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Abstract

In this paper we study symplectic embedding questions for the `p-sum of
two discs in R4, when 1 ≤ p ≤ ∞. In particular, we compute the symplectic
inner and outer radii in these cases, and show how different kinds of embedding
rigidity and flexibility phenomena appear as a function of the parameter p.

1 Introduction and Results

Since Gromov’s seminal work [8], questions about symplectic embeddings have lain
at the core of symplectic geometry. These questions are usually very difficult even
for a relatively simple class of examples. In fact, only recently has it become possible
to specify exactly when a four-dimensional ellipsoid is symplectically embeddable in
a ball [17], or in another four-dimensional ellipsoid [14]. For more information on
symplectic embeddings we refer the reader e.g., to the recent survey [20].

In [18], using the theory of embedded contact homology, the second named
author established sharp obstructions for symplectic embeddings of the product
of two Lagrangian discs in R4 into balls, ellipsoids and symplectic polydiscs. This
product configuration appears naturally as the phase space of billiard dynamics in
a round disc (see e.g., [2,18]). In this note we extend the above results to the family
of `p-sums of two Lagrangian discs. In particular, we show how different kinds
of symplectic embedding rigidity and flexibility phenomena appear as functions of
the parameter 1 ≤ p ≤ ∞. For comparison, we also consider similar embedding
questions in the natural counterpart case of the `p-sum of two symplectic discs. In
order to be more precise and state our results, we first introduce some notations.

Consider R4 equipped with coordinates (x1, x2, y1, y2), and with the standard
symplectic form ω0 =

∑2
i=1 dxi ∧ dyi. For two subsets X1, X2 ⊂ R4, we write
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X1 ↪→ X2 if there is an embedding ϕ : X1 ↪→ X2 preserving the symplectic form,
i.e., ϕ∗ω0 = ω0. We denote the symplectic inner and outer radii of a set X ⊂ R4 by

rS(X) = sup
{
r ∈ R | B4(r) ↪→ X

}
and RS(X) = inf

{
r ∈ R | X ↪→ B4(r)

}
,

where B4(r) = {z ∈ R4 | π‖z‖2 < r} is the Euclidean ball with Gromov width r
(i.e., with radius

√
r/π). Moreover, for 1 ≤ p <∞, we denote by

Xp =
{

(x,y) ∈ R2 × R2 | ‖x‖p + ‖y‖p < 1
}
, (1)

the `p-sum of two Lagrangian discs, where here ‖ · ‖ denotes the standard Euclidean
norm on R2. If p =∞ we set

X∞ =
{

(x,y) ∈ R2 × R2 | max(‖x‖, ‖y‖) < 1
}
.

Our first result concerns the inner and outer radii of Xp. More precisely, for p ≥ 1,
we denote the area of the unit disk in R2 with respect to the standard `p-norm by

A(p) = 4

∫ 1

0

(1− rp)1/p dr =
4 · Γ(1 + 1

p
)2

Γ(1 + 2
p
)

, (2)

where Γ(·) is the Gamma function. Moreover, for v ∈ [0, (1/4)1/p] we define

gp(v) := 2

∫ (
1
2

+
√

1
4
−vp

)1/p
(

1
2
−
√

1
4
−vp

)1/p
√

(1− rp)2/p − v2

r2
dr. (3)

Theorem 1. For 1 ≤ p <∞, the symplectic inner radius of Xp is given by

rS(Xp) =

{
2π (1/4)1/p , if 1 ≤ p ≤ 2,
A(p), if p ≥ 2,

and the symplectic outer radius by

RS(Xp) =


A(p), if 1 ≤ p ≤ 2,

2π (1/4)1/p , if 2 ≤ p ≤ 9/2,

2π
(
g′p
)−1

(−2π/3) + 3gp

((
g′p
)−1

(−2π/3)
)
, if 9/2 < p <∞.

Remark 2. It is shown in Proposition 18 below that g′p is injective and its image
contains −2π/3 for p ≥ 9/2. Thus the expression in the last line of Theorem 1
is well defined. We also recall that in [18] it was proved that rS(X∞) = 4 and
RS(X∞) = 3

√
3. It is clear that A(p) → 4 as p → ∞, and we will see below that

RS(Xp)→ 3
√

3 as p→∞. Moreover, it can be shown explicitly that the functions
defined by the formulas above are continuous at p = 2 and p = 9/2. This should
indeed be the case, since rS(Xp) and RS(Xp) are clearly continuous. Finally, we
remark that at p = 9/2, a certain “phase-transition” occurs between rigidity and
flexibility of the embedding Xp ↪→ B4(r), as explained in Theorem 10 below.
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The proof of Theorem 1 follows the approach of [18], i.e., we use the theory of
integrable Hamiltonian systems to describe the domain Xp as a toric domain, and
then use the machinery of ECH capacities to find symplectic embedding obstruc-
tions. To find optimal symplectic embeddings on the other hand, we combine results
from [3], [5], [11], and [12]. We turn now to explain this in more details.

1.1 The `p-sum of two Lagrangian discs as a toric domain

Toric domains form a large class of symplectic manifolds that generalizes ellipsoids
and polydiscs. For this class, certain symplectic embedding questions are better
understood, particularly in dimension four, see, e.g., [4, 5, 13]. For our purposes, a
domain X ⊂ R4 is toric if it is invariant under the standard action of T2 on R4 ' C2.
Here, we allow X to have boundary and corners. Note that a toric domain X is
completely determined by its image under the moment map µ : C2 ' R4 → R2,
given by µ(z1, z2) = (π|z1|2, π|z2|2), where zj = xj + iyj for j = 1, 2. For a domain
Ω ⊂ R2

≥0, we denote the corresponding toric domain µ−1(Ω) in R4 by XΩ.

From now on we assume that Ω ⊂ R2
≥0 is the region bounded by the coordinate

axes, and the graph of a decreasing continuous function ϕ : [0, a] → R≥0 such that
ϕ(a) = 0.

Definition 3. With the above notations, the set XΩ is called a concave or convex
toric domain if the function ϕ is convex or concave, respectively.

Remark 4. In the literature there are more general definitions of convex/concave
toric domains including, e.g., rectangles touching the origin. However, we will not
need to use them in the context of this paper, c.f. [5, 10].

The main ingredient in the proof of Theorem 1 above is the following result.

Theorem 5. For p ∈ [1,∞), the interior of the Lagrangian product Xp is symplec-
tomorphic to the interior of the toric domain XΩp, where Ωp is the relatively open
set in R2

≥0 bounded by the coordinate axes and the curve parametrized by

(2πv + gp(v), gp(v)) , for v ∈ [0, (1/4)1/p],

(gp(−v),−2πv + gp(−v)) , for v ∈ [−(1/4)1/p, 0],
(4)

where gp : [0, (1/4)1/p]→ R is the function defined by (3) above.

The following analogous result for X∞ was shown in [18].

Theorem 6 ( [18, Theorem 3]). The domain X∞ is symplectomorphic to the toric
domain XΩ∞, where Ω∞ is the relatively open set in R2

≥0 bounded by the coordinate
axes and the curve parametrized by

2
(√

1− v2 + v(π − arccos v),
√

1− v2 − v arccos v
)
, for v ∈ [−1, 1]. (5)
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Figure 1: The set Ωp for different values of p

Remark 7. Note that the curve (4) is invariant under the reflection about the line
y = x. Moreover, a simple calculation shows that (4) converges to (5) as p→∞.

With some additional computational work, we further claim that:

Proposition 8. The toric domain XΩp defined in Theorem 5 above is convex for
p ∈ [1, 2], and concave for p ∈ [2,∞].

Figure 1 shows the set Ωp for p = 1, 2, 6. One can directly check that Ω2 is a
right triangle, which reflects the fact that X2 is the Euclidean ball.

1.2 The rigidity and flexibility of the embeddings

In this section we discuss certain rigidity and flexibility phenomena of the embed-
dings described in Theorem 1, and explain the significance of the specific values
of p appearing in that theorem. We start with the following notions of symplectic
embedding rigidity, which for the purpose of this paper we state only in R4.

Definition 9. Let X1 and X2 be subdomains of R4.

(a) The symplectic embedding problem X1
?
↪→ X2 is said to be rigid if

X1 ↪→ rX2 ⇐⇒ X1 ⊆ rX2.

(b) The symplectic embedding problem X1
?
↪→ X2 is said to be torically rigid if the

embedding X̃1
?
↪→ X̃2 is rigid, where X̃1 and X̃2 are two toric domains whose

interiors are symplectomorphic to the interiors of X1 and X2, respectively.

(c) The symplectic embedding problem X1
?
↪→ X2 is said to be non-rigid if it is

neither rigid, nor torically rigid.

4



With this terminology, we can now state the rigidity of the symplectic embed-
dings from Theorem 1 as follows.

Theorem 10. Let B ⊂ R4 be a Euclidean ball, and let Xp be the `p-sum of two
Lagrangian discs given by (1). Then,

(a) The symplectic embedding B
?
↪→ Xp is rigid for 1 ≤ p ≤ 2.

(b) The symplectic embedding B
?
↪→ Xp is torically rigid for all p ≥ 1.

(c) The symplectic embedding Xp
?
↪→ B is rigid for 2 ≤ p ≤ 9/2.

(d) The symplectic embedding Xp
?
↪→ B is torically rigid for 1 ≤ p ≤ 9/2.

(e) The symplectic embedding Xp
?
↪→ B is non-rigid for p > 9/2.

Remark 11. From our point of view, the most surprising part of Theorem 10 is

the change of behavior of the embedding question Xp
?
↪→ B at the value p = 9/2.

Note that there is no change of convexity of the toric image at this value of p, and
that there is no a priori reason for this transition from rigidity to flexibility of the
embedding. We refer the reader to Lemma 19 and Proposition 20 below for more
details on the appearance of the value p = 9/2 in this setting.

1.3 The `p-sum of two symplectic discs

As a natural counterpart of the above results, in this section we discuss the analogues
of Theorems 1 and 10 for the `p-sum of two equal-size symplectic discs in R4. More
precisely, for p > 0 let

Bp(C2) =
{

(z1, z2) ∈ C2 | πp/2 (‖z1‖p + ‖z2‖p) < 1
}
.

Note that as p→∞, the set Bp(C2) converges to the symplectic polydisc

B∞(C2) := {(z1, z2) ∈ C2 | max{π‖z1‖2, π‖z2‖2} < 1}.

We remark that in the symplectic literature B∞(C2) is usually denoted by P (1, 1).
It follows directly from the definition that Bp(C2) is a toric domain XΛp , where Λp

is the relatively open set in R2
≥0 bounded by the coordinate axes and the curve

xp/2 + yp/2 = 1 (or max{‖x‖, ‖y‖} = 1 for p =∞).

Thus, Bp(C2) is concave if 0 < p ≤ 2, and convex if p ≥ 2. Moreover, it is clear that
in this case the notions of rigidity and toric rigidity coincide.
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Theorem 12. Let B ⊂ R4 be the Euclidean unit ball. Then

(a) The symplectic embedding B
?
↪→ Bp(C2) is rigid for all p ≥ 1, and

B(c) ↪→ Bp(C2) ⇐⇒ c ≤ min{1, 21−2/p}.

(b) The symplectic embedding Bp(C2)
?
↪→ B is rigid for p ≥ 2, and

Bp(C2) ↪→ B(c) ⇐⇒ c ≥ 21−2/p.

(c) The symplectic embedding Bp(C2)
?
↪→ B is non-rigid for 1 ≤ p < 2 and

Bp(C2) ↪→ B(c) ⇐⇒ c ≥
(

1 + 2
p

p−2

)1−2/p

.

In the last case, we can actually prove a little more. Consider the ellipsoid

E(a, b) =

{
(z1, z2) ∈ C2 | π

(
|z1|2

a
+
|z2|2

b

)
< 1

}
.

Proposition 13. With the above notations,

B1(C2) ↪→ E(a, b) ⇐⇒ min(a, b) ≥ 1/2 and max(a, b) ≥ 2/3.

Remark 14. It is not hard to check that B1(C2) and E(1/2, 2/3) have the same
volume, and thus B1(C2) ↪→ E(1/2, 2/3) is a volume filling embedding. Proposition
13 can be extended to prove that there exists an embedding

Bp(C2) ↪→ E

(
21−2/p,

(
1 + 2

p
p−2

)1−2/p
)

for all p ∈ [1, 2), but for p ∈ (1, 2) this embedding is not volume filling. Since the
proof of the existence of this embedding for p ∈ (1, 2) is very similar to the case
p = 1, although much more tedious, we omit it here.

Structure of the paper: In Section 2 we use the integrability of the Hamiltonian
system associated with Xp to prove Theorem 5. In Section 3 we recall some relevant
definitions and results concerning the ECH capacities, and in particular compute
the first two capacities of Xp. Finally, in Section 4 we prove Theorems 1, 10, and 12,
as well as Proposition 13.

Acknowledgments: Part of this work was done while the first named author
was at the Institute for Advanced Study in Princeton. YO is grateful to the IAS
for the kind hospitality and support. YO is partially supported by the European
Research Council starting grant No. 637386, by the ISF grant No. 667/18, and by
the IAS School of Mathematics. The second named author is partially supported
by a grant from the Serrapilheira Institute, the FAPERJ grant Jovem Cientista do
Nosso Estado and the CNPq grant 305416/2017-0.
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2 Integrable systems and toric domains

In this section we prove Theorem 5, which is the main ingredient in the proof of
Theorem 1. We start by recalling the classical Arnold-Liouville theorem and the
construction of action-angle coordinates [1]. In what follows, if B is an open set in
Rn, by abuse of notations we will denote by ω0 also the standard symplectic form on
B×Tn, i.e., ω0 =

∑
i dρi∧dθi, where (ρ1, . . . , ρn) and (θ1, . . . , θn) are the coordinates

on Rn and on the torus Tn ∼= Rn/Zn, respectively.

Theorem 15 (Arnold-Liouville). Let (M2n, ω) be a symplectic manifold, and let
F = (H1, . . . , Hn) : M → Rn be a C∞-function whose components Poisson com-
mute, i.e., {H i, Hj} = 0 for all 1 ≤ i, j ≤ n.

(a) If c ∈ Rn is a regular value of F , i.e., the differentials of H1, . . . , Hn are inde-
pendent on F−1(c), and F−1(c) is compact and connected, then F−1(c) ∼= Tn.

(b) Let U ⊂ M be an open set such that F (U) is simply-connected, and does not
contain critical values. For c ∈ F (U), let {γc1, . . . , γcn} be a set of simple closed
curves generating H1(F−1(c);Z) that depend smoothly on c, and suppose that ω
has a primitive λ on U . Consider the function ϕ : Rn → Rn defined by

ϕ(c) =

(∫
γc1

λ, . . . ,

∫
γcn

λ

)
. (6)

Then ϕ is a diffeomorphism with its image B, and there exists a symplectomor-
phism Φ : (U, ω)→ (B × Tn, ω0) such that the following diagram commutes.

U

F
��

Φ // B × Tn

π1
��

F (U)
ϕ
// B

where here π1 denotes the projection onto the first factor.

Remark 16. The original result in [1] states that if c ∈ Rn is a regular value of F that
satisfies the assumptions in (a), then it always has a neighborhood U satisfying the
assumptions in (b). So the conclusion of Theorem 15(b) holds in a neighborhood
of c. On the other hand, we remark that if one can extend the family of curves
γc1, . . . , γ

c
n, while still maintaining the assumptions in (b), the diffeomorphisms ϕ

and the symplectomorphism Φ can be extended too.
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2.1 The toric picture of the Lagrangian `p-sum

Fix p ∈ [1,∞). For (x,y) ∈ R2 ⊕ R2, a natural defining Hamiltonian function for
the Lagrangian p-sum Xp (1) is the function Hp : R4 → R given by

Hp(x,y) := ‖x‖p + ‖y‖p.

Note that ∂Xp = H−1
p (1), and while for p ≥ 2 the function Hp is C1, it is not

differentiable for 1 < p < 2. Thus, in order to use the Arnold-Liouville theorem
stated above, we first approximate Hp by a sequence of smooth functions. We write
Hp as Hp = H2

p ◦H1
p , where H1

p : R4 → R2 and H2
p : R2 → R are given by

H1
p (x,y) = (‖x‖2, ‖y‖2), and H2

p (s, t) = sp/2 + tp/2.

Note that H1
p ∈ C∞(R4), and that H2

p is smooth away from the coordinate axes.
We approximate Hp by a family of smooth Hamiltonian functions

Hε
p(x,y) := H2,ε

p ◦H1
p (x,y),

where the function H2,ε
p : R2

≥0 \ {0} → R is defined as follows. For ε > 0 small, let

f ε(t) :=


αε(t), for 0 ≤ t ≤ ε,
(1− tp/2)2/p, for ε ≤ t ≤ 1− ε,
βε(t), for 1− ε < t < 1,

where αε and βε are smooth decreasing functions with αε(0) = 1, βε(1) = 0,
(αε)′(0) < 0, and such that

ε < ε̃⇒ αε ≥ αε̃ and βε ≥ β ε̃,

and such that the function t 7→ tf ε(t) is strictly monotone for all t ∈ [0, ε]∪ [ε, 1−ε].
In particular, t 7→ tf ε(t) has a unique critical point at t = 1/22/p, where the function
tf ε(t) attains its global maximum. For (s, t) ∈ R2

≥0 \ {0}, we now define

H2,ε
p (s, t) = λ−p/2,

where λ is the unique number in R>0 such that λs = f ε(λt). Note that one has
H2,ε
p ∈ C∞(R2

≥0 \ {0}). Finally, we set Hε
p = H2,ε

p ◦H1
p ∈ C∞(R4 \ {0}).

Next, we denote by V : R4 → R the standard “angular momentum” given by

V (x,y) := y1x2 − y2x1.

The following propositions shows, roughly speaking, that the dynamical system
associated with Xp is “integrable” in the sense of Theorem 15 above. More precisely,
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Proposition 17. Let F ε = (Hε
p , J) : R4 \ {0} → R2. Then

(a) {Hε
p , V } = 0.

(b) The image of F ε consists of all points (h, v) ∈ R≥0 × R \ {(0, 0)} such that

|v| ≤
(
h
2

)2/p
, with equality occurring if and only if (h, v) is a critical value.

(c) If |v| <
(
h
2

)2/p
, then (F ε)−1(h, v) is compact and connected.

Proof. (a) Let (r, θ) be the polar coordinates for y, and let (pr, pθ) be the associated
coordinates for x. In particular,

‖y‖2 = r2, ‖x‖2 = p2
r +

p2
θ

r2
, y × x = pθ,

and

Hε
p(x,y) = H2,ε

p

(
‖x‖2, ‖y‖2

)
= H2,ε

p

(
p2
r +

p2
θ

r2
, r2

)
, and V (x,y) = pθ.

Consequently one has {Hε
p , V } = 0.

(b) Suppose that Hε
p(x,y) = h, and V (x,y) = v. It follows from the definition of

the function Hε
p that

h−2/p‖x‖2 = f ε(h−2/p‖y‖2). (7)

By the assumptions on f ε, the maximum of the function t 7→ tf ε(t) is 1/24/p,
which is attained at t = 1/22/p. So it follows from (7) that

v2 ≤ ‖x‖2‖y‖2 = h2/p‖y‖2f ε(h−2/p‖y‖2) ≤
(
h
2

)4/p
.

Moreover, the extremal values of v are attained if and only if x is orthogonal to
y, and h−2/p‖y‖2 is the point of maximum of t 7→ tf ε(t). We next compute the
gradients ∇Hε

p and ∇V . Since H2,ε
p is homogeneous, it follows that

∇Hε
p(x,y) = c

(
x,−(f ε)′(h−2/p‖y‖2)y

)
,

for some c > 0. On the other hand, an easy calculation gives

∇V (x,y) = (J0y,−J0x), where J0 =

[
0 −1
1 0

]
.

It is clear that ∇Hε
p and ∇V never vanish. Thus, (x,y) is a critical point of F ε

if and only if ∇Hε
p(x,y) and ∇V (x,y) are parallel. This happens if and only if

x = ±
√
−(f ε)′(h−2/p‖y‖2)J0y. (8)
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Using (8) we conclude that (7) is equivalent to requiring that x is orthogonal
to y, and

h2/pf ε(h−2/p‖y‖2) = −(f ε)′(h−2/p‖y‖2)‖y‖2,

i.e., h−2/p‖y‖2 is a critical point of tf ε(t). By assumption this function has
a single critical point. So (8) holds if and only if x is orthogonal to y and

h−2/p‖y‖2 is the point of maximum of tf ε(t). Therefore |v| =
(
h
2

)2/p
if and only

if (h, v) is a critical value as required.

(c) First observe that (F ε)−1(h, v) is a closed set in R2 which is contained in a
bounded set, and so is compact. Next, let (x,y) ∈ (F ε)−1(h, v). First suppose
that v = 0. So x and y are parallel, and at least one of the two is nonzero.
Through scaling, one can connect (x,y) to (h1/pz, 0), where z = x/‖x‖ or
z = y/‖y‖. Similarly, if (x̃, ỹ) ∈ (F ε)−1(h, 0), it can also be connected to a
point of the form (h1/pz̃, 0) ∈ R2 × R2 where ‖z̃‖ = 1. Now through a rotation
in R2×{0} we can connect (h1/pz, 0) to (h1/pz̃, 0) while staying in (F ε)−1(h, 0).
Next suppose that v 6= 0, and let (x,y) ∈ (F ε)−1(h, v). Using polar coordinates
(pr, pθ, r, θ), it follows from (7) that

p2
r = h2/pf ε(h−2/pr2)− v2

r2
. (9)

Moreover, any quadruple (pr, pθ, r, θ) represents a point in (F ε)−1(h, v) if v =

pθ and (r, pr) satisfy (9). Now if (pr, pθ, r, θ) and (p̃r, p̃θ, r̃, θ̃) are the polar
coordinates of two points in (F ε)−1(h, v), we construct a path between them
as follows. First, note that v = pθ = p̃θ. Let {θ(τ)}τ∈[0,1] ⊂ R/2πZ be a path

connecting θ to θ̃. We now define a path {r(t)}t∈[0,1] ∈ R>0 as follows. Let
sign : R → {−1, 0, 1} denote the sign function, and let rmax be the largest
solution of the equation

h2/pr2f ε(h−2/pr2) = v2. (10)

For t ∈ [0, 1/2], let r(t) be the affine path connecting r to rmax, and for t ∈
[1/2, 1], let r(t) be the affine path connecting rmax to r̃. By definition r(t) is
continuous. Next define

pr(t) =


sign(pr)

√
h2/pf ε(h−2/pr(t)2)− v2

r(t)2
, if t ∈ [0, 1/2],

sign(p̃r)

√
h2/pf ε(h−2/pr(t)2)− v2

r(t)2
, if t ∈ [1/2, 1].

The function pr(t) is well defined and continuous at t = 1/2 because pr(1/2) = 0
with either definition. Thus, (pr(t), θ, r(t), θ(t)) represents a path connecting

(pr, pθ, r, θ) to (p̃r, p̃θ, r̃, θ̃), which shows that (F ε)−1(h, v) is connected.

10



This completes the proof of Proposition 17.

Equipped with Theorem 15 and Proposition 17, we can now prove Theorem 5.

Proof of Theorem 5. Let

Uh,ε = (F ε)−1

({
(h, v) ∈ R2 | |v| ≤

(
h

2

)2/p
})

,

Uh,ε
int = (F ε)−1

({
(h, v) ∈ R2 \ {0} | |v| <

(
h

2

)2/p
})

.

It is clear that F (Uh,ε
int ) is simply-connected. It follows from Theorem 15 that Uh,ε

int

is symplectomorphic to µ−1(ϕ(Uh,ε
int )), where ϕ are the action coordinates defined in

(6). We now define such ϕ using appropriate sets of curves and a Liouville form λ.
Fix c = (h, v), and let rmin, rmax be the smallest and largest solutions of (10). Set

y0 = (rmax, 0).

x0 = (0, sign(v) · rmin).

Let σ0 be the curve parametrized by ϕt(x0,y0) with t ∈ [0, t0], where {ϕt} is the
flow of the vector field XHε

p
, and t0 is the smallest t > 0 such that the norm of

the y-component of ϕt(x0,y0) is rmax. Let (x̃0, ỹ0) = ϕt0(x0,y0). Note that there
exists A ∈ SO(2) such that Ax̃0 = x0 and Aỹ0 = y0. Let At1 and At2 be two simple
curves in SO(2) ∼= S1 connecting the identity with A, and rotating counterclockwise
and clockwise, respectively. For i = 1, 2, let σi denote the curve parametrized by
(Atix̃0, A

t
iỹ0), and define γci to be the composition of the curve σ0 with σi. We

observe that by definition {γc1, γc2} generates H1 ((F ε)−1(c)).

Next, let λ =
∑2

i=1 xidyi. We write (x,y) in polar coordinates (pr, pθ, r, θ) as in
the proof of Proposition 17. If v = 0, then λ = pr dr. Hence, in this case∫

γci

λ =

∫
γci

pr dr =

∫
σ0

pr dr. (11)

Now suppose that v 6= 0. So γci does not go through the origin y = 0. For i = 1, 2,∫
γci

λ =

∫
γci

pr dr +

∫
γci

pθ dθ =

∫
σ0

pr dr + v

∫
γci

dθ. (12)

For all v, we can compute the integral∫
σ0

pr dr = 2

∫ rmax

rmin

(
h2/pf ε(h−2/pr2)− v2

r2

)1/2

dr. (13)

11



Let gεp(h, v) be the function defined by the expression in (13). We also observe that∫
γc1

dθ =

{
2π, if v > 0,

0, if v < 0.∫
γc2

dθ =

{
0, if v > 0,

−2π, if v < 0.

(14)

It follows from (11), (12), (13) and (14) that

ϕε(h, v) =

{
(gεp(h, v) + 2πv, gεp(h, v)), if v ≥ 0,

(gεp(h, v), gεp(h, v)− 2πv), if v < 0.
(15)

It is easy to see that ϕε extends to a function defined on Uh,ε. Finally, to see
that the symplectomorphism Uh,ε

int
∼= µ−1(ϕε(Uh,ε

int )) extends to a symplectomorphism
Uh,ε ∼= µ−1(ϕε(Uh,ε)) we use a similar method to the one in [19, Lemma 35]. Namely,
we first use a theorem of Eliasson [7] to show that the symplectomorphism extends

to the pre-images of the points (h, v) 6= (0, 0) such that |v| = (h/2)2/p, see [6, 7].
Next, to extend the symplectomorphism to (0, 0), we use a Theorem of Gromov-
McDuff [16, Theorem 9.4.2] as it was done in the proof of [18, Theorem 3].

Next we observe that by definition f ε(t) → (1 − tp/2)2/p as ε → 0, and hence
h2/pf ε(h−2/pr2) → (1 − rp)2/p as (h, ε) → (1, 0). Moreover, rmin and rmax converge
to the two roots of the equation r2(1− rp)2/p = v2, namely

r± =

(
1

2
±
√

1

4
− vp

)1/p

.

It follows from (3), (13) and (15) that ϕε(h, v) converges to (4) as (h, ε) → (1, 0).
Therefore

⋃
ε>0 U

1−ε,ε = XΩp . Note that XΩp is open, unlike U1−ε,ε

Now let {εn} be a sequence such that εn → 0 as n → ∞. We can then argue
as in the proof of [18, Theorem 3] to conclude that we can find possibly different
symplectomorphisms Φn : U1−εn,εn → ϕεn(U1−εn,εn) for all n such that

Φn+1|U1−εn,εn = Φn.

Finally, define Φ : Xp → C2 by Φ(z) = Φn(z) if z ∈ U1−εn,εn . Therefore Φ is a
symplectic embedding whose image is XΩp , and the proof of the theorem is complete.

12



2.2 Convexity/Concavity of the toric image

In this section we prove Proposition 8. We start by establishing the following prop-
erties of the function gp which appear in the toric description (4).

Lemma 18. The function gp : [0, 1/41/p]→ R defined in (3) satisfies the following:

(a) gp(0) = A(p)/2, and gp(1/4
1/p) = 0, for every p ≥ 1.

(b) gp is strictly decreasing for all p ≥ 1.

(c) gp is strictly concave if 1 < p < 2, and strictly convex if p > 2.

(d) For p = 2 one has g2(v) = π
2
− πv.

(e) lim
v→0

g′p(v) = −π and lim
v→(1/4)1/p

g′p(v) = −
√

2
p
π, for every p ≥ 1.

(f) If p ≥ 9/2, the derivative g′p is injective and its image contains the point −2π/3.

Proof of Lemma 18. Note first that the boundaries of the integral in (3) guar-
antee that the integrand is well defined. Moreover, one can check directly that the
function gp(v) is differentiable in the interval (0, 1/41/p), for every p ≥ 1.

(a) This follows immediatly from (2) and (3).

(b) By differentiating (3), one has that for every p ≥ 1 and v ∈ (0, 1/41/p)

g′p(v) = −2

∫ (
1
2

+
√

1
4
−vp

)1/p
(

1
2
−
√

1
4
−vp

)1/p
(

(1− rp)2/p − v2

r2

)−1/2
v

r2
dr. (16)

Hence g′p(v) < 0 for all v ∈ (0, 1/41/p), and therefore gp is strictly decreasing.

(c) We first change variables in (16) by setting w = rp − 1/2, and obtain

g′p(v) = −2

p

∫ √ 1
4
−vp

−
√

1
4
−vp

v(
w + 1

2

)√(
1
4
− w2

)2/p − v2

dw

= −2

p

∫ √ 1
4
−vp

0

v(
1
4
− w2

)√(
1
4
− w2

)2/p − v2

dw.

(17)

Next we change variables again by setting

x =
vp/2w√

1
4
− vp − w2

. (18)
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It follows from a straight-forward calculation that

dw

dx
=

vp
√

1
4
− vp

(vp + x2)3/2
, (19)

1

4
− w2 =

vp

vp + x2

(
1

4
+ x2

)
. (20)

From (17), (18), (19) and (20) we obtain

g′p(v) = −2

p

∫ ∞
0

v
√

1
4
− vp

√
vp + x2

(
1
4

+ x2
)√(

vp

vp+x2

(
1
4

+ x2
))2/p − v2

dx

= −2

p

∫ ∞
0

√
1
4
− vp

√
vp + x2

(
1
4

+ x2
)√( 1

4
+x2

vp+x2

)2/p

− 1

dx

= −2

p

∫ ∞
0

1
1
4

+ x2
·

√√√√√ 1
4

+x2

vp+x2
− 1(

1
4

+x2

vp+x2

)2/p

− 1

dx.

(21)

Note that for u > 1, the function u 7→ u−1
u2/p−1

is strictly decreasing or increasing if

0 < p < 2 or p > 2, respectively. Moreover, for fixed x the function v 7→
1
4

+x2

vp+x2
is

strictly decreasing. Therefore, g′p is strictly decreasing or increasing if 0 < p < 2
or p > 2, respectively, which proves the claim.

(d) If we let p = 2 in (21) then,

g′2(v) = −
∫ ∞

0

1
1
4

+ x2
dx = −π.

From (a), it follows that g2(0) = π/2, and hence g2(v) = π
2
− πv, as required.

(e) It follows from (21) that

lim
v→0

g′p(v) = −1

p

∫ ∞
0

dx

x
(

1
4

+ x2
)√(

1
4x2

+ 1
)2/p − 1

.

Setting t = ( 1
4x2

+ 1)1/p, we obtain

lim
v→0

g′p(v) = −2

∫ ∞
1

dt

t
√
t2 − 1

= −2 arctan
√
t2 − 1

∣∣∣∞
1

= −π.
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Next, observe that

lim
v→(1/4)1/p

(
1
4

+ x2
)2/p − (vp + x2)2/p

1
4
− vp

=
2

p

(
1

4
+ x2

)2/p−1

. (22)

Relations (21) and (22) yield

lim
v→(1/4)1/p

g′p(v) = −2

p

∫ ∞
0

(1

4
+ x2

) 1
p
− 3

2

√√√√ lim
v→(1/4)1/p

1
4
− vp(

1
4

+ x2
)2/p − (vp + x2)2/p

dx

= −2

p
·
√
p

2

∫ ∞
0

(
1

4
+ x2

)−1

dx = −
√

2

p
π.

(f) We proved in (c) that g′p is strictly increasing if p > 2. In particular, g′p is
injective if p > 2. It follows from (e) that the image of g′p is the interval[
−
√

2
p
π,−π

]
, which contains the point −2π/3 if p ≥ 9/2.

Proof of Proposition 8. Let p ≥ 1, and let (x(v), y(v)) be the parametrization of
the curve given by (4). It follows from Proposition 18 that g′p(v) ≥ −

√
2π for v ≥ 0.

Thus, x′(v) > 0 for all v, and hence this curve is the graph of a decreasing function
ϕ. Moreover, by definition one has

y′′(v)x′(v)− x′′(v)y′(v) = 2πg′′p(|v|).

Thus, it follows from Lemma 18 (c),(d) that XΩp is a concave toric domain if 1 ≤
p ≤ 2, and a convex toric domain if p ≥ 2.

3 The ECH capacities of toric domains

In [9], Hutchings defined a sequence of symplectic capacities for 4-dimensional sym-
plectic manifolds using embedded contact homology (ECH). In particular, for a
Liouville domain X ⊂ R4, he defined a sequence of numbers (ck(X))k∈N ⊂ R∪{∞}
satisfying:

• 0 = c0(X) ≤ c1(X) ≤ c2(X) ≤ · · · ≤ ∞,

• ck(a ·X) = a2 · ck(X), for all k ∈ N and a > 0,

• X1 ↪→ X2 ⇒ ck(X1) ≤ ck(X2), for all k ∈ N.
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• (ck(B(a)))k∈N = (0, a, a, 2a, 2a, 2a, 3a, 3a, 3a, 3a, . . . ).

The ECH capacities turn out to give sharp obstructions for many symplectic em-
bedding problems (see e.g., [14]). Moreover, for convex and concave toric domains,
they can be computed combinatorially as explained in [4,9,10]. We will now review
some relevant properties of the ECH capacities, and in particular describe the first
two capacities of symmetric concave/convex toric domains.

Let XΩ be a concave toric domain. The weight expansion w(Ω), associated with
XΩ, is a multiset which was defined inductively in [4] as follows. Let T (c) ⊂ R2

be the triangle whose vertices are (0, 0), (c, 0) and (0, c). For a set Ω ⊂ R2
≥0 which

is bounded by the coordinate axes and the graph of a decreasing concave function
ϕ : [0, a]→ R≥0 with ϕ(a) = 0, we define

τ(Ω) := sup{c |T (c) ⊆ Ω}. (23)

We write Ω\T (τ(Ω)) = Ω̃1t Ω̃2, where Ω̃1 does not intersect the y-axis and Ω̃2 does
not intersect the x-axis. Note that these sets can be empty, otherwise their closures
have a unique obtuse corner. Consider the closures of Ω̃1 and Ω̃2 translated so that
each obtuse corner is mapped to the origin. Let Ω1 and Ω2 be the images of these
translations under multiplication by the matrices(

1 1
0 1

)
and

(
1 0
1 1

)
,

respectively. Note that XΩ1 and XΩ2 are again concave toric domains if non-empty.
The weight expansion is defined inductively by

w(Ω) = {τ(Ω)} t w(Ω1) t w(Ω2),

where this union is considered with repetition, and w(Ωj) = ∅ if Ωj = ∅. Another
way of seeing it is the following. The process above defines a directed tree of domains
starting from Ω. We denote the elements of this tree by Ωi1...ip , where the indices
i1, . . . , ip ∈ {1, 2}, and the domains derived from Ωi1...ip are Ωi1...ip1 and Ωi1...ip2. It
is possible that some Ωi1...ip are empty. Then,

w(Ω) = {τ(Ωi1...ip) | p ∈ N; i1, . . . , ip ∈ {1, 2}}.

With a slight abuse of notation, we now write w(Ω) = (w1, w2, w3, . . . ), where

w1 ≥ w2 ≥ w3 ≥ · · · (24)

Note that w1 = τ(Ω) and that w2 = max(τ(Ω1), τ(Ω2)). It was shown in [4] that for
a concave toric domain XΩ one has

ck(XΩ) = ck

(
∞⊔
j=1

B(wj)

)
= max

i1+···+ik=k

k∑
j=1

cij(B(wj)). (25)
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Next, we say that a toric domain XΩ is symmetric if it is invariant under the
reflection about the line y = x. The following lemma is a computation of the first
two ECH capacities that will be relevant for all of the domains in this paper.

Lemma 19. Let XΩ be a symmetric toric domain where Ω ⊂ R2
≥0 is bounded by the

coordinate axes and a C1-curve γ parametrized by (x(v), y(v)), which connects the
points (a, 0) and (0, a). Let b ∈ (0, a) such that (b, b) = (x(v), y(v)) for some v.

(a) If XΩ is a convex toric domain, then

c1(XΩ) = a,

c2(XΩ) = 2b.

(b) If XΩ is a concave toric domain such that −2 ≤ y′(v)/x′(v) ≤ −1/2, then

c1(XΩ) = 2b,

c2(XΩ) = a.

(c) If XΩ is a concave toric domain such that y′(v)/x′(v) > −1/2 for some v, and
let v0 such that y′(v0)/x′(v0) = −1/2. Then

c1(XΩ) = 2b,

c2(XΩ) = 2y(v0) + x(v0).

Proof of Lemma 19. (a) If XΩ is a convex toric domain bounded by the coordi-
nate axes and a C1 curve γ connecting (x0, 0) to (0, y0), then it follows from [10,
Proposition 5.6] that

c1(XΩ) = min(x0, y0), c2(XΩ) = min(2x0, 2y0, x1 + y1) = x1 + y1,

where (x1, y1) is a point on the curve at which the slope of the tangent line is −1.
Since we assume that γ is symmetric about the line y = x, we conclude that

c1(XΩ) = a, c2(XΩ) = 2b.

We turn now to prove (b) and (c). Suppose that XΩ is a concave toric domain
and let (w1, w2, . . . ) be its weight expansion. It follows from the (24), (25) and the
computation of ck(B(c)) that

c1(XΩ) = w1, c2(XΩ) = w1 + w2. (26)

Since γ is a C1 curve, w1 is the unique real number such that the line x+y = w1

is tangent to γ. Since this curve is symmetric about the line y = x, it follows that
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c1(XΩ) = w1 = 2b. Let x1/2 be the x-intercept of the line of slope −1/2 whose
intersection with the first quadrant is as large as possible but still contained in Ω.
Simple linear algebra shows that w2 = x1/2−w1. So if −2 ≤ y′(v)/x′(v) ≤ −1/2 for
all v, then x1/2 = a, and from (26) we obtain

c2(XΩ) = w1 + (a− w1) = a.

On the other hand, suppose that y′(v)/x′(v) > −1/2 for some v (which implies that
x1/2 < a), and let v0 such that y′(v0)/x′(v0) = −1/2. In this case the upper right
side of the triangle T ′(w2)+(w1, 0) is tangent to γ. So the point (w2 +w1, 0) belongs
to the line of slope −1/2 going through (x(v0), y(v0)). Therefore, in this case

c2(XΩ) = w1 + w2 = 2y(v0) + x(v0). (27)

This completes the proof of Lemma 19.

The first two ECH capacities of the toric domain XΩp introduced in Theorem 5
are now a straight forward consequence of Lemma 18 and Lemma 19.

Proposition 20. The first two ECH capacities of XΩp are given as follows.

(a) If p ∈ [1, 2], then
c1(XΩp) = 2π(1/4)1/p,

c2(XΩp) = A(p).
(28)

(b) If p ≥ 2, then

c1(XΩp) = A(p)

c2(XΩp) =

{
2π(1/4)1/p, if p ≤ 9/2,

2π
(
g′p
)−1

(−2π/3) + 3gp

((
g′p
)−1

(−2π/3)
)
, if p > 9/2.

(29)

3.1 Ball packings and symplectic embeddings

In this section we provide a criterion for the embedding of a symmetric concave
domain into a ball in R4 (see Proposition 23 below). We start with recalling the
following result proved by Cristofaro-Gardiner in [5].

Theorem 21. Let XΩ be a concave toric domain with weight expansion (w1, w2, . . . ),
and let XΩ′ be a convex toric domain. Then XΩ ↪→ XΩ′ if and only if

N⊔
i=1

B(wi) ↪→ XΩ′ , ∀N.
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Next we recall a criterion for the existence of a ball packing

N⊔
i=1

B(ai) ↪→ B(c), (30)

based on the so called “Cremona transformations”. From now on we assume that
N ≥ 3. A vector (c; a1, a2, . . . , aN) ∈ RN+1 is called ordered if c ≥ a1 ≥ a2 ≥ · · · .
An ordered vector is called reduced if c ≥ a1 + a2 + a3 and ai ≥ 0 for all i. The
Cremona transform is the linear transformation

(c; a1, a2, . . . , aN) 7→ (2c−a1−a2−a3; c−a2−a3, c−a1−a3, c−a1−a2, a4, . . . , aN).

A Cremona move takes a vector (c; a1, a2, . . . , aN) to the vector obtained by ordering
its image under the Cremona transform. The following theorem is a combination of
results in [11,12,15], as explained for example in [3].

Theorem 22. Let (c; a1, a2, . . . , aN) be an ordered vector, and N ≥ 3. Then there
exists a symplectic embedding

N⊔
i=1

B(ai) ↪→ B(c)

if and only if the vector (c; a1, a2, . . . , aN) is taken to a reduced vector under a finite
number of Cremona moves, and

N∑
i=1

a2
i ≤ c2.

Now suppose that XΩ is a symmetric concave toric domain. Its weight sequence
is of the form (w1, w2, w2, w3, w3, . . . ). As an application of the two theorems above
we prove the following result, which will be used later and may be also of independent
interest.

Proposition 23. Let XΩ be a symmetric concave toric domain with weight sequence
(w1, w2, w2, w3, w3, . . . ), and let c = c2(XΩ). Suppose that vol(XΩ) ≤ vol(B(c)), and

τ(Ω1) ≥ τ(Ω11) + τ(Ω111), (31)

where τ(·) is defined in (23). Then there exists a symplectic embedding

XΩ ↪→ B(c).
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Proof of Proposition 23. We assume that XΩ is not a ball, otherwise the result is
trivial. Thus, w2 6= 0 and it follows from (27) that c2(XΩ) = w1 +w2. By Theorems
21 and 22, it suffices to show that for every N ≥ 2, the vector

(w1 + w2;w1, w2, w2, w3, w3, w4, w4, . . . , wN , wN) (32)

can be turned into a reduced vector after a finite number of Cremona moves. We
remark that we are always assuming that a vector of this form is ordered. After one
Cremona move, (32) becomes

(w1;w1 − w2, w3, w3, w4, w4 . . . , wN , wN , 0, 0). (33)

We need to check that w1 − w2 ≥ w3. Note that w2 = τ(Ω1) = τ(Ω2). Since
Ω is symmetric, it follows that the height of Ω1 is w1/2. Hence w2 ≤ w1/2, and
consequently

w1 − w2 ≥
w1

2
≥ w2 ≥ w3.

If w3 = 0, then (33) is reduced, so we assume that w3 6= 0. We claim that for k ≥ 2

w2 < wk + wk+1 ⇒ w2 + · · ·+ wk ≤
w1

2
. (34)

Note that (34) holds for k = 2 since w2 ≤ w1/2. Now suppose that

w2 < wk + wk+1 (35)

for some k > 2. We can write wk = τ(Ω1i1...ip) and wk+1 = τ(Ω1j1...jl), where p, l 6= 0.
First suppose that iq 6= jq for some q, and let r be the smallest such q. Then,

τ(Ω1i1...ip) + τ(Ω1j1...jl) ≤ τ(Ω1i1...ir1) + τ(Ω1i1...ir2). (36)

We now observe (see Figure 2(a)) that

τ(Ω1i1...ir1) + τ(Ω1i1...ir2) ≤ τ(Ω1i1...ir). (37)

This is because τ(Ω1i1...ir1) and τ(Ω1i1...ir2) are the y-coordinate and x-coordinate of
the intersections between the line x+y = τ(Ω1i1...ir) and the lines of slope −1/2 and
−2 which intersect ∂Ω1i1...ir ∩ R2

>0 and not R2
>0 \ Ω1i1...ir , respectively. The latter

condition mean that these lines are tangent to ∂Ω1i1...ir∩R2
>0 if the function defining

this domain is C1. It follows from (36) and (37) that

wk + wk+1 = τ(Ω1i1...ip) + τ(Ω1j1...jl) ≤ τ(Ω1i1...ir) ≤ τ(Ω1) = w2,

which contradicts (35). Now suppose that iq = jq for all 1 ≤ q ≤ min(p, l). Note
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Figure 2

that p < l since wk ≥ wk+1. Therefore,

τ(Ω1i1...ip) + τ(Ω1j1...jl) ≤ τ(Ω1i1...ip) + τ(Ω1i1...ipip+1). (38)

Let us first assume that ip+1 = 1. If iq = 2 for some 1 ≤ q ≤ p, then

τ(Ω1i1...ip) + τ(Ω1i1...ipip+1) ≤ τ(Ω1i1...iq−12) ≤ τ(Ω1) = w2. (39)

Combining (38) and (39), we again reach a contradiction with (35). So the only way
to satisfy (35) in this case is if iq = 1 for all q. Now let us assume that ip+1 = 2.
Similarly, if iq = 1 for some 1 ≤ q ≤ p, then

τ(Ω1i1...ip) + τ(Ω1i1...ipip+1) ≤ τ(Ω1i1...iq−11) ≤ τ(Ω1) = w2, (40)

and again we reach a contradiction. Thus, to satisfy (35) it is necessary that iq = 2
for all q. We note that if l < p, then the only way to satisfy (35) is for one of the
following two conditions to hold:

wk + wk+1 = τ(Ω11...1) + τ(Ω11...11...jl) (41)

wk + wk+1 = τ(Ω12...2) + τ(Ω12...22...jl). (42)

If (41) holds, then
w2 < τ(Ω11) + τ(Ω111),

which contradicts (31). Finally, if (42) hold, then for all j ≤ k, wj is of the form
τ(Ω12...2), otherwise we would get a contradiction to (35). So

wj = τ(Ω1 2...2︸︷︷︸
j−2

).
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Therefore,

w2 + · · ·+ wk ≤
w1

2
,

see Figure 2(b). This completes the proof of (34). Next, let

m = max{n | w2 < wn + wn+1}.

Since w3 6= 0, it follows that m ≥ 2. We claim that for 2 ≤ k ≤ m, after k − 2
Cremona moves (33) turns into a vector of the form

(w1+kw2−2(w2+· · ·+wk);w1+(k−1)w2−2(w2+· · ·+wk), wk+1, wk+1, . . . , 0). (43)

We will prove this claim by induction on k. First observe that for k = 2, (43) is
simply (33). Now suppose that (43) holds for some k < m. Applying one Cremona
move, we obtain

(w1 + (k + 1)w2 − 2(w2 + · · ·+ wk + wk+1);w1 + kw2 − 2(w2 + · · ·+ wk + wk+1),

wk+2, wk+2, w2 − wk+1, w2 − wk+1, . . . , 0).
(44)

We need to check that (44) is ordered. Note that since k < m, it follows that
wk+2 > w2 − wk+1. Moreover, from (34) we conclude that

w1 + kw2 − 2(w2 + · · ·+ wk + wk+1)− wk+2 ≥ 0.

So (44) is ordered. Moreover all of its components are non-negative. In particular
after (m− 2) Cremona moves we obtain a non-negative vector

(w1 +mw2−2(w2 + · · ·+wm);w1 +(m−1)w2−2(w2 + · · ·+wm), wm+1, wm+1, . . . , 0).
(45)

If 2wm+1 ≤ w2, then (45) is reduced. If not, we apply one more Cremona move to
obtain

(w1 + (m+ 1)w2 − 2(w2 + · · ·+ wm+1);w1 +mw2 − 2(w2 + · · ·+ wm+1),

w2 − wm+1, w2 − wm+1, . . . , 0).
(46)

Note that (46) is ordered since w2 − wm+1 ≥ wm+2. Since w2 < 2wm+1, it follows
that (46) is reduced. Hence, we conclude that (32) can be turned into a reduced
vector after a finite number of Cremona moves. Therefore by Theorems 21 and 22,

XΩ ↪→ B(w1 + w2),

and the proof of the proposition is complete.
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4 Proof of the main results

In this section we prove Theorems 1, 10, and 12, and also Proposition 13.

4.1 Lagrangian `p-sum : rigidity

Here we prove Theorem 10 (a,b,c,d), and the corresponding parts of Theorem 1.

Proof of Theorem 10 (a,b,c,d). Recall first that the first two ECH capacities
of the Euclidean ball satisfy c1(B(r)) = c2(B(r)) = r. Throughout the proof we
shall frequently use the fact that the interior of Xp is symplectomorphic to the toric
domain XΩp , as proved in Theorem 5 above. In particular, combining Theorem 5
and Proposition 20 shows that the first two ECH capacities of Xp are given by (28)
and (29). We now split the proof into four parts.

(a) Suppose that p ∈ [1, 2] and that B(r) ↪→ Xp. Then, by Theorem 5, Proposi-
tion 20, and the properties of the ECH capacities,

r ≤ c1(Xp) = 2π(1/4)1/p, (47)

and hence rS(Xp) ≤ 2π(1/4)1/p. On the other hand, let (x,y) ∈ B(r), where
r = 2π(1/4)1/p. It follows from (47) and the Hölder inequality that

‖x‖p + ‖y‖p ≤
(
‖x‖2 + ‖y‖2

) p
2 · 21− p

2 < 2
p
2 ·
(

1
4

) 1
2 · 2 · 2−

p
2 = 1.

Thus, one has that B(r) ⊂ Xp for r = 2π(1/4)1/p. We conclude that rS(Xp) =

2π(1/4)1/p, and moreover that the symplectic embedding problem B
?
↪→ Xp is

both rigid and torically rigid for 1 ≤ p ≤ 2.

(b) Suppose now that p ∈ [2,∞) and that B(r) ↪→ Xp. Using again Theorem 5,
Proposition 20, and the properties of the ECH capacities, one has in this case

r ≤ c1(Xp) = A(p),

where A(p) is given by (2). Hence rS(Xp) ≤ A(p). Since by Proposition 8 XΩp

is a concave toric domain, it follows from Remark 7 that T ⊂ Ωp, where T is the
triangle bounded by the coordinate axes and the line x + y = A(p). Thus we
conclude that B(A(p)) ⊂ XΩp . Therefore, rS(Xp) = A(p), and the symplectic

embedding problem B
?
↪→ Xp is torically rigid.

(c) Suppose that p ∈ [1, 2] and that Xp ↪→ B(r). Looking now at the second ECH
capacitiy (see (28)), one has

A(p) = c2(Xp) ≤ r.
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Hence, RS(Xp) ≥ A(p). On the other hand, let (t, t) be the intersection of the
curve (4) and the line y = x. It follows from Proposition 8 that XΩp is now a
convex toric domain, and thus Remark 7 shows that Ωα ⊂ T , where T is the
triangle bounded by the coordinate axes and the line x+ y = 2t. In particular,
XT = B(2t). From (2),(3), and (4) we conclude that

t = gp(0) = 2

∫ 1

0

(1− rp)1/p dr =
A(p)

2
. (48)

So XΩp ⊂ B(A(p)). Therefore, RS(Xp) = A(p), and the symplectic embedding

problem Xp
?
↪→ B(r) is torically rigid.

(d) Finally, suppose that p ∈ [2, 9/2] and that Xp ↪→ B(r). As in the previous case,
from the second ECH capacity we conclude that

2π(1/4)1/p = c2(Xp) ≤ r, (49)

which implies that RS(Xp) ≥ 2π(1/4)1/p. On the other hand, if (x,y) ∈ Xp,
then by Hölder’s inequality

π
(
‖x‖2 + ‖y‖2

)
≤ π

(
(‖x‖p + ‖y‖p)2/α · 21−2/p

)
< 2π

(
1
4

)1/p
,

and so Xp ⊆ B
(

2π
(

1
4

)1/p
)

. Therefore, RS(Xp) = 2π
(

1
4

)1/p
, and the symplectic

embedding problem Xp
?
↪→ B(r) is both rigid and torically rigid.

This completes the proof of the first four parts of Theorem 10, and of the corre-
sponding parts of Theorem 1.

4.2 Lagrangian `p-sum : flexibility for p > 9/2

In this section, we finish the proofs of Theorems 1 and 10. More precisely, we will
compute the outer radius RS(Xp) for p > 9/2, and show that the corresponding
symplectic embedding problem is non-rigid. Assume p > 9/2. It follows from
Theorem 5 and Proposition 20 that

c2(Xp) = c2(XΩp) = 2π
(
g′p
)−1

(−2π/3) + 3gp

((
g′p
)−1

(−2π/3)
)
. (50)

Recall from the proof of Proposition 20 that this number is the x-intercept of a
tangent line to the curve (4). Moreover, the x-intercept of this curve is 2π(1/4)1/p

by Lemma 18 (a). This implies that

XΩp ⊂ B(c) ⇐⇒ c ≥ 2π(1/4)1/p.
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The same calculation as in the proof of Theorem 10 (d) above shows that

Xp ⊂ B(c) ⇐⇒ c ≥ 2π(1/4)1/p.

Since XΩp is a concave toric domain, it follows that

c2(Xp) = c2(XΩp) < 2π(1/4)1/p.

Therefore the following proposition implies that Xp
?
↪→ B is non-rigid, and moreover

that RS(Xp) = c2(Xp), as claimed in Theorems 1 and 10.

Proposition 24. For p > 9/2, there is a symplectic embedding XΩp ↪→ B(c2(XΩp)).

Proof of Proposition 24. Let p > 9/2. To establish the required embedding, we
verify the conditions of Proposition 23 above. We first claim that

Vol(XΩp) = Vol(Xp) ≤ Vol(B(c2(Xp))) = Vol(B(c2(XΩp))).

Indeed, since for p < p̃ one has Xp ⊂ Xp̃, it follows from (29) that for all p > 9/2

Vol(Xp) ≤ Vol(X∞) = π2 ≤ 1
2

(
2π
(

1
4

)2/9
)2

= 1
2
c2(X9/2)2

≤ 1
2
c2(Xp)

2 = Vol(B(c2(Xp))).

We now need to verify (31). We claim that τ((Ωp)1) and τ((Ωp)11)+τ((Ωp)111) are
increasing functions of p. For p > 9/2, we now compute the x-intercept of the lines of
slope −1, −1/2, −1/3 and −1/4, which intersect the curve (4), but not R2

≥0\Ωp. For
p ≥ 25/2, these lines are all tangent to (4). Let x−1(p), x−1/2(p), x−1/3(p), x−1/4(p)
be the x-intercepts of these lines, see Figure 3(a). We observe that

τ((Ωp)1) = x−1/2(p)− x−1(p),

τ((Ωp)11) = x−1/3(p)− x−1/2(p),

τ((Ωp)111) = x−1/4(p)− x−1/3(p).

Now let w2(p) = τ((Ωp)1) and d(p) = τ((Ωp)11) + τ((Ωp)111). So,

w2(p) = x−1/2(p)− x−1(p),

d(p) = x−1/4(p)− x−1/2(p).
(51)

If we denote by v−1(p), v−1/2(p) ,v−1/3(p) and v−1/4(p), the parameter values of v
where the lines defined above interesct the curve (4), respectively, then

v−1(p) = 0,

v−1/2(p) =
(
g′p
)−1

(−2π/3),

v−1/4(p) =

{ (
1
4

)1/p
=
(
g′p
)−1
(
−
√

2
p
π
)
, if 9

2
< p < 25

2
,(

g′p
)−1

(−2π/5), if p ≥ 25
2
.

(52)
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Since gp is a concave function,

v−1(p) < v−1/2(p) ≤ v−1/3(p) ≤ v−1/4(p). (53)

Moreover
x−1(p) = 2gp(0) = A(p),

x−1/2(p) = 2πv−1/2(p) + 3gp(v−1/2(p)),

x−1/4(p) = 2πv−1/4(p) + 5gp(v−1/4(p)).

(54)

In order to prove that the functions w2(p) and d(p) are increasing, note first that
they are continuous in (9/2,∞] and differentiable in (9/2, 25/2) ∪ (25/2,∞). So it
suffices to show that

w′2(p), d′(p) > 0, for all p ∈ (9/2, 25/2) ∪ (25/2,∞). (55)

It follows from (17) that for v < (1/4)1/p, the function p 7→ g′p(v) is increasing. Since
the function (p, v) 7→ gp(v) is C∞ in the interior of its domain, we obtain

∂

∂v

∂

∂p
gp(v) =

∂

∂p
g′p(v) > 0,

Hence for a fixed p, the function v 7→ ∂
∂p
gp(v) is increasing. Further, differentiating

(3) for v > 0 we obtain

∂

∂p
gp(v) =

∫ (
1
2

+
√

1
4
−vp

)1/p
(

1
2
−
√

1
4
−vp

)1/p (1− rp)2/p(
(1− rp)2/p − v2

r2

)1/2

(
ln

1

(1− rp)
2
p2 r

2rp

p(1−rp)

)
dr > 0,

(56)
since r ∈ (0, 1). So

w′2(p) = x′−1/2(p)− x′−1(p) = 3 ∂
∂p
gp(v−1/2(p))− 2 ∂

∂p
gp(0)

> 2
(
∂
∂p
gp(v−1/2(p))− ∂

∂p
gp(0)

)
> 0.

Let p ∈ (9/2, 15/2). It follows from (52) that v′−1/4(p) > 0 and that g′p(v−1/4(p)) >

−2π/3. Using (51), (53), (54) and (56) we obtain

d′(p) = x′−1/4(p)− x′−1/2(p)

= 2πv′−1/4(p) + 5g′p(v−1/4(p))v′−1/4(p) + 5
∂

∂p
gp(v−1/4(p))− 3

∂

∂p
gp(v−1/2(p))

> 5
∂

∂p
gp(v−1/4(p))− 3

∂

∂p
gp(v−1/2(p))

> 3

(
∂

∂p
gp(v−1/4(p))− ∂

∂p
gp(v−1/2(p))

)
≥ 0.
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Let p ∈ (15/2/∞). Then, by (51), (52), (53), (54) and (56)

d′(p) = x′−1/4(p)− x′−1/2(p)

= 2πv′−1/4(p) + 5g′p(v−1/4(p))v′−1/4(p) + 5
∂

∂p
gp(v−1/4(p))− 3

∂

∂p
gp(v−1/2(p))

= 5
∂

∂p
gp(v−1/4(p))− 3

∂

∂p
gp(v−1/2(p))

> 3

(
∂

∂p
gp(v−1/4(p))− ∂

∂p
gp(v−1/2(p))

)
≥ 0.

We conclude that w2(p) and d(p) are increasing. A simple calculation using (5)
shows that

d(∞) = 10 sin
π

5
− 6 sin

π

3
= 5

√
5−
√

5

2
− 3
√

3 < 0.69.

Moreover it follows from (2) that

w2(9/2) = 2π

(
1

4

)2/9

− A
(

9

2

)
= 2π

(
1

4

)2/9

−
4 · Γ

(
11
9

)2

Γ
(

13
9

) > 0.85.

So for any p ∈ [9/2,∞],

d(p) ≤ d(∞) < w2(9/2) ≤ w2(p).

Hence, (31) is satisfied, and Proposition 23 implies that

XΩp ↪→ B(c2(XΩp)).

4.3 The symplectic `p-sum of two discs

Here we prove Theorem 12 and Proposition 13.

Proof of Theorem 12. It is clear from the definition that Bp(C2) is a concave
toric domain for 0 < p < 2, and a convex toric domain for p > 2. Thus, it follows
from Lemma 19 that

c1(Bp(C2)) = min(1, 21−2/p), if p > 0, (57)

c2(Bp(C2)) =

{
21−2/p, if p ≥ 2(

1 + 2
p

p−2

)1−2/p

, if 1 ≤ p < 2.
(58)
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A straight forward calculation shows that

B(c1(Bp(C2))) ⊂ Bp(C2), for all p > 0, (59)

and
Bp(C2) ⊂ B(c2(Bp(C2))), for p ≥ 2. (60)

The combination of (57), (58), (59), (60) implies parts (a) and (b) of the theorem. In
order to prove (c), we apply Proposition 23. Let p ∈ [1, 2) and let Ω̃p = µ(Bp(C2)),
where µ is the moment map. Note that Ω̃p ⊂ R2

≥0 is the region bounded by the
coordinate axes and the curve

xp/2 + yp/2 = 1 (and max{‖x‖, ‖y‖} = 1 for p =∞).

As in the proof of Proposition 24 above, we can define x−1(p), x−1/2(p), x−1/3(p)

and x−1/4(p) for Ω̃p, and a simple computation shows that for n ≥ 1

x−1/n(p) =

(
n

p
2−p

1 + n
p

2−p

) 2−p
p

. (61)

Thus, as in the proof of Proposition 24, one has

c2(p) = x−1/2(p),

w2(p) = τ((Ω̃p)1) = x−1/2(p)− x−1(p),

d(p) = τ((Ω̃p)11) + τ((Ω̃p)111) = x−1/4(p)− x−1/2(p).

(62)
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Moreover, a direct computation gives

vol(Bp(1, 1)) =

∫ 1

0

(1− tp/2)2/p dt =
1

p
B

(
2

p
,
2

p

)
, (63)

where here B(α, β) stands for the Euler beta function. It follows from (61), (62)
and (63) that the assumptions for Lemma 23 are:

1

p
B

(
2

p
,
2

p

)
≤ 1

2

( 2
p

2−p

1 + 2
p

2−p

) 2
p
−1
2

(64)

(
4

p
2−p

1 + 4
p

2−p

) 2−p
p

−

(
2

p
2−p

1 + 2
p

2−p

) 2−p
p

≤

(
2

p
2−p

1 + 2
p

2−p

) 2−p
p

−
(

1

2

) 2−p
p

. (65)

We will first prove (64). We claim that the function x 7→ xB(x, x) is convex in
(1, 2). In fact, for x ∈ (1, 2),

d2

dx2
(xB(x, x)) =

∫ 1

0

d2

dx2

(
x(t(1− t))x−1

)
dt

=

∫ 1

0

(t(1− t))x−1 (ln(t(1− t)) + (ln(t(1− t)))2x
)
dt.

(66)

The maximum of the function t 7→ −1/ ln(t(1− t)) is 1/ ln(4), which is smaller than
1, so the integrand in (66) is positive. Therefore x 7→ xB(x, x) is convex in (1, 2).
Hence, for all x ∈ (1, 2),

xB(x, x) ≤ B(1, 1) + (2B(2, 2)−B(1, 1)) (x− 1) =
5

3
− 2x

3
. (67)

Now it is a simple calculus problem to check that for x ∈ (1, 2),

5

3
− 2x

3
≤ 4

(1 + 2
1

x−1 )2(x−1)
=

(
2

1
x−1

1 + 2
1

x−1

)2(x−1)

. (68)

Combining (67) and (68) for x = 2/p, we obtain (64).

We now prove (65) for 1 ≤ p < 2. It is clear that

2
3p
2−p − 3 · 2

2p
2−p + 3 · 2

p
2−p − 1 =

(
2

p
2−p − 1

)3

> 0.

Consequently

2
p

2−p

1 + 2
p

2−p

>
1 + 3 · 2

2p
2−p

4
(

1 + 2
2p
2−p

) =
1

2

(
1

2
+

4
p

2−p

1 + 4
p

2−p

)
.
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Since the function x 7→ x
2−p
p is concave, it follows that(

2
p

2−p

1 + 2
p

2−p

) 2−p
p

>

(
1

2

(
1

2
+

4
p

2−p

1 + 4
p

2−p

)) 2−p
p

≥ 1

2

(1

2

) 2−p
p

+

(
4

p
2−p

1 + 4
p

2−p

) 2−p
p


and so (

1

2

) 2−p
p

+

(
4

p
2−p

1 + 4
p

2−p

) 2−p
p

≤ 2

(
2

p
2−p

1 + 2
p

2−p

) 2−p
p

.

Therefore (65) holds.

Proof of Proposition 13. It is enough to prove that B1(C2) ↪→ E(1/2, 2/3). The
domain B1(C2) is a symmetric concave toric domain, and a direct computation shows
that the first few numbers of its weight sequence are

w1 =
1

2
, w2 =

1

6
, w3 =

1

6
, w4 =

1

12
, w5 =

1

12
, w6 =

1

20
,

w7 =
1

20
, w8 =

1

30
, w9 =

1

30
, w10 =

1

30
, w11 =

1

30
.

Note that one can easily fit the ball B(1/2) and two balls B(1/6) into E(1/2, 2/3),
see Figure 3(b). The remaining domain is equivalent to the ball B(1/6) under an
SL(2,Z) transformation. So for N ≥ 4,

N⊔
i=1

B(wi) ↪→ E(1/2, 2/3) ⇐⇒
N⊔
i=4

B(wi) ↪→ B(1/6). (69)

We now consider the ordered vector

(1/6; 1/12, 1/12, 1/20, 1/20, 1/30, 1/30, 1/30, 1/30, . . . , wN).

After appling one Cremona move (and re-ordering), we obtain the vector

(7/60; 1/20, 1/30, 1/30, 1/30, 1/30, 1/30, 1/30, 1/30, . . . , wN , 0),

which is reduced. Thus, Theorem 22 implies that the embeddings in (69) exist, and
therefore from Theorem 21 we conclude that B1(C2) ↪→ E(1/2, 2/3), as required.
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