = (\mu_1, \ldots, \mu_n)$ be a multiindex of non-negative integers, and let $x \in \mathbb{R}^n$. The Hermite functions $H_{\mu}(x)$ on \mathbb{R}^n are defined [14, 15] to be the product of the normalized one-dimensional Hermite functions, i.e., $H_{\mu}(x) = \prod_{j=1}^n h_{\mu_j}(x_j)$, where

$$h_k(x) = \pi^{-\frac{1}{4}} (k!)^{-\frac{1}{2}} 2^{-\frac{k}{2}} (-1)^k e^{x^2/2} \frac{d^k}{dx^k} e^{-x^2} .$$
(2.2)

It is well known that the $\{H_{\mu}\}$ form a complete orthonormal system for $L^{2}(\mathbb{R}^{n})$, and that

$$\mathbb{H} H_{\mu} = |\mu| H_{\mu}, \tag{2.3}$$

where $|\mu| = \sum_{j=1}^{n} \mu_j$, and \mathbb{H} is the Schrödinger operator $\mathbb{H} = -\frac{1}{2}\Delta + \frac{1}{2}|x|^2 - \frac{n}{2}$. Here Δ denotes the standard *n*-dimensional Laplacian. In particular, the sesquilinearity of the Wigner distribution implies that for any $\psi \in L_2(\mathbb{R}^n)$, one has

$$\mathcal{W}_{\psi} = \sum_{\mu} \sum_{\nu} \langle \psi, H_{\mu} \rangle \langle \psi, H_{\nu} \rangle^* \mathcal{W}_{H_{\mu}, H_{\nu}} .$$
(2.4)

The following lemma shows that the integral of the off-diagonal elements of (2.4) over any centered ball $B^{2n}(r)$ vanishes (cf. [5] Section 2.3).

Lemma 2.1. Let μ, ν be two multi-indices with $\mu \neq \nu$. Then, for every $r \ge 0$, one has

$$\int_{B^{2n}(r)} \mathcal{W}_{H_{\mu},H_{\nu}} dx dy = 0 .$$
(2.5)

Proof of Lemma 2.1. It is well known (see e.g. [6]) that for the one-dimensional Hermite functions $\{h_m\}$, one has:

$$\mathcal{W}_{h_j,h_k}(x_1,y_1) = \begin{cases} \pi^{-1} \, (k!/j!)^{1/2} \, (-1)^k \, (\sqrt{2}z_1)^{j-k} \, e^{-(|z_1|^2)} \, L_k^{j-k}(2|z_1|^2) & \text{if } j \ge k, \\ \pi^{-1} \, (j!/k!)^{1/2} \, (-1)^j \, (\sqrt{2}\overline{z}_1)^{k-j} \, e^{-(|z_1|^2)} \, L_j^{k-j}(2|z_1|^2) & \text{if } k \ge j \end{cases}$$
(2.6)

Here $z_1 = x_1 + iy_1$, and L_n^{α} are the Laguerre polynomials defined by

$$L_{j}^{\alpha}(x) = \frac{x^{-\alpha}e^{x}}{j!} \frac{d^{j}}{dx^{j}} (e^{-x}x^{j+\alpha}), \qquad (2.7)$$

for $j \ge 0$ and $\alpha > -1$. Hence the lemma holds in the 2-dimensional case, i.e., when n = 1, because the integral of z^j or \overline{z}^j over any circle centered at the origin equals zero when

 $j \neq 0$. The higher-dimensional case follows for the same reason from (2.6), the fact that the Wigner distribution function $\mathcal{W}_{H_{\mu},H_{\nu}}(x,y)$ is the product of $\mathcal{W}_{h_{m_j},h_{n_j}}(x_j,y_j)$, and the rotation invariance of the ball $B^{2n}(r)$.

An immediate corollary of Lemma 2.1, definition (1.2), and equality (2.4) is

Corollary 2.2. In the notation above,

$$\mathcal{E}\left(B^{2n}(r)\right) = \sup_{\mu} \int_{B^{2n}(r)} \mathcal{W}_{H_{\mu}} dx dy, \qquad (2.8)$$

where the supremum is taken over all multi-indices $\mu = (\mu_1, \ldots, \mu_n)$ of non-negative integers.

The following lemma is the main ingredient in the proof of Theorem 1.

Lemma 2.3. For any integer $\lambda \geq 0$ and multi-indices μ_1 , μ_2 with $\lambda = |\mu_1| = |\mu_2|$, one has

$$\int_{B^{2n}(r)} \mathcal{W}_{H_{\mu_1}} dx dy = \int_{B^{2n}(r)} \mathcal{W}_{H_{\mu_2}} dx dy, \text{ for every } r \ge 0.$$
(2.9)

Postponing the proof of Lemma 2.3, we first conclude the proof of Theorem 1.

Proof of Theorem 1. It follows from Corollary 2.2 and Lemma 2.3 above that

$$\mathcal{E}\left(B^{2n}(r)\right) = \sup_{\lambda} \int_{B^{2n}(r)} \mathcal{W}_{H_{\mu_{\lambda}}} dx dy, \qquad (2.10)$$

where $\mu_{\lambda} = (\lambda, 0, \dots, 0)$, and λ is a non-negative integer. Moreover, from (2.6) and the definition of the Wigner distribution it follow that:

$$\mathcal{W}_{H_{\mu_{\lambda}}}(x,y) = \frac{(-1)^{\lambda}}{\pi^{n}} e^{-\sum_{i=1}^{n} (x_{i}^{2} + y_{i}^{2})} L_{\lambda} (2(x_{1}^{2} + y_{1}^{2})), \qquad (2.11)$$

where $L_{\lambda}(z)$ are the $\alpha = 0$ Laguerre polynomials (2.7). Setting $z_j = x_j + iy_j$, we conclude that

$$\int_{B^{2n}(r)} \mathcal{W}_{H_{\mu_{\lambda}}} dx dy = \int_{\substack{\sum \\ j=2}^{n} |z_j|^2 \le r^2} e^{-\sum _{j=2}^{n} |z_j|^2} \Big(\int_{|z_1|^2 \le r^2 - \sum _{j=2}^{n} |z_j|^2} \frac{(-1)^{\lambda}}{\pi^n} e^{-|z_1|^2} L_{\lambda}(2|z_1|^2) dz_1 \Big) dz_2 \cdots dz_n$$
(2.12)

On the other hand, from Flandrin's result in the 1-dimensional case [2], it follows that

$$\int_{B^{2}(\alpha)} \mathcal{W}_{h_{\lambda}} dx_{1} dy_{1} = \int_{|z_{1}|^{2} \leq \alpha^{2}} (-1)^{\lambda} e^{-|z_{1}|^{2}} L_{\lambda}(2|z_{1}|^{2}) dz_{1} \leq \int_{|z_{1}|^{2} \leq \alpha^{2}} e^{-|z_{1}|^{2}} dz_{1}, \quad (2.13)$$

for every radius $\alpha \ge 0$. An examination of Flandrin's proof reveals that the inequality is strict for $\lambda > 0$. Hence, for every non-negative integer λ one has

$$\int_{B^{2n}(r)} \mathcal{W}_{H_{\mu_{\lambda}}} dx dy \leqslant \pi^{-n} \int_{\sum_{j=1}^{n} |z_j|^2 \le r^2} e^{-\sum_{j=1}^{n} |z_j|^2} dz_1 \cdots dz_n = 1 - \frac{\Gamma(n, r^2)}{(n-1)!}$$
(2.14)

with equality only for $\lambda = 0$. The proof of Theorem 1 now follows from (2.11) and (2.14).

Remark: The integral in (2.10) is not monotone in λ or in r (except for $\lambda = 0$), as might have been thought. See [1, Fig. 2] and [2] for interesting graphs of these integrals as a function of r.

For the proof of Lemma 2.3 we shall need the following preliminaries. For a non-negative integer λ denote

$$\mathcal{H}_{\lambda} = \operatorname{span}\{H_{\mu} ; |\mu| = \lambda\} \subset L^2(\mathbb{R}^n) .$$
(2.15)

It follows from (2.3) above that the space \mathcal{H}_{λ} consists of the eigenfunctions of the rotation invariant Schrödinger operator $\mathbb{H} = -\frac{1}{2}\Delta + \frac{1}{2}|x|^2 - \frac{n}{2}$ with eigenvalue λ . In particular, it is a finite-dimensional, O(n)-invariant subspace of $L^2(\mathbb{R}^n)$ with orthonormal basis $\{H_{\mu} :$ $|\mu| = \lambda\}$. It follows that for every $\mathcal{R} \in O(n)$, and every $\tilde{\mu}$ with $|\tilde{\mu}| = \lambda$, one has:

$$H_{\widetilde{\mu}}(\mathcal{R}x) = \sum_{\nu : |\nu| = \lambda} c_{\nu}(\widetilde{\mu}, \mathcal{R}) H_{\nu}(x), \qquad (2.16)$$

where the coefficients $c_{\nu}(\widetilde{\mu}, \mathcal{R})$ satisfy $\sum |c_{\nu}(\widetilde{\mu}, \mathcal{R})|^2 = 1$.

We note the following useful fact: In order to identify which coefficients $c_{\nu}(\tilde{\mu}, \mathcal{R})$ are non-zero, it is only necessary to check the leading powers on the two sides of (2.16). That is, the left side of (2.16) defines a polynomial of degree λ in the indeterminates x_1, \ldots, x_n . The highest degree terms are the monomials $x_1^{\mu_1} \cdots x_n^{\mu_n}$ with $\sum_{j=1}^n \mu_j = \lambda$, but there are also monomials of degree lower than λ . In order to show that a given H_{ν} appears with a non-zero coefficient in the decomposition (2.16), it is only necessary to show that there is a highest degree monomials; they will appear automatically because we know that the decomposition contains only Hermite functions of degree λ and no others.

Proof of Lemma 2.3: Fix a non-negative integer λ , and $r \ge 0$. We consider the maximum problem

$$\max_{\mu: |\mu| = \lambda} \int_{B^{2n}(r)} \mathcal{W}_{H_{\mu}} dx dy, \qquad (2.17)$$

and denote by $\tilde{\mu}$ one of its maximizers.

From the sesquilinearity property of the Wigner distribution and Lemma 2.1, we conclude that for every $\mathcal{R} \in O(n)$ one has:

$$\int_{B^{2n}(r)} \mathcal{W}_{H_{\widetilde{\mu}}(\mathcal{R}\,x)} \, dx dy = \sum_{\nu} |c_{\nu}(\widetilde{\mu},\mathcal{R})|^2 \int_{B^{2n}(r)} \mathcal{W}_{H_{\nu}} \, dx dy \;. \tag{2.18}$$

Since $H_{\widetilde{\mu}}$ is a maximizer, this implies that for any ν_0 with $c_{\nu_0}(\widetilde{\mu}, \mathcal{R}) \neq 0$ one has

$$\int_{B^{2n}(r)} \mathcal{W}_{H_{\widetilde{\mu}}} \, dx dy = \int_{B^{2n}(r)} \mathcal{W}_{H_{\widetilde{\mu}}(\mathcal{R}\,x)} \, dx dy = \int_{B^{2n}(r)} \mathcal{W}_{H_{\nu_0}} \, dx dy \,, \tag{2.19}$$

i.e., H_{ν_0} is also a maximizer. The lemma will be proved if we can show that, starting from any $\tilde{\mu}$, we can, by a succession of rotations and intermediate indices, finally reach any given ν .

The proof will proceed in two steps. The first is to go from $\tilde{\mu}$, by a succession of two-dimensional rotations, to $(\lambda, 0, 0, \dots, 0)$ with $\lambda = \sum_{j=1}^{n} \tilde{\mu}_{j}$.

First, we show that there is a rotation $\mathcal{R}' \in O(n)$ with

$$c_{\widetilde{\mu}'}(\widetilde{\mu}, \mathcal{R}') \neq 0$$
, where $\widetilde{\mu}' := ((\widetilde{\mu}_1 + \widetilde{\mu}_2), 0, \widetilde{\mu}_3, \dots, \widetilde{\mu}_n)$. (2.20)

Thus, $\tilde{\mu}'$ is also a maximizer. In a similar fashion, we can go from $\tilde{\mu}'$ to $\tilde{\mu}''$, where $\tilde{\mu}'' := ((\tilde{\mu}_1 + \tilde{\mu}_2 + \tilde{\mu}_3), 0, 0, \tilde{\mu}_4, \dots, \tilde{\mu}_n)$. Proceeding inductively, we finally arrive at the conclusion that $(\lambda, 0, \dots, 0)$ is a maximizer.

A rotation \mathcal{R}' that accomplishes the first step to $\tilde{\mu}'$ is simply $\mathcal{R}' : x_1 \to (x_1+x_2)/\sqrt{2}, x_2 \to (x_1-x_2)/\sqrt{2}, x_j \to x_j$ for j > 2. The monomial $x_1^{\tilde{\mu}_1} x_2^{\tilde{\mu}_2}$ becomes $\frac{1}{2}(x_1+x_2)^{\tilde{\mu}_1}(x_1-x_2)^{\tilde{\mu}_2}$ and this obviously contains the monomial $x_1^{(\tilde{\mu}_1+\tilde{\mu}_2)}$ with a non-zero coefficient.

The second step is to go in the other direction, from $(\lambda, 0, \ldots, 0)$ to $(\nu_1, \nu_2, \ldots, \nu_n)$ when $\sum_{j=1}^{n} \nu_j = \lambda$. As before, we do this with a sequence of two-dimensional rotations, the first of which takes us from $(\lambda, 0, \ldots, 0)$ to $(\lambda - \nu_2, \nu_2, 0, \ldots, 0)$. From thence we go to $(\lambda - \nu_2 - \nu_3, \nu_2, \nu_3, 0, \ldots, 0)$, and so forth. This can be accomplished with the same rotation as before, namely $\mathcal{R}': x_1 \to (x_1 + x_2)/\sqrt{2}, x_2 \to (x_1 - x_2)/\sqrt{2}, x_j \to x_j$ for j > 2.

Acknowledgements: We thank P. Flandrin, A. J. E. M. Janssen, and F. Luef for helpful discussions. This work was partially supported by U.S National Science Foundation grants PHY-0965859 (E. H. L.), and (DMS-0635607) (Y. O.).

References

- Bracken, A. J., Doebner, H.-D., Wood, J. G. Bounds on integrals of the Wigner function, Phys. Rev. Lett. 83 (1999), 3758-3761.
- Flandrin, P. Maximum signal energy concentration in a time-frequency domain, Proc. IEEE Int. Conf. Acoustics, Speech, Signal Processing (ICASSP '88), 4 (1988), pp.2176-2179, NY, USA.
- [3] Gröchenig, K. Foundations of time-frequency analysis, Applied and Numerical Harmonic Analysis. Birkhäuser Boston, Inc., Boston, MA, 2001.
- [4] Janssen, A. J. E. M. Positivity and spread of bilinear time-frequency distributions, in The Wigner distribution, 1-58, Elsevier, Amsterdam, 1997.
- [5] Janssen, A. J. E. M. Positivity of Weighted Wigner Distributions, SIAM J. Math. Anal. 12 no. 5, (1981), 1-58.
- [6] Leonhardt, U. Measuring the quantum state of light, Cambridge Studies in Modern Optics 22, Cambridge University Press, Cambridge, 1997.
- [7] Lieb, E.H. Integral Bounds for Radar Ambiguity Functions and Wigner Distributions, J. Math. Phys. 31 (1990), 594-599.
- [8] Lieb, E.H. and Loss, M. Analysis, Amer. Math. Soc., Providence, R.I., 1997.
- [9] Oonincx, P. J., ter Morsche, H.G., The fractional Fourier transform and its application to energy localization problems, EURASIP J. Appl. Signal Process. 2003, no. 12, 1257-1264.
- [10] Pool, J.C.T. Mathematical Aspects of the Weyl Correspondence, J. Math. Phys. 7, (1966), 66-76.

- [11] Ramanathan, J., Topiwala, P. Time-frequency localization via the Weyl correspondence, SIAM J. Math. Anal. 24 (1993), 1378-1393.
- [12] Slepian, D. Some comments on Fourier analysis, uncertainty and modeling, SIAM Rev. 25 (1983), no. 3, 379-393.
- [13] Slepian, D., Pollak, H. O. Prolate spheroidal wave functions, Fourier analysis and uncertainty. I, Bell System Tech. J., 40 (1961), 43-63.
- [14] Thangavelu, S. Lectures on Hermite and Laguerre expansions, Mathematical Notes, 42, Princeton University Press, Princeton, NJ, 1993.
- [15] Wallach, N. R. Symplectic geometry and Fourier analysis. With an appendix on quantum mechanics by Robert Hermann, Lie Groups: History, Frontiers and Applications, Vol. V. Math. Sci. Press, Brookline, Mass., 1977.
- [16] Wigner, E.P. On the quantum correction for thermodynamic equilibrium, Phys. Rev. 40 (1932), 749-759.

Elliott H. Lieb

Departments of Mathematics and Physics, Princeton University. P.O. Box 708, Princeton NJ 08542, USA Email: lieb@princeton.edu

Yaron Ostrover School of Mathematics, Institute for Advanced Study, Princeton NJ 08540, USA Email: ostrover@ias.edu