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Abstract

A well known result of P. Flandrin states that a Gaussian uniquely maximizes the

integral of the Wigner distribution over every centered disc in the phase plane. While

there is no difficulty in generalizing this result to higher-dimensional poly-discs, the

generalization to balls is less obvious. In this note we provide such a generalization.

1 Introduction

The Wigner quasi-probability distribution was introduced by Wigner [16] in 1932 in order

to study quantum corrections to classical statistical mechanics. Nowadays it lies at the

core of the phase-space formulation of quantum mechanics (Weyl correspondence), and has

a variety of applications in statistical mechanics, quantum optics, and signal analysis, to

name a few. In this note we consider the localization problem of the n-particle Wigner

distribution in the 2n-dimensional phase space. We state our results precisely in Theorem

1 below.

Equip the classical phase space R
2n with coordinates (x, y) with x, y ∈ R

n. The Wigner

quasi-probability distribution on R
2n, associated with a wave function ψ ∈ L2(Rn) and its

complex conjugate ψ∗, is defined by

Wψ(x, y) = (2π)−n
∫

Rn

ψ(x+ τ/2)ψ∗(x− τ/2)e−iτ ·y dτ (1.1)

The function Wψ possesses many of the properties of a phase space probability distri-

bution (see e.g., [4]); in particular, it is real. However, Wψ is not a genuine probability

distribution as it can assume negative values.

The localization problem, i.e., estimating the integral of the Wigner distribution over

a subregion of the phase space, and the closely related problem of the optimal simultane-

ous concentration of ψ and its Fourier transform ψ̂, have received much attention in the

literature both in quantum mechanics, mathematical time-frequency analysis, and signal
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processing (see e.g. [1, 2, 3, 4, 5, 6, 9, 10, 12, 13, 11], and the references within). Bounds

on the Lp norms were found in [7]. More precisely, the problem of interest for us is:

The Wigner Distribution Localization Problem: given a measurable set D ⊂ R
2n,

find the best possible bounds to the localization function

E(D) := sup
ψ

∫

D
Wψ dxdy, (1.2)

where the supremum is taken over all the functions ψ ∈ L2(Rn) with ‖ψ‖2 = 1.

The quantity E(D) is invariant under translations in the phase space, and under the

action of the group of linear symplectic transformations (see e.g. [15]). There is no upper

bound on E(D); it can be infinite. Indeed, there is a ψ ∈ L2(R) such that
∫
|Wψ|dxdy = ∞

[4, sect. 4.6]. An example is ψ(x) = 1 if −1
2 < x < 1

2 and ψ(x) = 0 otherwise. On the other

hand, the Lp norm of Wψ is bounded [7] for p ≥ 2 and we can use this information to show

that E(D) is bounded by powers of the volume |D|. E.g., the L∞ norm is at most π−n, so

E(D) ≤ π−n|D|.

For certain D, however, E(D) is not only finite, it is even less than 1. In [2], Flan-

drin conjectured this to be true for all convex domains, and he showed that for all cen-

tered two-dimensional discs B2(r) of radius r, the standard normalized Gaussian function

π−1/4 exp(−x2/2) is the unique maximizer of (1.2). In particular E(B2(r)) = 1 − e−r
2

(see [2], cf. [4]). It follows immediately from the definition of the Wigner distribution that

Flandrin’s proof can be easily generalized to higher dimensional poly-discs because the

maximization problem then has a simple product structure. A less obvious case is the 2n-

dimensional Euclidean ball B2n(r). The following is the generalization of Flandrin’s result,

and our main result:

Theorem 1. The standard normalized Gaussian π−n/4 exp(−x2/2) in L2(R
n) is the unique

maximizer of the Wigner distribution localization problem for any 2n-dimensional Euclidean

ball centered at the origin. In particular,

E
(
B2n(r)

)
=

1

πn

∫

B2n(r)
e−

Pn
i=1

(x2

i +y2i ) dxdy = 1 − Γ(n, r2)

(n − 1)!
, (1.3)

where Γ(s, x) =
∫ ∞
x ts−1 e−tdt is the upper incomplete gamma function.

Remarks: (1.) Owing to the translation covariance of the Wigner distribution, equa-

tion (1.3 ) also applies to a ball of radius r centered anywhere in R
2n. It is only necessary

to multiply the Gaussian by an appropriate linear form exp(a · x). Moreover, since the

localization function (1.2) is invariant under the action of the group of linear symplectic

transformations, Theorem 1 can also be adapted to any image of the Euclidean ball under

linear symplectic maps.

(2.) Another generalization is to replace the integral over the ball with the integral

over R
2n, but with a weight that is a symmetric decreasing function (i.e., a radial and

non-increasing function of the radius
√
x2 + y2). By the “layer cake representation” [8,

sect. 1.13] the standard Gaussian again maximizes uniquely.
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2 Proof of Theorem 1

We start with the following preliminaries. Recall that the mixed Wigner distribution of two

states ψ1, ψ2 ∈ L2(Rn) is defined by

Wψ1,ψ2
(x, y) = (2π)−n

∫

Rn

ψ1(x+ τ/2)ψ∗
2(x− τ/2)e−iτy dτ . (2.1)

Note that in contrast to (1.1), Wψ1,ψ2
is not generally real, but, nevertheless, Hermitian i.e.,

Wψ1,ψ2
= W∗

ψ2,ψ1
. Moreover, it is not hard to check that the mixed Wigner distribution is

sesquilinear.

Next, let µ = (µ1, . . . , µn) be a multiindex of non-negative integers, and let x ∈ R
n. The

Hermite functions Hµ(x) on R
n are defined [14, 15] to be the product of the normalized

one-dimensional Hermite functions, i.e., Hµ(x) =
∏n
j=1 hµj

(xj), where

hk(x) = π−
1

4 (k!)−
1

2 2−
k
2 (−1)k ex

2/2 dk

dxk
e−x

2

. (2.2)

It is well known that the {Hµ} form a complete orthonormal system for L2(Rn), and that

HHµ = |µ|Hµ, (2.3)

where |µ| =
∑n

j=1 µj , and H is the Schrödinger operator H = −1
2∆ + 1

2 |x|2 − n
2 . Here

∆ denotes the standard n-dimensional Laplacian. In particular, the sesquilinearity of the

Wigner distribution implies that for any ψ ∈ L2(R
n), one has

Wψ =
∑

µ

∑

ν

〈ψ,Hµ〉 〈ψ,Hν〉∗WHµ,Hν . (2.4)

The following lemma shows that the integral of the off-diagonal elements of (2.4) over any

centered ball B2n(r) vanishes (cf. [5] Section 2.3).

Lemma 2.1. Let µ, ν be two multi-indices with µ 6= ν. Then, for every r > 0, one has
∫

B2n(r)

WHµ,Hνdxdy = 0 . (2.5)

Proof of Lemma 2.1. It is well known (see e.g. [6]) that for the one-dimensional Hermite

functions {hm}, one has:

Whj ,hk
(x1, y1) =

{
π−1 (k!/j!)1/2 (−1)k (

√
2z1)

j−k e−(|z1|2) Lj−kk (2|z1|2) if j ≥ k,

π−1 (j!/k!)1/2 (−1)j (
√

2 z1)
k−j e−(|z1|2) Lk−jj (2|z1|2) if k ≥ j .

(2.6)

Here z1 = x1 + iy1, and Lαn are the Laguerre polynomials defined by

Lαj (x) =
x−αex

j!

dj

dxj
(e−xxj+α), (2.7)

for j ≥ 0 and α > −1. Hence the lemma holds in the 2-dimensional case, i.e., when n = 1,

because the integral of zj or zj over any circle centered at the origin equals zero when
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j 6= 0. The higher-dimensional case follows for the same reason from (2.6), the fact that

the Wigner distribution function WHµ,Hν (x, y) is the product of Whmj
,hnj

(xj , yj), and the

rotation invariance of the ball B2n(r).

An immediate corollary of Lemma 2.1, definition (1.2), and equality (2.4) is

Corollary 2.2. In the notation above,

E
(
B2n(r)

)
= sup

µ

∫

B2n(r)
WHµdxdy, (2.8)

where the supremum is taken over all multi-indices µ = (µ1, . . . , µn) of non-negative inte-

gers.

The following lemma is the main ingredient in the proof of Theorem 1.

Lemma 2.3. For any integer λ ≥ 0 and multi-indices µ1, µ2 with λ = |µ1| = |µ2|, one has
∫

B2n(r)
WHµ1

dxdy =

∫

B2n(r)
WHµ2

dxdy, for every r > 0 . (2.9)

Postponing the proof of Lemma 2.3, we first conclude the proof of Theorem 1.

Proof of Theorem 1. It follows from Corollary 2.2 and Lemma 2.3 above that

E
(
B2n(r)

)
= sup

λ

∫

B2n(r)
WHµλ

dxdy, (2.10)

where µλ = (λ, 0, . . . , 0), and λ is a non-negative integer. Moreover, from (2.6) and the

definition of the Wigner distribution it follow that:

WHµλ
(x, y) =

(−1)λ

πn
e−

Pn
i=1

(x2

i +y2i ) Lλ
(
2(x2

1 + y2
1)

)
, (2.11)

where Lλ(z) are the α = 0 Laguerre polynomials (2.7). Setting zj = xj + iyj , we conclude

that
∫

B2n(r)

WHµλ
dxdy =

∫

nP
j=2

|zj |2≤r2

e
−

nP
j=2

|zj |2( ∫

|z1|2≤r2−
nP

j=2

|zj |2

(−1)λ

πn
e−|z1|2 Lλ(2|z1|2) dz1

)
dz2 · · · dzn.

(2.12)

On the other hand, from Flandrin’s result in the 1-dimensional case [2], it follows that
∫

B2(α)

Whλ
dx1dy1 =

∫

|z1|2≤α2

(−1)λ e−|z1|2 Lλ(2|z1|2) dz1 6

∫

|z1|2≤α2

e−|z1|2 dz1, (2.13)

for every radius α > 0. An examination of Flandrin’s proof reveals that the inequality is

strict for λ > 0. Hence, for every non-negative integer λ one has

∫

B2n(r)

WHµλ
dxdy 6 π−n

∫

nP
j=1

|zj |2≤r2

e
−

nP
j=1

|zj |2

dz1 · · · dzn = 1 − Γ(n, r2)

(n− 1)!
(2.14)

with equality only for λ = 0. The proof of Theorem 1 now follows from (2.11) and (2.14).
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Remark: The integral in (2.10) is not monotone in λ or in r (except for λ = 0), as

might have been thought. See [1, Fig. 2] and [2] for interesting graphs of these integrals as

a function of r.

For the proof of Lemma 2.3 we shall need the following preliminaries. For a non-negative

integer λ denote

Hλ = span{Hµ ; |µ| = λ} ⊂ L2(Rn) . (2.15)

It follows from (2.3) above that the space Hλ consists of the eigenfunctions of the rotation

invariant Schrödinger operator H = −1
2∆ + 1

2 |x|2 − n
2 with eigenvalue λ. In particular, it

is a finite-dimensional, O(n)-invariant subspace of L2(Rn) with orthonormal basis {Hµ :

|µ| = λ}. It follows that for every R ∈ O(n), and every µ̃ with |µ̃| = λ, one has:

Heµ(Rx) =
∑

ν : |ν|=λ

cν(µ̃,R)Hν(x), (2.16)

where the coefficients cν(µ̃,R) satisfy
∑

|cν(µ̃,R)|2 = 1.

We note the following useful fact: In order to identify which coefficients cν(µ̃,R) are

non-zero, it is only necessary to check the leading powers on the two sides of (2.16 ). That is,

the left side of (2.16) defines a polynomial of degree λ in the indeterminates x1, . . . , xn. The

highest degree terms are the monomials xµ1

1 · · · xµn
n with

∑n
j=1 µj = λ, but there are also

monomials of degree lower than λ. In order to show that a given Hν appears with a non-zero

coefficient in the decomposition (2.16), it is only necessary to show that there is a highest

degree monomial xν11 · · · xνn

1 in the decomposition. It is not necessary to check the lower

degree monomials; they will appear automatically because we know that the decomposition

contains only Hermite functions of degree λ and no others.

Proof of Lemma 2.3: Fix a non-negative integer λ, and r > 0. We consider the maximum

problem

max
µ : |µ|=λ

∫

B2n(r)

WHµdxdy, (2.17)

and denote by µ̃ one of its maximizers.

From the sesquilinearity property of the Wigner distribution and Lemma 2.1, we con-

clude that for every R ∈ O(n) one has:
∫

B2n(r)

WHeµ(Rx) dxdy =
∑

ν

|cν(µ̃,R)|2
∫

B2n(r)

WHν dxdy . (2.18)

Since Heµ is a maximizer, this implies that for any ν0 with cν0(µ̃,R) 6= 0 one has
∫

B2n(r)

WHeµ
dxdy =

∫

B2n(r)

WHeµ(R x) dxdy =

∫

B2n(r)

WHν0
dxdy , (2.19)

i.e., Hν0 is also a maximizer. The lemma will be proved if we can show that, starting from

any µ̃, we can, by a succession of rotations and intermediate indices, finally reach any given

ν.
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The proof will proceed in two steps. The first is to go from µ̃, by a succession of

two-dimensional rotations, to (λ, 0, 0, . . . , 0) with λ =
∑n

j=1 µ̃j.

First, we show that there is a rotation R′ ∈ O(n) with

ceµ′(µ̃,R′) 6= 0, where µ̃′ := ((µ̃1 + µ̃2), 0, µ̃3, . . . , µ̃n) . (2.20)

Thus, µ̃′ is also a maximizer. In a similar fashion, we can go from µ̃′ to µ̃′′, where µ̃′′ :=

((µ̃1 + µ̃2 + µ̃3), 0, 0, µ̃4, . . . , µ̃n). Proceeding inductively, we finally arrive at the conclusion

that (λ, 0, . . . , 0) is a maximizer.

A rotation R′ that accomplishes the first step to µ̃′ is simply R′ : x1 → (x1+x2)/
√

2, x2 →
(x1 − x2)/

√
2, xj → xj for j > 2. The monomial xeµ1

1 xeµ2

2 becomes 1
2(x1 + x2)

eµ1(x1 − x2)
eµ2

and this obviously contains the monomial x
(eµ1+eµ2)
1 with a non-zero coefficient.

The second step is to go in the other direction, from (λ, 0, . . . , 0) to (ν1, ν2, . . . , νn) when∑n
j=1 νj = λ. As before, we do this with a sequence of two-dimensional rotations, the

first of which takes us from (λ, 0, . . . , 0) to (λ − ν2, ν2, 0, . . . , 0). From thence we go to

(λ−ν2−ν3, ν2, ν3, 0, . . . , 0), and so forth. This can be accomplished with the same rotation

as before, namely R′ : x1 → (x1 + x2)/
√

2, x2 → (x1 − x2)/
√

2, xj → xj for j > 2.
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