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Introduction.

The main object of this thesis is the group of Hamiltonian diffeomorphisms Ham (M, w)
associated with a symplectic manifold (M, w). Symplectic manifolds appear naturally in
the Hamiltonian formulation of Classical Mechanics and Geometrical Optics. Symplec-
tic geometry is, in a sense, the geometry underlying the Hamiltonian systems in these
settings. The group of Hamiltonian diffeomorphisms plays a fundamental role both in
symplectic geometry and in Hamiltonian dynamics. For a symplectic geometer, under
some assumptions on the manifold M, this group is the connected component of the iden-
tity in the group of all the isometries of the symplectic structure w. From the point of
view of dynamics, the group of Hamiltonian diffeomorphisms serves as the group of all
the admissible motions (also called canonical transformations) in some classical dynamic

system.

In recent years, the group of Hamiltonian diffeomorphisms has been intensively studied
with many new discoveries concerning a wide range of aspects from classical Hamiltonian
dynamics through symplectic geometry to algebraic geometry. On the other hand, many
features of this group are still waiting to be discovered or completely understood. We
refer the reader to [24], [34], [48] and to the references within for symplectic preliminaries,
further discussion, and recent developments in the study of the group of Hamiltonian

diffeomorphisms.

In this thesis we display several new results regarding geometric and algebraic properties
of the group of Hamiltonian diffeomorphisms. The thesis contains four chapters: The
first one is an introductive chapter with background from symplectic geometry, and the
other three contain the main part of the thesis. The last three chapters of this thesis,
although related, are independent of each other. The results in these chapters are pub-

lished in [43], [44], and [45] respectively. We wish to emphasize that the second chapter
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is based on a joint work with Roy Wagner. Below is a brief summary of the main results

in the thesis.

Geometric Properties of Ham (M, w)

One of the most remarkable facts regarding the group of Hamiltonian diffeomorphisms is
that it carries an intrinsic geometry given by a Finsler bi-invariant metric. This metric
was first discovered by Hofer in 1990, in his seminal work [22]. It is important for at
least two reasons: Firstly, it yields a geometric intuition for Hamiltonian systems, and
secondly it can be used in many ways as a tool in symplectic geometry and dynamics.
It is worthwhile to mention that the existence of such a metric is highly unusual for

non-compact groups of transformations.

In the years following Hofer’s work this new geometry has been intensively studied in
the framework of modern symplectic geometry. In fact Hofer’s discovery opened a new
field, now called Hofer geometry, in which the geometry and the topology of the group
of Hamiltonian diffeomorphisms are being studied. A great progress has been made in
understanding some of its properties such as geodesics, diameter, and its relation with
dynamics. However, many aspects of this group remain unknown. For example, it is not
known if there are other Finsler-type bi-invariant metrics on the group Ham(M,w) which

are not equivalent to Hofer’s metric, or in other words: whether Hofer’s metric is unique.

In the seconed chapter of this thesis we address the question of the uniqueness of Hofer’s
metric among all the "Finsler-type" bi-invariant metrics on Ham(M,w). The results in
this chapter are based on a joint work with Roy Wagner [44]. In order to describe our
contribution toward answering the above question we start with the following preliminar-

ies.

Recall that a Finsler-type metric on the group Ham (M, w) is obtained by choosing a norm
on the Lie algebra A4 of Ham (M, w), extending it to any other tangent space, defining the
length of a path in Ham(M,w) just as in Riemannian geometry, and finally defining the
distance between two elements to be the infimum length over all paths connecting them. It
is not hard to check that such a distance function is non-negative, symmetric and satisfies
the triangle inequality. Moreover, a norm on A which is invariant under the adjoint action
of the group on its Lie Algebra, yields a bi-invariant pseudo-distance function. It is known

that for a closed symplectic manifold M, the Lie algebra A can be identified as the space
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of all zero-mean normalized smooth functions on A, and the adjoint action under this
identification is just the standard action of Hamiltonian diffeomorphisms on functions.

The question whether such a distance function is non-degenerate is highly non-trivial.

As mentioned above, a distinguished result by Hofer [22]|, which was later generalized by
Polterovich [46] and finally proven in full generality by Lalonde-McDuff [28], states that
the L,-norm on A gives rise to a genuine distance function on Ham(), w). In the opposite
direction, Eliashberg and Polterovich [13] showed that for 1 < p < oo, the pseudo-
distances on Ham(M,w) which correspond to the L,-norms on A are all degenerate.

Naturally, the following question arises:

Question: What are the invariant norms on A, and which of them give rise to genuine

bi-invariant metrics on Ham (M, w)?

Our main contributions towards answering this question (appear in [44]) are the following:

Let (M,w) be a closed symplectic manifold.

Theorem I: Any Ham(M, w)-invariant norm || - || on A such that || - || < C| - || for some

constant C is invariant under all measure preserving diffeomorphisms on M.

Theorem II: Let || - || be a Ham (M, w)-invariant norm on A such that || - || < C|| - ||,
but the two norms are not equivalent. Then the associated pseudo-distance function on

Ham (M, w) vanishes identically.

These two theorems will be discussed in the seconde chapter of this thesis together with
some further discussion regarding norms which are invariant under measure preserving

transformations.

In the third chapter of the thesis we turn to a different direction. We study Hofer’s metric
in a larger context of Lagrangian submanifolds. Lagrangian submanifolds are subman-
ifolds of half the dimension of the ambient manifold, on which the symplectic form w
vanishes (see Chapter 1 below for a more precise definition). They are among the most
important objects in symplectic geometry, and they arise naturally in many physical and
geometric situations. For instance, in classical mechanics the systems of partial differ-
ential equations of Hamilton-Jacobi type lead to the study of Lagrangian submanifolds.
Furthermore, Lagrangian submanifolds are a part of a growing list of mathematically rich
special objects that occur naturally in string theory. In fact, according to the “symplectic

creed", everything can be thought of as a lagrangian submanifold [59]. In order to make
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this statement slightly more rigorous we note that symplectic diffeomorphisms admit a
simple interpretation as Lagrangian submanifolds. It is not hard to check that the graph
of a symplectomorphism in the product symplectic manifold (M x M,w & —w) is La-
grangian. This of course leads to a natural link between symplectic diffeomorphisms and

Lagrangian manifolds.

The results in the third chapter are based on our work [43]. In this work we compare
Hofer’s geometries on two spaces associated with a closed symplectic manifold (M,w).
The first space, Ham(M,w), is the group of Hamiltonian diffeomorphisms. The second
space L consists of all Lagrangian submanifolds of M x M which are exact Lagrangian
isotopic to the diagonal. The space L carries a Finsler-type metric which is analogue to
the above mentioned Hofer’s metric on Ham(M,w). In chapter three below we show that
in the case of a closed symplectic manifold with 7o(M) = 0, the canonical embedding of
Ham(M,w) into £, f — graph(f) is highly distorted with respect to Hofer’s distances in
spite of the fact that it preserves lengths of smooth paths. More precisely, denote by d
the Hofer metric on Ham(M,w) and by dj, the analogue Hofer metric on £. Set 1 for
the identity element of Ham(M, w).

Theorem III: Let (M,w) be a closed symplectic manifold with m9(M) = 0. Then there

exist a family {¢;}, t € [0,00) in Ham(M, w) and a universal constant ¢ such that:

d(1l, 1) — 00 as t— oo while dpa(graph(1), graph(e:)) = c.

The above family {y;} was constructed explicitly. The following corollaries follow imme-

diately under the conditions of the theorem:

i) The embedding of Ham(M, w) in £ is not isometric, rather, the image of Ham(M,w) in £
is highly distorted. The minimal path between two graphs of Hamiltonian diffeomorphisms
in £, might pass through exact Lagrangian submanifolds which are not the graphs of any

Hamiltonian diffeomorphisms.
ii) The group Ham(M,w) has an infinite diameter with respect to Hofer’s metric d.
iii) The metric d does not coincide with the Viterbo-type metric defined by Schwarz [55].

Moreover, as a by-product of our method we obtained a result regarding the geodesics in
Ham (M, w). We showed (under the same conditions on the manifold M) that there exists

an element in Ham (M, w) which cannot be joined to the identity by a minimal geodesic.
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Theorem IV: Let (M,w) be a closed symplectic manifold with mo(M) = 0. Then there
exists an element ¢ in (Ham(M,w), d) which cannot be joined to the identity by a minimal

geodesic.

The first example of this kind was established by Lalonde and McDuff [29] for the case of

the two dimensional sphere S2.

Algebraic Properties of Ham (M, w)

The second part of this thesis deals with some algebraic properties of the group of Hamil-
tonian diffeomorphisms. We focus mainly on the existence and the applications of certain
quasi-morphisms. Recall that a (real valued) quasi-morphism on a group G is a map
r : G — R that is a bounded distance away from being a homomorphism, i.e., there exists

a constant ¢ = ¢(r) > 0 such that
|r(gh) —r(g) —r(h)| <e¢, forallgheqa.

A quasi-morphism r is called homogeneous if r(¢g™) = mr(g) for all m € Z. The notion
“quasi-morphism" first appeared in the works of Brooks [10] and Gromov [21] on bounded
cohomology of groups. Since then, quasi-morphisms have become an important tool in
the study of groups. For example, the mere existence of a homogeneous quasi-morphism
on a group G which does not vanish on the commutator subgroup G’ implies that the
commutator subgroup has infinite diameter with respect to the commutator norm (see
e.g. [6])

In the case of the group of Hamiltonian diffeomorphisms, a celebrated result by Banyaga [4]
states that for a closed symplectic manifold, Ham (M, w) and its universal cover ﬁ;r/n(M ,w)
are simple groups. This implies in particular that they do not admit any non-trivial ho-
momorphism to R. On the other hand, the existence of homogeneous quasi-morphisms
on the group of Hamiltonian diffeomorphisms and/or its universal cover is known for
some classes of closed symplectic manifolds (see e.g. [5], [14], [18], and [19]). In a recent
work [15], Entov and Polterovich showed - by using Floer and Quantum homology - that
for the class of symplectic manifolds which are monotone and whose quantum homology
algebra is semi-simple, %(M ,w) admits a homogeneous quasi-morphism to R. In addi-
tion to constructing such a quasi-morphism, Entov and Polterovich showed that its value

on any diffeomorphism supported in a Hamiltonianly displaceable open subset equals to
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the Calabi invariant of the diffeomorphism (see Section 4 below for precise definitions). A
quasi-morphism with this property is called a Calabi quasi-morphism. It turns out that
the existence of a Calabi quasi-morphism has several applications regarding Lagrangian
intersection and rigidity of intersections in symplectic manifolds. We refer the reader
to [8], [16], and to Chapter 4 of this thesis for further information on this subject.

The forth chapter of this thesis is based on our work [45]. There we constructed Calabi
quasi-morphisms on the universal cover of the group of Hamiltonian diffeomorphisms for
some non-monotone symplectic manifolds. This complements the above mentioned result

by Entov and Polterovich which applies in the monotone case.

In order to state our results we first recall some notations. Let Xy = (S? x S?, w, =
w®Iw), 1 <\ € R, where w is the standard area form on the two-dimensional sphere 5>
with total area 1, and let Y, = (CP2#CP2, wy), 0 < p <1, be the symplectic blow-up
of CP? at one point, where w), takes the value y on the exceptional divisor, and 1 on
the class of the line [CP']. In the monotone case where A = 1 and y = 1/3, Entov and
Polterovich [15] proved the existence of a Lipschitz homogeneous Calabi quasi-morphism
on the universal covers of Ham(X,) and Ham(Y,). For the definition of the Lipschitz
property of a Calabi Quasi-morphism see [15] or Section 4 below. The following theorem

(proven in [45]) extend this result to the rational non-monotone case.

Theorem V: Let (M,w) be either X where 1 <A € Q or Y, where 1/3 # o € QN (0, 1).

Then there exists a Lipschitz homogeneous Calabi quasi-morphism 7 : ﬁ;r/n(M ,w) — R.

In fact, the examples in the above theorem are special cases of a more general criterion for
the existence of a Calabi quasi-morphism (also proven in [45]). This criterion is based on
some algebraic properties of the quantum homology algebra associated with the manifold

(M,w). The precise statement is:

Theorem VI: Let (M, w) be a closed connected rational strongly semi-positive symplectic
manifold of dimension 2n. Suppose that the quantum homology subalgebra Q Hs, (M) C
QH.(M) is a semi-simple algebra over the field Ay and that the minimal Chern number
Ny divides n. Then there exists a Lipschitz homogeneous Calabi quasi-morphism 7 :
ﬁ;r/n(]\/[ ,w) — R.

The precise definitions of the conditions in the theorem and further details will be given

in Chapter 4 below.
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Moreover, in contrast with Entov-Polterovich’s work, we showed that the quasi-morphisms
in the theorem above descend to non-trivial homomorphisms on the fundamental group

of Ham(M,w). More precisely

Theorem VII: Let M be one of the manifolds listed in Theorem V. Then the restriction
of the above mentioned Calabi quasi-morphism to the fundamental group m (Ham(M ))

gives rise to a non-trivial homomorphism.

This differs from the situation described by Entov and Polterovich where it was proven
that for M = CP" endowed with the Fubini-Study form, or for M = S? x S? equipped
with the split symplectic form w & w, the restriction of the Calabi quasi-morphism to the

fundamental group m; (Ham(})) vanishes identically.

As a by-product of Theorem V, we also generalize a result regarding rigidity of intersec-
tions obtained by Entov and Polterovich in [16]. To describe this result, we recall first the
following definitions. For a symplectic manifold M denote by {-,-} the standard Poisson
brackets on C*°(M). A linear subspace A C C'*(M) is said to be Poisson-commutative
if {F,G} =0 for all F,G € A. We associate to a finite-dimensional Poisson-commutative
subspace A C C*°(M) its moment map ®4 : M — A*, defined by (P (x), F) = F(z). A
non-empty subset of the form ®'(p), p € A*, is called a fiber of A. A fiber X C M is
said to be displaceable if there exists a Hamiltonian diffeomorphism ¢ € Ham(M) such
that o(X) N X = 0.

Definition: A closed subset X C M is called a stem, if there exists a finite-dimensional
Poisson-commutative subspace .4 C C*°(M), such that X is a fiber of A and each fiber
of A, other than X, is displaceable.

In Theorem 2.4 of [16], Entov and Polterovich showed that for a certain class of symplectic
manifolds, any two stems have a non-empty intersection. What they used, in fact, was
only the existence of a Lipschitz homogeneous Calabi quasi-morphism for manifolds in
this class. Using the exact same line of proof, the following theorem follows from Theorem
V above.

Theorem IIX: Let M be one of the manifolds listed in Theorem V. Then any two stems

in M intersect.

An example of a stem in the case where M = X, is the product of two equators. More

precisely we identify X, with CP' x CP! in the obvious way. Denote by L C X, the
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Lagrangian torus defined by
L={([20: 2] [wy:un]) € CP' x CP" | |2| = |z, |wo| = [wn]}

The proof that L is a stem goes along the same line as Corollary 2.5 of [16]. Since the

image of a stem under any symplectomorphism of M is again a stem we get:

Corollary: Let X, be the first class of manifolds listed in Theorem V. Then for any
symplectomorphism ¢ of X, we have L N ¢(L) # 0.

Structure of the thesis:

Chapter 1: In the first chapter of the thesis we recall some necessary definitions and
notations from symplectic geometry. In particular we introduce the main object of the

thesis i.e., the group of Hamiltonian diffeomorphisms.

Chapter 2: In this chapter, after briefly recalling the definition of Hofer’s metric, we
address the question of the uniqueness of Hofer’s metric among the Finsler-type metrics
on the group of Hamiltonian diffeomorphisms, and present our main results. The next
section contains a fairly detailed outline of the proofs of our main theorems, stressing the
main ingredients involved. The following two sections present complete proofs of our main
results i.e., Theorem 2.1.3 and Theorem 2.1.2 respectively. Section 2.5 contains proofs of
some technical lemmas. The last section in this chapter contains a sketchy treatment of
some additional properties of the norm ||| - |||, together with some references concerning

the classification of such norms.

Chapter 3: In this Chapter we study Hofer’s metric in a larger context of Lagrangian
submanifolds. We consider the natural map which takes a symplectic diffeomorphism
to its graph (which is a Lagrangian submanifolds), and discuss it from the viewpoint of
Hofer’s geometry. The main result stated in the first section of the chapter states that this
map has the following surprising feature: it preserves the lengths of curves but strongly
distorts the distances. In section 3.2 we prove our main theorem. In section 3.3 we present
some result about geodesics in the group of Hamiltonian diffeomorphisms endowed with
Hofer’s metric. In the last two section of this chapter we prove Proposition 3.2.6 and

Proposition 3.2.2, which were stated and used in Section 3.2, respectively.
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Chapter 4: Here we focus on some algebraic properties of the group of Hamiltonian
diffeomorphisms, namely the existence and applications of Calabi Quasi-morphisms. In
the first section of this chapter we present some background regarding Calabi Quasi-
morphisms, recall previous results concerns the existence of a Calabi Quasi-morphism and
some application of it, and state our main results. In Section 4.2 we recall some definitions
and notations related to the Calabi quasi-morphism. In Section 4.3 we briefly review the
definition of the quantum homology algebra QH,.(M). We then describe the quantum
homologies of our main examples and state some of their properties. In Section 4.4 we
recall the definition of Floer homology and some relevant notions. Section 4.5 is devoted
to the proof of Theorem 4.1.1 and Theorem 4.1.3. In Section 4.6 we discuss the restriction
of the Calabi quasi-morphisms on the fundamental group of Ham(A/). In Section 4.7 we
prove Theorem 4.1.2 and in the last section we prove the Poincaré duality type lemma

which is stated and applied in Section 4.5.



Chapter 1
Preliminaries in Symplectic Geometry

In this chapter we recall some basic definitions and notations from symplectic geometry.
We restrict ourselves only to those which serve as a background to the following chapters.

For a comprehensive introduction to symplectic geometry see e.g. [34].

1.1 Symplectic Manifolds

A symplectic manifold is a pair (M, w) consisting of a smooth manifold M together with
a closed, non-degenerate 2-form w € Q*(M). The first and most basic example is the 2n-
dimensional Euclidean space R** with the standard linear coordinates (x1,v1, ..., Tn, Yn),
together with the (so-called) standard symplectic structure wy, = 7, dz; A dy;. Note
that the dimension of a symplectic manifold must always be even in view of the non-
degeneracy condition on w. Another class of examples are the class of oriented Riemannian
surfaces with the symplectic form given by the area form. Our last (fundamental) example
of a symplectic manifolds is the cotangent bundle 7*X of an n-dimensional manifold X
which carries a canonical symplectic form. This example is especially important since
symplectic manifolds arise naturally in abstract formulations of classical mechanics and
analytical mechanics as the cotangent bundles of manifolds. We refer the reader to [34]

for the explanation of the symplectic structures on these spaces.

Given two symplectic manifold (M7, w;) and (Ms, ws), a symplectomorphism is a smooth

diffeomorphism ¢ : M; — M, such that ¢*ws = wy. The group of all the symplectomor-

12
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pisms from M to itself is denoted by Symp(M,w).

1.2 Lagrangian Submanifolds

A particular important class of submanifolds L C M of a symplectic manifold (M, w) are
those on which the symplectic form vanishes i.e., w|,; = 0. Such submanifolds are called
isotropic. It follows from the non-degeneracy condition of w that the dimension of an

isotropic submanifold is less then or equal to half the dimension of the ambient manifold.

Definition 1.2.1. A Lagrangian submanifold L of a symplectic manifold M is an isotropic
manifold of mazimal dimension; in other words, if w|;; = 0 and dimL = %dim]\/[. An
embedding (or immersion) f : L — M, where the dimension of L is half the dimension of

M, is called Lagrangian if f*w = 0.

An examples of Lagrangian submanifolds are the torus 7" = S' x ... x 8! C R?", any
curve on an oriented surface, and the zero section in the cotangent bundle. Another class
of examples, which will be useful for us in Chapter 3 below, is the following: Let M be
a symplectic manifold and let ¢ : M — M be a diffeomorphism. It is not hard to check
that v is a sympelctomorphism if and only if its graph

graph(¢)) = {(¢,¥(q)) ; g€ M} C M x M,

is a Lagrangian submanifold of (M x M,w & —w).

We turn now to recall the notion of exact Lagrangian isotopies which we will also use in
Chapter 3 below. Let (M?",w) be a symplectic manifold of dimension 2n and let L™ be
an n-dimensional closed manifold. Let ¥ : L x [0,1] — M be a family of Lagrangian
embeddings. It follows from the definition that U*w = a4 A dt, where {a;} is a family of

closed 1-forms on L.

Definition 1.2.2. A Lagrangian isotopy V is called exact if oy is exact for every s.

It is known that an exact Lagrangian isotopy can be extended to an ambient Hamiltonian
isotopy of M. In chapter 3 below we discuss such an extension property with some

additional requirements.
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1.3 The Group of Hamiltonian Diffeomorphisms

As mentioned in the introduction, the main object of our study is the infinite-dimensional
Lie group Ham(M, w) of Hamiltonian diffeomorphisms of M which we now turn to define.
Let A be the space of all time-independent smooth functions on M which are zero-mean
normalized with respect to the canonical volume form w” i.e.,

A={Fec():; /

Fur =0},
M

A time dependent function F' : M x [0,1] — R is called normalized if F; belongs to A
for all t. For every time-dependent function F' : M x [0,1] — R, traditionally called
Hamiltonian function, we associated a time-dependent Hamiltonian vector field Xz, on
M defined by

ixpw = —dF;, where Fy(z)= F(t,v).

Since the manifold M is closed, the classical Hamiltonian equation
= Xpg, x(0)=u1z9 € M,

can be solved over the time interval [0, 1] for every initial value o € M. Hence we obtain

a 1-parametric family of diffeomorphisms ¢t., where ¢ € [0, 1], defined by the condition
YFr

Pr(w0) = x(t),

where z(t) is the solution of the above Hamiltonian equation for the initial value x.
It is not hard to check (see e.g. [24]) that the maps ¢! corresponding to the flow of a
Hamiltonian vector field X, leave the symplectic form invariant; or in other words, % is
a family of symplectic diffeomorphisms. In what follow we shall address this family as the
Hamiltonian flow generated by the Hamiltonian function F. We denote by Ham(M,w)

the set of all the time-1-maps of such Hamiltonian diffeomorphisms i.e.,

Ham(M,w) = {¢ | ¢ = ¢} for some normalized F : M x [0,1] — R}

This set has a group structure with respect to composition (see e.g. [48]), and it is in fact
an infinite dimensional Lie group. It is also a normal subgroup of the identity component
Sympy(M,w) of the group of all the symplectomorphisms of M. We refer the readers
to [24], [34] and |48] for symplectic preliminaries and further discussions on the group of

Hamiltonian diffeomorphisms.
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1.4 Hofer’s metric on Ham(M, w)

One of the most remarkable facts concerning the group of Hamiltonian diffeomorphisms
is the existence on a bi-invariant metric known as Hofer’s metric. We turn now to define
it. Let (M,w) be a closed symplectic manifold. The following important fact is due to
Banyaga [4]: For every path {¢;}, t € [0, 1] of diffeomorphism with values in Ham (M, w)
there exists a normalized time dependent Hamiltonian function F' : M x [0, 1] — R which
generate {y,} as its Hamiltonian flow. Thus, given a Hamiltonian path {y,} we define its
length by
Hipeh) i= max F(t,2) — min F(t,),

Tt
where the max and the min are taken over all (z,t) € M x [0,1]. Next, as in the case
of Finsler geometry, we measure the distance from the identity in Ham(M,w) by taking
the infimum of the lengths of all the connecting paths i.e., for every ¢ € Ham(M,w) we
define a pseudo-metric d by

d(1, ) == inf{[| {2 }]1},

where the infimum is taken over all the Hamiltonian paths {¢;} with ¢ = ;. Next we
extend d to a bi-invariant function by setting d(p, ) = J(]l, Pe~1). Tt is easy to check
that d is a bi-invariant pseudo-distance function of Ham(M,w). However is is highly

non-trivial to show that

Theorem 1.4.1. The pseudo-metric d is non-degenerate and therefore defines a genuine

bi-invariant metric on the group of Hamiltonian diffeomorphisms.

This was discovered and proved by Hofer [22] for the case of R?", then generalized by
Polterovich [46] to some larger class of symplectic manifolds, and finally proven in full

generality by Lalonde and McDuff in [28]. In what follows we refer to d as Hofer’s metric.

Remark 1.4.2. In Chapter 2 below we re-introduce Hofer’s metric in a slightly different
way, however equivalent. There we consider the group of Hamiltonian diffeomorphisms
as a Lie group and define Hofer’'s metric in terms of Finsler-type metric given by the
choice of the supremum norm ||F|| = maxy, |F| on the Lie-algebra of Ham(M,w) which
we identified with A. The original metric introduce by Hofer is actually defined by the
norm || F|| = max,; F' — miny; F on the Lie-algebra of Ham(M,w), but it is equivalent to

the one we use in Chapter 2.



Chapter 2

On the Extremality of Hofer’s Metric

2.1 Introduction and Results

Let (M, w) be a closed connected symplectic manifold of dimension 2n. Let A be the space
of all time-independent smooth functions on M which are zero-mean normalized with
respect to the canonical volume form w™, and let Ham(M, w) be the group of Hamiltonian
diffeomorphisms of M. It is well known (see e.g. [48]) that the Lie algebra of Ham(M,w),
that is the space of all Hamiltonian vector fields, can be identified with the space A.
Moreover, the adjoint action of Ham(M,w) on its Lie algebra A is the standard action of
diffeomorphisms on functions. The choice of any norm || - || on A gives rise to a pseudo-
distance function on Ham(M,w) in the following way: we define the length of a path
a:[0,1] - Ham(M,w) as

1 1
length{a} = / ]l de = / |Ellde,
0 0

where Fi(z) = F(t, x) is the Hamiltonian function generating the path «. This is the usual
definition of Finsler length. The distance between two Hamiltonian diffeomorphisms is
given by

p(¥,¢) = inflength{a},
where the infimum is taken over all Hamiltonian paths o connecting ¢) and ¢. It is not hard
to check that p is non-negative, symmetric and satisfies the triangle inequality. Moreover,
a norm on A which is invariant under the adjoint action yields a bi-invariant pseudo-

distance function, i.e. p(¢,p) = p(01,0¢) = p(v 0, p0) for every 1, p,0 € Ham(M,w).

16
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From now on we will deal only with such norms and we will refer to p as the pseudo-

distance generated by the norm || - ||.

It is highly non-trivial to check whether such a distance function is non-degenerate, that
is p(1,%) > 0 for ¢ # 1. In fact, for compact symplectic manifolds, a bi-invariant pseudo-
metric p on Ham (M, w) is either a genuine metric or identically zero. This is an immediate
corollary of a well known theorem by Banyaga [4], which states that Ham (M, w) is a simple

group, combined with the fact that the null-set

null(p) = {4 € Ham(M,w) | p(1,¢) = 0}
is a normal subgroup of Ham(M,w).

A distinguished result by Hofer [22] states that the L., norm || - ||~ on A gives rise to a
genuine distance function on Ham(M,w). This was discovered and proved by Hofer for
the case of R?", then generalized by Polterovich [46] to some larger class of symplectic
manifolds, and finally proven in full generality by Lalonde and McDuff in [28]. The above
mentioned distance function is known as Hofer’s metric and has been intensively studied
since its discovery (see e.g. [24], [34], [48]). We also refer the reader to Oh’s paper [42] for
another approach to the non-degeneracy of Hofer’s metric, and to Chekanov’s paper [12]
for a proof that an analogue of Hofer’s metric is (up to scaling) the only non-degenerate
Hamiltonian-invariant Finsler metric (see [12] for the precise definition) on the space
of Lagrangian submanifolds Hamiltonian isotopic to a given closed Lagrangian. In the
opposite direction, Eliashberg and Polterovich showed in [13] that for 1 < p < oo, the
pseudo-distances on Ham (M, w) which correspond to the L, norms on A vanish identically.

Thus, the following question arises from [13]| and [48]:

Question: What are the invariant norms on A, and which of them give rise to genuine

bi-invariant metrics on Ham(M, w)?
Our main contributions towards answering this question are

Theorem 2.1.1. Let || -|| be a Ham(M,w)-invariant norm on A such that ||-|| < C| ||
for some constant C. Then ||-|| is invariant under all measure preserving diffeomorphisms
of M.

Theorem 2.1.2. Let || -|| be a Ham(M,w)-invariant norm on A such that || - || < C| ||

for some constant C, but the two norms are not equivalent. Then the associated pseudo-

distance function p on Ham(M,w) vanishes identically.
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Here, two norms are said to be equivalent, if each bounds the other up to a multiplicative

constant.

The next result is a strengthened formulation of Theorem 2.1.1 and a key ingredient in
the proof of Theorem 2.1.2. As the discussion below explains, it also bears on the question

of classifying Ham (M, w)-invariant norms.

Theorem 2.1.3. Let || -|| be a Ham(M,w)-invariant norm on A such that || - || < C|| - ||«
for some constant C. Then || - || can be extended to a semi-norm ||| - ||| < C|| - ||~ on

Lo (M), which is invariant under all measure preserving bijections on M.

The formulation of the theorem states only what is necessary for the proofs of Theo-
rems 2.1.1 and 2.1.2. In fact we know more about ||| - |||. First, ||| - ||| is a norm, rather
than just a semi-norm (namely, ||| - ||| does not vanish on non-zero functions). Second,
|| - |||, when restricted to zero-mean functions, coincides with the completion of || - ||.
Third, this completion can be viewed as a dense subspace of the space of zero-mean func-
tions in L;(M), equipped with a norm invariant under measure preserving bijections. The
argument for the first claim is briefly sketched in Remark 2.5.1, and that for the second
and third claims is outlined in the final section. The final section also refers to literature

concerning the classification of such norms, and indicates their possible pathologies.

2.2 A short outline of the Proofs

As explained in the introduction, the degeneracy of the pseudo-distance function p (The-
orem 2.1.2) is proved in [13] for L, norms, 1 < p < co. The only property of L, actually
used in that proof is, roughly speaking, that uniformly bounded functions with small sup-
port have small norm. More precisely, in Section 2.4 we reproduce an argument from [13]

to show that the proof of Theorem 2.1.2 can be reduced to the following

Claim 2.2.1. If sup{||Fy||} < 00 and Vol(Support(F,)) — 0, then ||F,|| — 0.

Therefore, our main task is to prove this property for any norm which satisfies the re-
quirements of Theorem 2.1.2. As will be explained below, Theorem 2.1.3 allows us to

carry out the proof of this claim in a more amenable setting.
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A natural approach to Claim 2.2.1 would be to consider characteristic functions with
small-measure support first, then make the standard move to step functions, and conclude
with any smooth bounded function with small-measure support. The obvious obstacle is
that characteristic functions are not smooth, and are therefore outside our space. Here
one may choose to approximate them by smooth functions and work from there. We
chose, however, to extend our setting so as to include genuine characteristic functions.
This is where Theorem 2.1.3 comes in. We will interrupt the discussion on the proof of
Claim 2.2.1 to discuss the proof of Theorem 2.1.3.

Recall that our aim in Theorem 2.1.3 is to extend the given norm || - || to L. (M). For
this purpose, we first extend our norm to all smooth functions, with average not neces-
sarily zero (since this adds just one dimension to our original space of functions, any two
extensions are equivalent). Next, we take advantage of the fact that C°°(M) is dense in

Lo (M) with respect to the topology of convergence in measure. We define
IFI] = inf (i inf |73},

where the infimum is taken over all sequences { F},} of uniformly bounded smooth functions

which converge in measure to F'.

Such constructions occur occasionally in functional analysis, for instance in the extension
of the Riemann integral from continuous to semi-continuous functions (using pointwise
convergence from above/below), and in the extension of operator norms from finite-rank
operators on a Banach space to approximable operators (using uniform convergence on
compacta). However, we are not aware of any similar construction which relies on con-

vergence in measure.

We study |||-||| in Section 2.3. First we confirm that |||-||| is a semi-norm on L., (M) which
is dominated from above by || - ||.o. We then go on to prove the non-trivial properties
of ||| - |||: it coincides with || - || on smooth functions, and is invariant under measure

preserving bijections. Formally:
Claim 2.2.2. For every F' € A we have | F|| = |||F||-

Claim 2.2.3. For every F' € L..(M) and every measure preserving bijection ¢ on M we
have
[H[F o @lf| = [[[F1]
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In order to prove this second property, recall that our original norm | - || is already
invariant under Hamiltonian diffeomorphisms. To extend the invariance we invoke Katok’s
“Basic Lemma" from [25], which allows to approximate in measure any measure preserving
bijection by a Hamiltonian diffeomorphism. More precisely, fix an arbitrary Riemannian

metric d on M. We claim

Lemma 2.2.4. For every measure preserving bijection ¢ of M (not necessarily con-
tinuous) and every € > 0, there exists a Hamiltonian diffeomorphism g on M which

e-approximates ¢ in measure, namely

Vol({z € M ; d(p(z),g(x)) >e}) <e

This result is of course independent of the specific Riemannian structure chosen. We
postpone the proof of the lemma to the last section of this paper. The proof of Claim 2.2.3
follows easily from Lemma 2.2.4 and the definition of ||| - |||. Claim 2.2.2 and Claim 2.2.3
conclude the proof of Theorem 2.1.3.

With a measure-preserving-bijection-invariant extension of ||-|| at our disposal, let’s return
to the proof of Claim 2.2.1. Note that Claim 2.2.2 implies that it is sufficient to prove

Claim 2.2.1 for the norm ||| - |||. The rest of this section is devoted to this issue.

Our argument depends on the fact, inspired by an argument from [47], that an operator,
which performs piecewise averaging on functions, is bounded. More precisely, relying on

the fact that ||| - ||| is invariant under measure preserving bijections, we prove that

Lemma 2.2.5 (Piecewise-Averaging property). For every continuous F and every

measurable partition {S;} of M, we have

Ii Z<F>s¢ﬂsi

< [IIE11],

where (F)g, = m fsi Fuw™ denotes the average of F' over S;.

The proof of the lemma is postponed to the last section. Let us now explain how this
property serves to prove Claim 2.2.1. Fix ¢ > 0. The hypothesis of Theorem 2.1.2 provides
us with smooth functions F' such that ||F||. = 1 while ||F|| = |||F]||| < e. Partition M
into A and A° = M \ A, where A is a small enough neighborhood of the maximum of F,
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such that HI[A - <F>A]1A + <F>AC]1AC
that ||| - ||| is dominated from above by || - ||, and the triangle inequality that

s < €. Next, it follows from Lemma 2.2.5, the fact

Al < (04 = (F)alla + (F)aclae

co H[[{F)alla + (F)aclac|l| < e+ ||[F]]] < 2¢

Since ||| - ||| is invariant under measure preserving bijections, this applies to every set B
with the same measure as A. Thus, we establish Claim 2.2.1 for sequences of character-
istic functions on sets with measure tending to zero. It is now a simple approximation
argument, which establishes Claim 2.2.1 as stated for smooth functions. The details are

given in Section 2.4.

2.3 Extending the norm and Proof of Theorem 2.1.3

In this section we construct the semi-norm ||| - |||, and prove its properties as stated in
Theorem 2.1.3. The first step towards the construction of ||| - ||| is an extension of the
given norm to C*°(M). Let C be a constant such that || - || < | - ||co. Endow the space
C>°(M) of all smooth function on M with the norm || - || defined by

IFI" = mt{||Fill + CllFellec s F'=Fi+F, FLEA FpeC*(M)}.

The above definition is just the analytic presentation of the norm corresponding to the
convex hull of the unit ball of (A, || -||) with the unit ball of (C*°(M), || - ||»), the latter
homothetically shrunk so as to fit inside the former when restricted to .A. The homogeneity

of the new norm is clear. To see that the new norm satisfies the triangle inequality, let
F = Fi+F; and G = G1+Gy such that | F1 ||+ C|| Fs||eo < ||F||'+¢, and ||G1]|+C||G2|s0 <
|G||" + €. Then

|F+G|| < ||FA+ G| +C|F2+ Gallwo
([1F1]] + Ol F2lloo) + (1G1 ]| + CllGall o)
< [IF|" + G| + 2e.

IA

The new norm is obviously Ham(M,w)-invariant. To see that || F|" < C|/F|/, just
substitute F; = 0 and F;, = F' in the definition. To see that || - ||' = | - || on A, let
F = F| + F, where I, € Aand F, € C*°(M). Choosing F; = F' and F, = 0 proves that



22 CHAPTER 2. ON THE EXTREMALITY OF HOFER'S METRIC

|F||" < ||F||. For the opposite direction note that since F, F} € A, and since F, = F — F},

the function F5 must also be in A. Therefore

IFI"= inf {|All+ClFlw} > inf {|F]+ R} > inf [F+Bl=]|F|
F=F{+Fy F=F{+Fy F=F{+Fy

714,»

Now we are ready to extend our norm to the entire L., (M ). Using the same convex-hull
trick won’t do (it would fail invariance under measure preserving bijections). Instead, we
take advantage of the classical fact that any measurable function can be approximated in
measure arbitrarily well by smooth functions (see e.g. [53]). We define a new functional
by taking the least || - ||" norm among all such approximations. Formally, we endow the
space Lo (M) with

11| = inf {tim inf || £, }

where the infimum is taken over all sequences of uniformly bounded smooth functions

{F,} which converge in measure to F'.

It is clear that the new functional is homogeneous. To see that it obeys the triangle
inequality, take {F},} and {G,,} which satisfy liminf || F,,||" < |||F|||+¢ and liminf [|G,,||" <
||G||| + €. Then

I[F'+ G| < liminf |, 4+ Gu|" < lminf (| B[+ |Gall") < [IF[[] + G| + 2.

To see that the new functional is still bounded by C|| - ||, note that any essentially
bounded function F' can be approximated in measure by smooth F},’s with at most the
same essential supremum. Indeed, take any approximation in measure F, of F', and
replace it with sign(F,) - (f, o |Fy|), where f, is a good enough smooth approximation
from below of the function f(s) : Rt — R* defined by f(s) = min{s, || F|/s}. Taking

such F},’s we get

IIFI|] < limin £, < Climinf | Byl < O] Flc.

In order to complete the proof of Theorem 2.1.3 we need the following two claims.
Claim 2.3.1. For every F € A we have |F|| = ||F|" = |||F]||

Claim 2.3.2. For every F' € Lo.(M) and every measure preserving bijection ¢ on M we
have
[ o ¢ll] = [[|£1]]
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In order to prove the first claim a certain technical lemma is needed. To state the lemma,
fix from now on an arbitrary Riemannian structure on M, and denote by d the correspond-
ing distance function. Our results are, of course, independent of the specific Riemannian

structure chosen.

Lemma 2.3.3 (Covering Evenly by Many Packings). For every 6 > 0 and ¢ > 0
there exists a covering of M by connected open subsets {Uij}, where 7 = 1,...,J and
t=1,...,L;, such that

(i) for every fized j, each pair of sets {UZJ} have a positive distance from each other.
(ii) the diameter of U’ with respect to d is at most & for all i and j.

(iii) for every x € M, the number of j’s for which x ¢ U;U? is at most £.J.

The proof of the lemma is postponed to the last section of this paper.

Proof of Claim 2.3.1: The restricted equality || - || = || - ||" has been proved along with
the definition of || -||" above. Let’s prove the restricted equality |||- ||| = || -||’. By choosing
F, = F for all n in the definition of ||| - |||, we get ||| - ||| < || - |- In order to show
that || - ||" <[] - |||, let F' € A and let {F},} be a sequence of uniformly bounded smooth

functions, which converges in measure to F. We need to show that
liminf || F,||" > ||F]".
n—oo

For this purpose we will construct a sequence {ﬁn} which converges uniformly to F', such
that ||F,||' > ||F,|. Since || - || < C| - ||s, uniform convergence implies convergence in

| - ]|, and we can conclude

liminf ||F,||' > liminf ||E,| = | F]|".

Let us construct the sequence {F,}. Fix ¢ > 0, and let § > 0 such that every open
neighborhood of diameter 26 in M can be viewed as a neighborhood in R?" such that the
original d and the Euclidian distance are equivalent up to a factor 2. Take a covering {U7}
of M as in Lemma 2.3.3 with the given ¢ and 0. Take n < §/6 such that the 3n-extensions
of any two sets Uij with the same 5 still have a positive distance between them, and such
that

d(z,y) <2n = |[F(z) - F(y)| <e. (2.1)
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Set Vij to be the 3n-extension of Uij with respect to the distance d on M. The radius
n was chosen such that V7 has diameter at most 26, and can therefore be viewed as a
neighborhood in R?*" where d and the Euclidean distance are equivalent up to a factor 2.
In particular, any closed Euclidean ball of radius 7 centered inside U/ is contained in V7.
Denote by B, (z) the Euclidean ball of radius 7 around z. Requirement (2.1) guarantees
that

() — F(2)| <. (2.2)
Next fix n such that

€ |B77|
max{|[Folloo, |[F[|oc}’

Vol({z : |F.(x) — F(z)| > ¢}) <

where |B,| is the measure of a Euclidean ball of radius 7. This is possible since {F,}
converges to F' in measure, and since the F),’s are uniformly bounded. This choice of n

implies that
[(F)By@) — (F)B,@)| < 3e. (2.3)

By the definition of the integral, and the uniform continuity of F;,, there exist points
{zF}K | C B,(0), where K may be depend on n, such that for every x € U/

<e.

1 K
K D Fu(r+ab) = (F)g,w
k=1

Note that we have arranged that V/ contains the closure of the 7-extension of U7. Thus,
using a standard cut-off argument, we consider Hamiltonian diffeomorphisms gilvj, cee g{fj,
all supported inside V7, defined by 95 ;(z) = x 4 2" inside U7 and 9¢;(z) = z outside a
small neighborhood of U7. We therefore get for all = € U?

1 K
e > B (9(2)) = (F) sy
k=1

<e. (2.4)

Note that for fixed j and k, the Hamiltonian diffeomorphisms { gfjj} have disjoint supports,

and can therefore be bundled together to form a single diffeomorphism. We set
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From the triangle inequality and the fact that the norm ||-||’" is invariant under Hamiltonian
diffeomorphisms we conclude that ||FZ||’ < ||F,.|/. Hence, we need only to show that
HF\; — Fl|lo — 0 as € — 0. Indeed,

(Z( 2 Full Loyt )+ > (%;Fn(fi[gf,jm))),

jeT (x) JjeT (%)

where J(z) = {j|z € WU/}, J%x) = {j|z ¢ U;U’}. Recall that the third item of
Lemma 2.3.3 limited the cardinality of J¢(x) to at most ¢J for all . Together with (2.4)
this implies that

—~ 1 J J(x
Fn<x>—7 (<Fn>Bn<z>)\ << §x)| +] } L 2 max |yl < &+ 26 - max |

Together with (2.2) and (2.3) we conclude that

|Fu(z) = F(2)] < |Fu(e) - %Z((FMB,,(@«))’ + ‘% Z«F")Bn(m)) - §Z(<F>Bn(‘r)>)
+ ‘% ;(W)Bn(x)) - % ;(F(x))’ + ‘% ;(F(:v)) - F(x)‘

< e+ 2 -max||F,|lw + 3e + € < be + 2¢ - max || Fy, ||

Since the F),’s are uniformly bounded, j;n indeed converges uniformly to F' as € goes to

Zero.

As explained in Section 2.2, the proof of Claim 2.3.2 is based on a powerful result by
Katok [25] which is used for the proof of Lemma 2.2.4.

Proof of Claim 2.3.2: Take I’ € L, (M) and ¢ a measure-preserving bijection on M.
Consider a sequence {F),} of uniformly bounded smooth functions which converges in
measure to F'. Let ¢, such that F), is an ¢,-approximation in measure of F. Choose
positive numbers d,, so that d(z,y) < 9, = |F,.(z) — Fn(y)| < €,. By repeatedly using

Lemma 2.2.4 we get a family of Hamiltonian diffeomorphisms {g, } such that

Vol({z | d (gn(x), p(x)) > 6a}) < ey

Obviously

| Fu(ga(2)) = F(o(@))] < |Fu(ga(2)) = Fa(p(@))| + [Fa(o(x)) = F(o(2)].
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Our choice of ¢,, §,, and g, guarantees that the above sum is smaller than 2¢,, outside a
2e,-measure exceptional set, and therefore that {F), o g, } converges in measure to F o .

This and the invariance of || - ||" imply that

|| F o ||| < liminf ||F, o g,||" = liminf ||F,|".

Since this is true for any sequence {F,} of uniformly bounded smooth functions which
converges in measure to F', we conclude that |||F o ¢||| < |||F|||- Moreover, by applying
the same argument to F o ¢ and ¢! we obtain that |||F||| < |||F o ¢|||, and the proof is

complete.

2.4 Proof of Theorem 2.1.2

Let p be an intrinsic bi-invariant pseudo-distance function on Ham()M, w) induced by some
invariant norm on A. In order to determine whether p is degenerate or not we will use
a criterion by Eliashberg and Polterovich [13]. This criterion is based on the following

notion of “displacement energy" introduced by Hofer [22].

Definition 2.4.1. For every open subset A C M define its displacement energy with

respect to the pseudo-distance p as
e(A) = inf {p(1,¢) | ¢ € Ham(M,w), ¢¥(A)NA =0},
and set e(A) = oo if the above set is empty.
Theorem 2.4.2 (Eliashberg-Polterovich). If p is a genuine metric on Ham(M,w)

then the displacement energy of every non-empty open set is strictly positive.

This theorem allows to reduce the proof of Theorem 2.1.2 to showing that the displacement
energy of some small ball vanishes. An argument borrowed from [13|, to be presented

immediately below, further reduces the problem to
Claim 2.4.3. For every C' > 0 and every ¢ > 0 there exist § = d(e,C") such that for
every function F with ||F|l« < C' and Vol(Support(F)) < § we have ||F|| < e.

Indeed, choose an embedded open ball B C M such that its boundary 0B is an embedded

sphere, and such that there exists some Hamiltonian isotopy {¢:}, t € [0, 1], generated
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by a Hamiltonian function G(t, z) with ¢g;(B) N B = (). Denote by ¥, the sphere ¢;(0B).
Consider the function K (¢, z) obtained from G by smoothly cutting-off outside a neighbor-
hood U, of ;. Note that the time-one-map of K (¢, x) also displaces B, i.e. k1(B)NB = ().
This is true since for every ¢ € [0,1] we have k(0B) = ¢.(0B). Using Claim 2.4.3, we
note that by decreasing the sizes of the neighborhoods U; we can make || K;|| arbitrarily

small. Hence the displacement energy of the ball B vanishes.

We are thus left with proving Claim 2.4.3. As explained in Section 2.2, instead of proving

it for || - ||, we shall prove it for the extension ||| - ||| announced in Theorem 2.1.3.
Proof of Claim 2.4.3

Let 1y stand for the characteristic function of the set V. We first prove that

|1y ||| — 0 as Vol(V') — 0. (2.5)
Since || - || is not equivalent to || - ||, and since ||| - ||| is an extension of || - ||, for every
¢ > 0 there exists some function ' € A with || F|| = |||F||| < ¢, while ||F|loc = 1. Assume

that the maximum of F is obtained at some point xqg € M and set U to be a small-radius
open set around z,. Continuity allows us to choose U in such a way that |F(z)] > 1—¢

for every x € U. Using the triangle inequality we obtain:
KEYy - Dol < |[(F)o - Ty + (F)ue - Qe[| + [[[(F)ve - Toe|l],

where U¢ = M \ U. The left summand is estimated via Lemma 2.2.5. To estimate the
right summand, recall that Vol(U)(F)y + Vol(U®)(F)ye = (F)n = 0. Together with

Lemma 2.2.5 we therefore get:

Fyy-y||| < |||F Ayel||-
IKE)e - olll < NFI+ = U
Now, since ||| - ||| < C|| - ||oo, and since H% - pye||oo goeS to zero with Vol(U), for

U with small enough measure we get
[{(F)o - Tyl]| < [||F]|| 4+ < 2e.

Due to the fact that |[(F)y| > 1 — ¢, taking ¢ < 1/2 we get |||1y]|| < 4e. Since ||| - ||| is
invariant under measure preserving bijections, this applies to every set V' with the same

measure as U .
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Now we can complete the proof of Claim 2.4.3. Let F' € C°°(M) be supported in some
compact set U C M with measure €. Consider a finite partition of U into measurable sets
{S;}Y, with radius so small that uniform continuity affirms max(F|s,) — min(F|s,) < €
for every 1 < i < N. We have

N N N
HEN =11 F - s < Y (F = F) - Bs -+ 111 ) Fln) - sl
=1 =1

=1

where 7; is an arbitrary point in S;. Without loss of generality we assume that F'(n;) <
F(ne) < ... < F(nn). Using the fact that ||| - ||| < C|| - || and the choice of the S;’s we
get

N N N
IIFI < CIY(F = F) - s lloe + 11D Fm) - s, l| < Ce+ |1 Flm) - s,
i=1 i=1 i=1

Next, in order to bound the last term on the right, we use Abel’s summation trick

|||ZF(7%) g ] = |||Z(F(77i) —F(nim1)) - 1 gx gl

where F(1) is defined to be zero. Substituting this in the above inequality we conclude

N
IIFI < Ce+ (30 Fm) = Flnia)) -max (|1 gy, Il < Ce+20|F) - max] 1Ty g, Il

i=1
Applying this estimate to a sequence of functions as in the statement of the claim, recalling

that ¢ = Vol(Jp_, Sk) is the volume of the support, and relying on (2.5), the proof of the

claim is complete.

2.5 Technical Lemmas

Here we prove Lemma 2.2.4, Lemma 2.2.5 and Lemma 2.3.3. Recall that M is a closed

connected symplectic manifold and d is some Riemannian metric on M.

Proof of Lemma 2.2.4: Fix ¢ > 0. Let {4;}Y, be a family of compact measurable

disjoint subsets of M such that the following two conditions hold:

1. The diameter of each set A; is at most &,
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2. Vol(UX, A;) > Vol(M) — e.

Next, let B; = ¢ ~(4;), and let B; be compact subsets of B;, such that Sy Vol(B;\B;) <

e. From Katok’s Basic Lemma [25] we get a Hamiltonian diffeomorphism g satisfying
N
ZVOI(Q(Bi) \4;) <e.
i=1

We claim that ¢ is a good approximation in measure of ¢. To see this, let C; = {z €
B;|g(z) € A;} and denote by C' = UY,C;. Note that

N N N
Vol(C) = > Vol(C;) > Y Vol(B;i) — > Y Vol(A;) — 2¢ > vol(M) — 3e.
=1 =1 =1

Moreover, for every x € C' the points g(x) and ¢(z) belong to the same A;. Since the
diameter of the sets A; is at most ¢, we conclude that g is a 3e-approximation in measure

of .

Proof of Lemma 2.2.5: In order to keep notation simple, let’s assume we have only two
parts, S7 and Sy. Fix ¢ > 0. Partition S; and S5 into disjoint measurable sets {Uj1 3(1:1

and {Uj2 ;-]il, respectively, such that the following two conditions hold:

1. All Ujl’s have the same measure, and all UjQ’s have the same measure,

2. Inside all U;’s the function F' does not oscillate by more than ¢.

Choose ga;k to be measure preserving bijections, not necessarily continuous, which map
Uj onto Uj. For every permutation 7 of the set {1,...,J;}, define ¢l (z) = ¢ . (2)
if x € U;, and ¢! (r) = z if ¢ S;. Finally, define the measure preserving bijections
Vo = pL o2, Since ||| - ||| is invariant under measure preserving bijections, the triangle

inequality yields

1
|||M;Fo%,a | < [I[F]]].

Now, our choice of U} is such that for every 2 € U} we have [(F)y: — F(x)| < e. Together

with the equal measures of the U’s, this means that for x € U}, we get
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We thus infer the inequality

1
I S (F 0 0ra) = (Flsi s, + (Pl <
Since ||| - ||| < C|| - ||, taking € to zero concludes the proof.

Remark 2.5.1. If F' is not continuous, then the choice of equal measure U;’s where F'
has small oscillations may not be possible. The argument, however, can be easily adapted
to include the non-continuous case as well. Lemma 2.2.5 is also the key behind the proof
that ||| - ||| is indeed a norm, namely that it vanishes only on the zero function. Indeed, if
||| F'||| were zero for a non-zero F', a piecewise averaging of F' would generate a non-zero
step function with vanishing norm. Then, further piecewise averagings may be used to
produce a sequence of zero norm step functions, which converge uniformly to a non-zero
smooth function. This would mean that the original norm, which coincides with ||| - ||| on
smooth functions, was already only a seminorm. We omit the details, because our main

results still hold even if ||| - ||| were only a seminorm.

Proof of Lemma 2.3.3: According to Whitney’s embedding theorem there exists a
smooth embedding ¥ : M — RY for some (large enough) N. Next, for a,3 € R set
aK + 38 = {z € RY|3 i such that ; — 3 € aZ}. Roughly speaking, oK + 3 stands
for the homothetic image of the “standard" grid in RY translated in the direction of the
vector (1,...,1). Fix J € N. For every 1 < j < J, let G; be the f-extension of the
grid oK + 2. Set {v/ f;l to be the connected components of W(M) N (G,;)°. Note that
a single “cell" of (G;)¢ may be split into several connected components when intersected
with W(M). However, by choosing the embedding coordinate-functions ¥; to be Morse
functions, we can guarantee that the number of connected components is indeed finite. It
may well be the case that for a given j some Vij ’s are zero-distance apart, but since our
coordinates are Morse functions, arbitrarily small translations of G; suffice to guarantee

positive distance separation between all V;j ’s.

Now set U/ = W=1(V7). The first property in the statement follows from the positive
distance between the Vij ’s. Compactness guarantees that a small enough o implies the
second property. The last property follows from the fact that, regardless of J, the inter-
section of any N + 1 different extended grids G; is empty. Taking J such that % <e

we are done.
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2.6 Further Information Concerning our Norms

Let ||-|| be a Ham (M, w)-invariant norm on A such that ||-|| < C||- ||~ for some constant C'.
Let |||||| be the extension of ||-|| to Lo (M) constructed in the proof of Theorem 2.1.3. The
main objective of this section is to place the normed spaces (A, |- ||) and (Lo (M), ]| -]])
in the context of Banach (i.e. topologically complete) spaces of functions, so that existing
knowledge from this field be made applicable to our context. For this purpose, we need
to be able to view our spaces as subspaces of Banach spaces of functions. It can be easily
seen that if the original norm || - || is equivalent to || - ||, s0 is ||| - |||, and we are in a
Banach space setting. In the non-equivalent case we claim the following. Here || - ||" is the

extensions of || - || to C°°(M) constructed in the proof of Theorem 2.1.3.

Proposition 2.6.1. Let || - || be a Ham(M,w)-invariant norm on A which is dominated
Jrom above by || - ||, but not equivalent to it. The space (Loo(M), ||| - |||) then coincides
with a dense subspace of the completion of (COO(M), Il - H’) Moreover, this completion
can be viewed as a dense subspace of the space Li(M) of integrable measurable functions

on M, equipped with a norm which is invariant under measure preserving bijections.

Sketch of the proof: To establish the relation between ||| - ||| and the completion of
|| -]/, we need to show that if {£},} is a sequence of uniformly bounded smooth functions
tending in measure to F, then {F,} is a Cauchy sequence in || - ||’ (which is equivalent to
showing that it is a Cauchy sequence in |||-|||). Indeed, let F}, and F,, both e-approximate
F' in measure for some arbitrary small e. We can then write F,, — F,, = G, ,,, + H,, ,,,, Where
Gpnm and H,, ,, are smooth and uniformly bounded, |G, |/~ < 2¢, and the measure of
the support of H, ,, is at most 2c. Claim 2.4.3 now proves that |||F,, — F, ||| — 0 as

n,m — oQ.

We turn now to the second part of the proposition. First we claim that there exists some
constant C' such that |||F||| > C||F||., for any essentially bounded measurable function
F. Indeed, set Mp to be the median of F', namely the unique number for which both
Vol{z € M |F(z) > Mp}) and Vol({z € M |F(x) < Mp}) are at least half. Without
loss of generality we may assume that Mp > 0. Let {x € M| F(z) > Mp} CAC{z €
M |F(z) > Mg}, such that Vol(A) = 1. Finally, let B = {x € M |F(z) > 0}. We
will argue under the assumption that F' is zero-mean; the extension to general F' involves

adding just one dimension to our space of functions, and therefore follows immediately.
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By Lemma 2.2.5 we obtain that

HEN = [IKE) ala 4 (F) e Dae

= (F)all[1a — T

We clearly have
<F>A:2/F(:c)w"22/ F(z)w",
A B-A
and therefore

(Flaz [ F@)w" =3Il

Together with the above estimate for |||F|||, this yields |[|F||| > 3||F||z, - |||1a — Lac]||.

The invariance property of the norm ||| - ||| implies that the value of |||14 — 14¢||| depends

only on the fixed Vol(A) = 1. Thus, the inequality is proved.

Now, every Cauchy sequence of smooth functions in || - ||’ (not necessarily uniformly
bounded) is also a Cauchy sequence in L, and is therefore convergent in measure. In
order to regard this limit in measure as an element of the completion of || - ||', we need to
show that if two Cauchy sequences in ||-||', { F,,} and {G,,}, converge in measure to the same
F, then both sequences have the same limit in the completion, namely ||F,, — G, || — 0.
For this purpose set H, = F,, — G,,. By definition, H,, is a Cauchy sequence in || - ||’
converging in L, and in measure to the zero function. We need to prove that ||H,||" — 0.
Again, we will carry out the proof in ||| - |||. By taking small uniform perturbations we
may also assume that Vol(A,,) — 0, where A,, = Support(H,). Next, by applying a slight

variant of Lemma 2.2.5 we get
[Hn = Hull] = [[[(Hn = Hi)Wa,, + (Hn = Hun) ag, lag, [|]

Since (H, — Hp)ae < ||Hn, — Hpl|z, - VOl(AS,), this term goes to zero. We therefore
conclude that |||(H, — H;,) 14, ||| = |||Hm — Hy - 14,,]|] converges to zero as n, m increase.
Due to Claim 2.4.3, for every fixed n the term |||H,, - 14,,||| tends to zero with m. We

therefore conclude, as announced, that |||H,,||| — 0.

Since we already know that ||| - ||| is invariant under measure preserving bijections, the
proof that the completion is also invariant is straightforward. Note that since we assume
|- || is dominated by || ||oo, but not equivalent to it, Banach’s Open Map Theorem implies
that the completion of ||-|| must in fact exceed the space of essentially bounded measurable

functions. The proof is now complete.
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The literature contains much information concerning a special subclass of the class of
Banach norms on spaces of functions, which are invariant under measure preserving bi-
jections. This is the subclass of the so called Rearrangement Invariant Function Spaces.
The main (but not only!) requirement is that the norm be monotone with respect to the
natural partial order on non-negative functions. Since an explicit formulation will drag
us into a long list of definitions which are not relevant for this paper, we will make do
here with a reference. The book [9] introduces Rearrangement Invariant Function Spaces
in Chapter 2, Definition 1.4 (which relies on Definitions 1.1 and 1.3 from Chapter 1).
The main classification results are announced in Chapter 2, Theorem 5.15 and in Chapter
3, Theorem 2.12. Another thorough analysis from a somewhat different point of view is
available in [31] (Definitions 1.b.17 and 2.a.1, and the results of the second section).

We cannot rule out the possibility that all normed spaces (A, || - ||), which are invari-
ant under Hamiltonian diffeomorphisms, can be viewed as subspaces of Rearrangement
Invariant Function Spaces. The following example, while not relating directly to the is-
sue under discussion, serves to indicate the kind of pathologies one might expect from
norms outside this class. Take the space A€ B, where B is the space of functions on
M which attain only finitely many values. It is straightforward to see that the sum is
indeed an algebraically direct sum. For an element a+b € A @ B consider the functional
la + b|| = ||all1 + ||b]|co- It is easy to check that || - || is a norm invariant under measure
preserving diffeomorphisms, but not under measure preserving bijections (we restrict our
attention, of course, to measure preserving bijections which keep the ‘rearranged’ function

inside our space). It is also not hard to see that this norm is not bounded by || - ||c-



Chapter 3

A Comparison of Hofer’s Metrics

3.1 Introduction and Main Results

In this chapter we compare Hofer’s geometries on two remarkable spaces associated with a
closed symplectic manifold (M, w). The first space Ham (M, w) is the group of Hamiltonian
diffeomorphisms. The second consists of all Lagrangian submanifolds of (M x M, —w ®w)
which are exact Lagrangian isotopic to the diagonal A C M x M. Let us denote this

second space by L. The canonical embedding
j:Ham(M,w) — L, f > graph(f)

preserves Hofer’s length of smooth paths. Thus, it naturally follows to ask whether j is
an isometric embedding with respect to Hofer’s distance. Here, we provide a negative
answer to this question for the case of a closed symplectic manifold with mo(M) = 0. In
fact, our main result shows that the image of Ham(M, w) inside L is “strongly distorted”
(see Theorem 3.1.1 below).

Let us proceed with precise formulations. We recall the following definition from the
Introduction. Given a path o = {f;}, t € [0,1] of Hamiltonian diffeomorphisms of
(M,w), define its Hofer’s length (see [22]) as

zeM xeM

length(a) = /Ol{max F(z,t) — min F(z, t)} dt

where F'(z,t) is the Hamiltonian function generating {f;}. For two Hamiltonian diffeo-
morphisms ¢ and v, define the Hofer distance d(¢, ¢) = inf length(«) where the infimum is

34
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taken over all smooth paths a connecting ¢ and . For further discussion see e.g. [28], [34],
and [46].

Hofer’s metric can be defined in a more general context of Lagrangian submanifolds
(see [12]). Let (P, o) be a closed symplectic manifold, and let A C P be a closed La-
grangian submanifold. Consider a smooth family o« = {L;}, t € [0,1] of Lagrangian
submanifolds, such that each L; is diffeomorphic to A. Recall that « is called an ezact
path connecting Lo and Ly, if there exists a smooth map ¥ : A x [0,1] — P such that
for every t, W(A x {t}) = L;, and in addition V*o = dH; A dt for some smooth function
H : A x [0,1] — R. The Hofer length of an exact path is defined by

zeA TEN

length(a) = /Ol{max H(z,t) — min H(x,t)} dt.

It is easy to check that the above notion of length is well-defined. Denote by L(P,A)
the space of all Lagrangian submanifolds of P which can be connected to A by an exact
path. For two Lagrangian submanifolds L; and L, in £L(P, /), define the Hofer distance
drag o0 L(P,A) as follows: dp.g(L1, L2) = inf length(c), where the infimum is taken over
all exact paths on £(P, /) that connect L; and Lo.

In what follows we choose P = M x M, 0 = —w @ w and take A to be the diagonal of
M x M. We abbreviate £ = L(P, /) as in the beginning of the paper. Based on a result
by Banyaga [4], it can be shown that every smooth path on £(P, A\) is necessarily exact.

Our main result is the following:
Theorem 3.1.1. Let (M,w) be a closed symplectic manifold with mo(M) = 0. Then there

exist a family {p.}, t € [0,00) in Ham(M,w) and a constant ¢ such that:

1. d(1,¢;) — 0 as t — oo.

2. drqg (graph(1), graph(yy)) = c.

In fact, we construct the above family {¢;} explicitly:

Example 3.1.2. Consider an open set B C M. Suppose that there exists a Hamiltonian
diffeomorphism h such that h(B) N Closure (B) = (). By perturbing h slightly, we may
assume that all the fixed points of h are non-degenerate. Let F'(x,t), where x € M,
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t € [0, 1] be a Hamiltonian function such that F(z,t) = ¢y < 0forallxz € M\ B, t € [0, 1].
Assume that F(t,z) is normalized such that for every ¢, [,, F(t,-)w™ = 0. We define the
family {¢:}, t € [0,00) by ¢ = hf;, where {f;} is the Hamiltonian flow generated by
F(t,z). As we’ll see below, the family {¢;} satisfies the requirements of Theorem 3.1.1.

Theorem 3.1.1 has some corollaries:

1. The embedding of Ham (M, w) in £ is not isometric, rather, the image of Ham(M, w)
in £ is highly distorted. The minimal path between two graphs of Hamiltonian
diffeomorphisms in £, might pass through exact Lagrangian submanifolds which are
not the graphs of any Hamiltonian diffeomorphisms. Compare with the situation
described in [37], where it was proven that in the case of a compact manifold, the
space of Hamiltonian deformations of the zero section in the cotangent bundle is

locally flat in the Hofer metric.

2. The group of Hamiltonian diffeomorphisms of a closed symplectic manifold with

mo(M) = 0 has an infinite diameter with respect to Hofer’s metric.

3. Hofer’s metric d on Ham(M,w) does not coincide with the Viterbo-type metric on
Ham(M,w) defined by Schwarz in [55].

As a by-product of our method we obtain the following result (see Section 3.3 below):

Theorem 3.1.3. Let (M,w) be a closed symplectic manifold with mo(M) = 0. Then there
exists an element ¢ in (Ham(M,w), d) which cannot be joined to the identity by a minimal

geodesic.

The first example of this kind of result was established by Lalonde and McDuff [29] for

the case of S2.

3.2 Proof of The Main Theorem

In this section we prove Theorem 3.1.1. Throughout this section let (M,w) be a closed
symplectic manifold with mo(M) = 0. Let {¢:}, t € [0,00) the family of Hamiltonian
diffeomorphisms defined in Example 3.1.2. We begin with the following lemma which
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states that Hamiltonian diffeomorphisms act as isometries on the space (£, drq,). The

proof of the lemma follows immediately from the definitions.

Lemma 3.2.1. Let T': A x [0,1] — M x M be an exact Lagrangian isotopy in L and let
S M x M — Mx M be a Homiltonian diffeomorphism. Then

length{I'} = length{® o I'}.

In particular, dpa, (L1, Le) = dpag(P(L1), ®(Lo)) for every Ly, Ly € L.

Next, consider the following exact isotopy of the Lagrangian embeddings ¥ : A x [0, 00) —
M x M, V(x,t) = (x,p4(x)). We denote by L, = U(A x {t}) the graph of ¢, = hf; in
M x M. The following proposition will be proved in Section 3.5 below.

Proposition 3.2.2. For every t € [0,00) there ezists a Hamiltonian isotopy {®s}, s €
[0,t], of M x M, such that ®,(L¢) = Ls and such that for every s, ®,(A) = A.

Hence, it follows from Proposition 3.2.2 and Lemma 3.2.1, that the family {¢;}, ¢t € [0, 00)

satisfies the second conclusion of Theorem 3.1.1 with constant ¢ = d.4(A, Lo).

Let us now verify the first statement of Theorem 3.1.1. For this purpose we will use a
theorem by Schwarz [55] stated below. First, recall the definitions of the action functional
and the action spectrum. Consider a closed symplectic manifold (M,w) with mo(M) = 0.
Let {f;} be a Hamiltonian path generated by a Hamiltonian function F' : [0,1] x M — R.
We denote by Fix°(f;) the set of fixed points, x, of the time-1-map f; whose orbits
v = {fi(x)}, t € [0,1] are contractible. For z € Fix°(f1), take any 2-disc ¥ C M with
0% = v, and define the symplectic action functional by

.A(F,x):/Ew—/olF(t,ft(m))dt.

The assumption 75(M) = 0 ensures that the integral [, w does not depend on the choice
of X.

Remark 3.2.3. In the case of a closed symplectic manifold with (M) = 0, a result
by Schwarz [55], implies that for a Hamiltonian path {f;} with f; # 1 there exist two
fixed points z, y € Fix°(f;) with A(F,z) # A(F,y). Moreover, the action functional
does not depend on the choice of the Hamiltonian path generating f;. Therefore, we can
speak about the action of a fixed point of a Hamiltonian diffeomorphism, regardless of

the Hamiltonian function used to define it.
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Definition 3.2.4. For each f in Ham(M,w) we define the action spectrum

Yr={A(f,z) | x € Fix°(f)} C R.

The action spectrum X is a compact subset of R (see e.g. [55], [24]).

Theorem 3.2.5. [55| . Let (M,w) be a closed symplectic manifold with m(M) = 0.
Then, for every f in Ham(M,w)

d(1, f) > min 3.

Next, consider the family {¢;} = {hf:}, t € [0,00). Note that Fix°(h) = Fix°(¢;)
for every t. The following proposition shows that the action spectrum of ¢, is a linear

translation of the action spectrum of h. Its proof is carried out in Section 3.4.
Proposition 3.2.6. For every t € [0,00), and for every fized point z € Fix°(p;) =
Fix°(h),

Ay, z) = A(h, z) — teg

where ¢y is the negative (constant) value that F attains on M \ B (see Example 3.1.2).

We are now in a position to complete the proof of Theorem 3.1.1. Indeed, the action
spectrum is a compact subset of R, hence its minimum is finite. By proposition 3.2.6 the

minimum of ¥, tends to infinity as ¢ — oco. Thus,
d(1, ) — 00 as t — o0

as follows from Theorem 3.2.5. This completes the proof of Theorem 3.1.1. O

3.3 Geodesics in Ham(M, w) and Proof of Theorem 3.1.3.

In this section we describe our result about geodesics in the group of Hamiltonian diffeo-
morphisms endowed with the Hofer metric d. We refer the reader to [7], [28], [29], and
[48] for further details on this subject.

Let v = {¢}, t € [0,1] be a smooth regular path in Ham(M,w), i.e. £¢, # 0 for every
t € [0,1]. The path ~ is called a minimal geodesic if it minimizes the distance between its
end-points:

length(y) = d(¢o, ¢1)-
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The graph of a Hamiltonian path v = {¢;} is the family of embedded images of M in
M x M defined by the map I" : M x [0,1] = M x M, (z,t) — (z,¢:(x)). Next, consider
the family {¢;}, t € [0,00) that was constructed in Example 3.1.2. We will show that

there exists no minimal geodesic joining the identity and ¢y, for some t,.

Proof of Theorem 3.1.3: Assume (by contradiction) that for every ¢, there exists a
minimal geodesic in Ham (M, w) joining the identity with ¢;. Fix ¢ty € [0, 00). There exists
a Hamiltonian path o = {gs}, s € [0,1] in Ham(M,w) such that

dy, = d(1, ;) = length(a).

Expressed in Lagrangian submanifolds terms, U = {graph(gs)}, s € [0,1] is an exact
path in M x M joining the diagonal with graph(y;,). By Proposition 3.2.2, there exists a
Hamiltonian isotopy ® such that for every ¢, ®;(graph(p,,)) = graph(y;), and &,(A) = A.
We choose t; to be sufficiently close to ¢y so as to ensure that {®;, (graph(gs))}, s € [0, 1]
is the graph of some Hamiltonian path v in Ham(M,w). Indeed, this can be done since
it follows from the proof of Proposition 3.2.2, that the Hamiltonian diffeomorphism ¢
is C'-close to the identity in a small neighborhood of graph(yy,). Moreover, using a
compactness argument, we can choose a finite number of points S = {s; < ... < s,}
in [0,1], and repeat the construction of ® in a small neighborhood of graph(gs,) for
1 =1,...,n. Then, by smoothly patching together those Hamiltonian flows, we conclude
that for every s € [0, 1], ®;, (graph(gs)) is the graph of some Hamiltonian diffeomorphism.

Next, we claim the following
di, < length(y) = length{graph(y)} = length{graph(a)} = length{a} = d,.

Indeed, a straightforward computation yields that the embedding f +— graph(f) preserves
Hofer’s length, and from Lemma 3.2.1, length{graph(a)} = length{graph(y)}. We have
shown that for every t, there exists ¢ > 0 such that if |t — | < e then d; < d;,. Since d;
is a continuous function, we conclude that d; is a constant function. On the other hand,

by Theorem 3.1.1, d; = d(1, ¢;) — 00 as t — oo. Hence there is a contradiction.

3.4 Proof of Proposition 3.2.6.

We investigate the expression A(py, z) for some fixed t. Since the action functional does

not depend on the choice of the Hamiltonian path generating the time-1-map (see Re-
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mark 3.2.3), we consider the following path generating ;.

v(s) = { fos - seloal

hZS—lft ) ENS ( %al]

Note that since h(B) N B = () and f; is supported in B, then for z € Fiz°(p;) = Fia®(h)
the path {75(2)},s € [0, 1] coincides with the path {hs(2)}, s € [0,1]. Denote by « the
loop {7s(2)}, s € [0,1] and let X be any 2-disc with 0% = «. The details of the calculation

of A(y:, z) are as follows:

Alpnz) = [ w— ltF(s,z)ds— IH(S,hS(z))ds,
L=, /

where F' and H are the Hamiltonian functions generating {h;} and {f:} respectively.
Recall that by definition, F' is equal to a constant ¢y in M \ B. This implies that

Atena) = [w= [ HGnis e

The right hand side is exactly A(h, z) — tcy. Hence, the proof is complete.

3.5 Extending the Hamiltonian Isotopy

In this section we prove Proposition 3.2.2. Let us first recall some relevant notations. Let
{¢+}, t € [0,00) the family of Hamiltonian diffeomorphisms defined in Example 3.1.2.
Consider the following exact isotopy of Lagrangian embeddings ¥ : A x [0,00) — M X
M, U(x,t) = (z,¢(z)). We denote by L, = W(A x {t}) the graph of ¢, = hf; in
M x M, and by A the diagonal in M x M. It follows from the construction of the family
{¢¢}, that for every ¢, Fix(¢;) = Fix(h). Hence, L; intersects the diagonal at the same
set of points for every ¢t. Moreover, we assumed that all the fixed points of A are non-
degenerate, therefore for every ¢, L, transversely intersect the diagonal. In order to prove

Proposition 3.2.2, we first need the following lemma.

Lemma 3.5.1. Let z,y € Fixz°(p;) = Fiz°(h), i.e., intersection points of the family
{L;} and the diagonal in M x M. Take a smooth curve o : [0,1] — M with «(0) =
x and a(1) = y and let X : [0,1] x [0,1] — M, X(t,8) = ¢i(a(s)) be a 2-disc with
0%([0,t] x[0,1]) = pra—poa = pra—ha. Then the symplectic area of ¥y = ([0, ¢] x [0, 1])

vanishes for all t.
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Proof: By a direct computation of the symplectic area of >;, we obtain that

t 1 R a t R t .
/ w:/ Yiw= —/ dt/ dFt(a—gota(s)) dSZ/ Ft(gpt(a:))dt—/ Fi(pi(y))dt,
e [0,£]x[0,1] 0 0 S 0 0

where I is the Hamiltonian function generating the flow {¢¢}. A straightforward compu-
tation shows that F (t,7) = F(t,h 'z), where F is the Hamiltonian function generating
the flow {f;}. Recall that by definition, F'(x,t) is equal to a constant ¢, outside the
ball B. Moreover, since z, y € Fiz°(h) and h(B) N B = (), then z,y ¢ B. Therefore,
Fi(¢i(z)) = Fy(¢i(y)) = co for every t. Thus, we conclude that for every ¢, the symplectic

area of Y; vanishes as required.

Proof of Proposition 3.2.2: We shall proceed along the following lines. By the La-
grangian tubular neighborhood theorem (see [58]), there exists a symplectic identification
between a small tubular neighborhood U, of L, in M x M and a tubular neighborhood
V; of the zero section in the cotangent bundle 7% L,. Moreover, it follows from a standard
compactness argument that there exists 6; = (s, Ug) > 0 such that Ly C U; for every '
with |s" — s| < ds. Next, denote I, = (s — d5, 5 + J5) N [0,¢], and consider an open cover
of the interval [0,] by the family {I}, that is [0,¢] = U, Is- By compactness we can
choose a finite number of points S = {s; < ... < s,} such that [0,¢] = ;_, I,,. Without
loss of generality we may assume that I, N I, = (. Now, for every s € S, we will
construct a Hamiltonian function ?[S : Us — R such that the corresponding Hamiltonian
flow sends Ly to Ly for s € I, and leave the diagonal invariant. Next, by smoothly

patching together those Hamiltonian flows on the intersections Uy, N U, , ,, we will achieve

i1
the required Hamiltonian isotopy .

We fix so € S. Let (p, ¢) be canonical local coordinates on 7L, (where ¢ is the coordinate
on Lg, and p is the coordinate on the fiber). Moreover, we fix a Riemannian metric on
Ls,, and denote by || - ||s, the induced fiber norm on 7*L,,. Consider the aforementioned
tubular neighborhood Uy, of Ly, in M x M. For every x € Ly, N A denote by o,,(x) the
component of the intersection of Us, and A containing the point z. Note that we may
choose Uy, small enough such that the sets {0 ()}, © € Ly, N A, are mutually disjoint.
In what follows we shall denote the image of o, (z) under the above identification between

Us, and Vg, by o, (z) as well.

We first claim that there exists a Hamiltonian symplectomorphism ¢ : V;, — V,, which

for every intersection point x € L, N A sends o, (x) to the fiber over z and which
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leaves L,, invariant. Indeed, since Lg, transversely intersects the diagonal, and since
05, (z) is a Lagrangian submanifold, o, (z) is the graph of a closed 1-form of p-variable
ie, 05 (x) = {(p,a(p))} where a(p) is locally defined near the intersection point z, and
a(0) = 0. Define a family of local diffeomorphisms by ¢:(p, q) = (p, ¢ — ta(p)). Since the
1-form «(p) is closed, {¢;} is a Hamiltonian flow. Denote by K(p,q) the Hamiltonian
function generating {¢;}. A simple computation shows that K (p,q) = — [ a(p)dp. Hence
K(p, q) is independent on the g-variablei.e, K(p,q) = K(p). Furthermore, we may assume
that K (0) = 0. Next, we cut off the Hamiltonian function K (p) outside a neighborhood
of the intersection point x. Let 5(r) be a smooth cut-off function that vanishes for r > 2¢

and equal to 1 when r < ¢, for sufficiently small €. Define

K(p,q) = B(lpl) - Blqll) - K(p).

A straightforward computation shows that, %—f((O, ) = %—E(O, ) = 0. Hence the time-1-
g P
map of the Hamiltonian flow corresponding to K (p, q) is the required symplectomorphism.

Therefore, we now can assume that o,,(z) coincide with the fiber over the point z.

Next, since ¥ is an exact Lagrangian isotopy, we have that for every s € I, L, is a graph
of an exact 1-form dG in the symplectic tubular neighborhood V;, of L,,. Hence, in the
above local coordinates (p,q) on T*Lg,, L, takes the form Ly = (dGs(q),q). Moreover,
note that dG(0) = 0.

Define

Hg,(p,q) = B(Ipll) - Gs(q).

Consider the Hamiltonian vector field corresponding to fNISO,

i { p=—5t=—0(pl) - 25~
Q=57 = &{0(lpID} - Gula)

It follows that for every s € I, such that Ly C {(p,q) | ||p|| < €}, the Hamiltonian flow

is given by

0.

Hence, locally, the Hamiltonian flow sends L, to L, as required. It remains to prove
that E vanishes on the diagonal. First, since dGs(0) = 0, it follows that p = 0. Next,

consider z and y, two intersection points of the family {Ls} and the diagonal. It follows

(p.q) — <p+
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from Lemma 3.2.2 that the symplectic area between L,, and L, in V;, vanishes for every

s € I,,. Hence, by the same argument as in Lemma 3.5.1, for every such s we have

0:/ w:/ Z:w:/ <G5($) —Gs(y)>d8
s [0,s]%[0,1] 0

Thus, we get that Gs(z) — Gs(y) = 0. Note that by changing the functions {G} by a
summand depending only on s, we can assume that for every s, G4 vanishes on L, N A.
Hence, we obtain that E| ~ = 0. Therefore, we have that the diagonal is invariant under
the Hamiltonian flow. Finally, by smoothly patching together all the Hamiltonian flows
corresponding to the Hamiltonian functions I:Tsi, for i =1,...,n, we conclude that there
exists a Hamiltonian isotopy ® such that ®4(Ly) = L, and ®4(A) = A. This completes
the proof of the proposition.



Chapter 4

Calabi Quasi-morphisms

4.1 Introduction and Results

Let (M,w) be a closed connected symplectic manifold of dimension 2n. Let Ham(M,w)
denote the group of Hamiltonian diffeomorphisms of (M,w) and let ﬁa\r/n(l\/[ ,w) be its
universal cover. A celebrated result by Banyaga [4] states that for a closed symplectic
manifold, Ham(M,w) and ﬁ;ri(M ,w) are simple groups and therefore they do not admit
any non-trivial homomorphism to R. However, in some cases, these groups admit non-
trivial homogeneous quasi-morphisms to R. Recall that a (real-valued) quasi-morphism
of a group GG is a map r: G — R satisfying the homomorphism equation up to a bounded

error, i.e., there exists a constant C' > 0 such that

I7(g192) —7(g1) —7r(g2)| < C, for every g1,92 € G.

A quasi-morphism r is called homogeneous if r(¢") = nr(g) for all g € G and n € Z. The
existence of homogeneous quasi-morphisms on the group of Hamiltonian diffeomorphisms
and/or its universal cover is known for some classes of closed symplectic manifolds (see
e.g. |5], [14], [18], and [19]). In a recent work [15], Entov and Polterovich showed - by
using Floer and Quantum homology - that for the class of symplectic manifolds which
are monotone and whose quantum homology algebra is semi-simple, ﬁér/n(M ,w) admits a
homogeneous quasi-morphism to R. In addition to constructing such a quasi-morphism,
Entov and Polterovich showed that its value on any diffeomorphism supported in a Hamil-

tonianly displaceable open subset equals to the Calabi invariant of the diffeomorphism

44
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(see Section 4.2 below for precise definitions). A quasi-morphism with this property is

called a Calabi quasi-morphism.

The notion “quasi-morphism" first appeared in the works of Brooks [10] and Gromov [21]
on bounded cohomology of groups. Since then, quasi-morphisms have become an im-
portant tool in the study of groups. For example, the mere existence of a homogeneous
quasi-morphism on a group GG which does not vanish on the commutator subgroup G’ im-
plies that the commutator subgroup has infinite diameter with respect to the commutator
norm (see e.g. [6]). Two well known examples of quasi-morphisms are the Maslov quasi-
morphism on the universal cover of the group of linear symplectomorphisms of R?>", and
the rotation quasi-morphism defined on the universal cover of the group of orientation-
preserving homeomorphisms of S'. We refer the readers to [6] and [26] and the references
cited therein for further details on this subject. Recently, Biran, Entov and Polterovich [§],
and Entov and Polterovich [16] established several other applications of the existence of
a Calabi quasi-morphism regarding rigidity of intersections in symplectic manifolds. An

example of this type is given in Theorem 4.1.5 and Corollary 4.1.6 below.

In view of the work by Entov and Polterovich [15], it is natural to ask which classes of
symplectic manifolds admit a Calabi quasi-morphism. In a very recent work, Py [51] con-
structed a homogeneous Calabi quasi-morphism for closed oriented surfaces with genus
greater than 1. In this note we concentrate on the case of non-monotone symplectic man-
ifolds. We will provide some examples of non-monotone rational ruled surfaces admitting

a Calabi quasi-morphism. More precisely, let
X,=(*x8% wy=wdIw), 1<AER,
where w is the standard area form on the two-sphere S? with area 1, and let
Y, = (CP*#CP?, w,), 0<pu<l,

be the symplectic blow-up of CP? at one point (see e.g. [33], [47]), where w), takes the
value p on the exceptional divisor, and 1 on the class of the line [CP']. The manifold Y,
is the region

{(21,22) € C? | p <[] + |0]* < 1}

with the bounding spheres collapsed along the Hopf flow. It is known that any symplectic
form on these manifolds is, up to a scaling by a constant, diffeomorphic to one of the

above symplectic forms (see [30]).



46 CHAPTER 4. CALABI QUASI-MORPHISMS

In the monotone case where A = 1 and o = %, Entov and Polterovich [15] proved the exis-
tence of a homogeneous Calabi quasi-morphism on the universal covers of Ham (X)) and
Ham(Y),). Moreover, they shows that these quasi-morphisms are Lipschitz with respect to
Hofer’s metric. For the precise definition of the Lipschitz property of a quasi-morphism,

see Section 4.2 below. Here we prove the following:

Theorem 4.1.1. Let (M,w) be one of the following symplectic manifolds:

(1) X5 = (5% x S%,wy), where 1< \eQ.

(it) Y, = (CP*#CP?,w,), where :# pecQn(0,1).

Then there exists a homogeneous Calabi quasi-morphism r: Ham(M,w) — R, which is

Lipschitz with respect to Hofer’s metric.

It can be shown in the monotone case that any homogeneous quasi-morphism on the uni-
versal cover of Ham(X;) descends to a quasi-morphism on Ham(X}) itself [15]. This is due
to the finiteness of the fundamental group 7 (Ham(X;)), which was proved by Gromov
in [20]. He also pointed out that the homotopy type of the group of symplectomorphisms
of S? x S? changes when the spheres have different areas. McDuff [32], and Abreu and
McDuff [1], showed that the fundamental groups, m (Ham(X))) and m (Ham(Y),)), con-
tain elements of infinite order for every 0 < p < 1 and for every A > 1. Thus, the above

argument will no longer hold in these cases. Furthermore we claim:

Theorem 4.1.2. Let M be one of the manifolds listed in Theorem 4.1.1. Then the
restriction of the above mentioned Calabi quasi-morphism 7 ﬁ;r/n(M, w) — R to the fun-

damental group m (Ham(M,w)) C I/{EI/H(M, w) gives rise to a non-trivial homomorphism.

This differs from the situation described in [15] where it was proven that for M = CP"
endowed with the Fubini-Study form, or for M = S? x S? equipped with the split sym-
plectic form w @ w, the restriction of the Calabi quasi-morphism to the fundamental group
71 (Ham(M)) vanishes identically.

For technical reasons, we shall assume in what follows that M is a rational strongly semi-
positive symplectic manifold. Recall that a symplectic manifold M is rational if the set

{w(A) | A € m(M)} is a discrete subset of R and strongly semi-positive if for every
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A € my(M) one has
2—-n<¢(A) <0=w(A) <0,

where ¢; € H*(M,Z) denotes the first Chern class of M. The assumption that M is
strongly semi-positive is a standard technical assumption (see e.g. [50], [56]) which guar-
antees, roughly speaking, the good-behavior of some moduli spaces of pseudo-holomorphic
curves. Note that every symplectic manifold of dimension 4 or less, in particular the man-
ifolds listed in Theorem 4.1.1, is strongly semi-positive. The rationality assumption is also
a technical assumption. It plays a role, for example, in Lemma 4.5.1 below, where for
non-rational symplectic manifolds the action spectrum is a non-discrete subset of R and

our method of proof fails.

In fact, the examples in Theorem 4.1.1 are special cases of a more general criterion for
the existence of a Calabi quasi-morphism. In [15], such a criterion was given for closed
monotone symplectic manifolds. This criterion is based on some algebraic properties of
the quantum homology algebra of (M,w). More precisely, recall that as a module the
quantum homology of M is defined as QH.(M) = H.(M) ® A, where A is the standard

Novikov ring

A:{Z)\AqA A €Q, #{A €T [ A4 #£0, w(A) > ¢} < o0, VCGR}.
Aer
Here I' = my(M) / (ker ¢y Nkerw), where ¢; is the first Chern class. A grading on A is
given by deg(q?) = 2¢;(A). We shall denote by Ay, all the elements in A with degree k. We
refer the readers to [35] and to Subsection 4.3.1 below for a more detailed exposition and
for the precise definition of the quantum product on QH,(M). In the monotone case i.e.,
where there exists x > 0 such that w = k - ¢;, the Novikov ring A can be identified with
the field of Laurent series Y a2/, with coefficients in @, and all «; vanish for j greater
than some large enough jy,. In this case we say that the quantum homology QH.(M)
is semi-simple if it splits with respect to multiplication into a direct sum of fields, all of
which are finite dimension linear spaces over A. It was shown in [15] that for monotone
symplectic manifolds with semi-simple quantum homology algebra there exists a Lipschitz
homogenous Calabi quasi-morphism on the universal cover of the group of Hamiltonian

diffeomorphisms.

In the non-monotone case the above definition of semi-simplicity will no longer hold since

Ais no longer a field. However, it turns out that a similar criterion to the above still exists
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in this case. More precisely, we focus upon the sub-algebra Q H,,, (M) C QH,.(M) over the
sub-ring Ay C A. This sub-algebra is the degree component of the identity in QH.(M).
Using the fact that in the non-monotone case the sub-ring Ay can be identified with the
field of Laurent series, we say as before that Q) Hy, (M) is semi-simple over Ay if it splits
into a direct sum of fields with respect to multiplication. Denote by N,; the minimal
Chern number of M defined as the positive generator of the image ¢; (mo(M)) C Z of the
first Chern class ¢;. The following criterion is a generalization of Theorem 1.5 from [15]

to the rational strongly semi-positive case.

Theorem 4.1.3. Let (M,w) be a closed connected rational strongly semi-positive symplec-
tic manifold of dimension 2n. Suppose that the quantum homology subalgebra QQ Ha, (M) C
QH.(M) is a semi-simple algebra over the field Ay and that Ny divides n. Then there

exists a Lipschitz homogeneous Calabi quasi-morphism 7 ITI_E;;l(M, w) — R.

For the manifolds X, and Y), listed in Theorem 4.1.1 the minimal Chern number V), is 2
and 1 respectively. Thus, one of our main tasks is to prove that for these manifolds the

top-dimension quantum homology subalgebra QQH,(M) is semi-simple over the field A,.

As a by-product of Theorem 4.1.1, we generalize a result regarding rigidity of intersections
obtained by Entov and Polterovich in [16]. To describe the result, we recall first the
following definitions. For a symplectic manifold M denote by {-,-} the standard Poisson
brackets on C*°(M). A linear subspace A C C*°(M) is said to be Poisson-commutative
if {F,G} =0 for all F,G € A. We associate to a finite-dimensional Poisson-commutative
subspace A C C*°(M) its moment map ®4: M — A*, defined by (P (x), F) = F(z). A
non-empty subset of the form ®,'(p), p € A*, is called a fiber of A. A fiber X C M is
said to be displaceable if there exists a Hamiltonian diffeomorphism ¢ € Ham(M) such
that o(X) N X = (). The following definition was introduced in [16]:

Definition 4.1.4. A closed subset X C M is called a stem, if there exists a finite-
dimensional Poisson-commutative subspace A C C*°(M), such that X is a fiber of A and
each fiber of A, other than X, is displaceable.

In Theorem 2.4 of [16], Entov and Polterovich showed that for a certain class of symplectic
manifolds, any two stems have a non-empty intersection. What they used, in fact, was

only the existence of a Lipschitz homogeneous Calabi quasi-morphism for manifolds in this
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class. Using the exact same line of proof, the following theorem follows from Theorem 4.1.1

above.

Theorem 4.1.5. Let M be one of the manifolds listed in Theorem 4.1.1. Then any two

stems in M intersect.

An example of a stem in the case where M = X, is the product of two equators. More
precisely, we identify X, with CP! x CP! in the obvious way. Denote by L C X, the
Lagrangian torus defined by

L = { ([Zo : 2’1]7 [wo : wl]) e CP' x CP! | ‘20’ = |Zl|7 |w0] = |w1|}

The proof that L is a stem goes along the same line as Corollary 2.5 of [16]. Since the

image of a stem under any symplectomorphism of M is again a stem we get:

Corollary 4.1.6. Let X be one of the manifolds in the first class of manifolds listed in
Theorem 4.1.1 above. Then for any symplectomorphism ¢ of X, we have L N (L) # 0.

4.2 Preliminaries on Calabi quasi-morphism

In this section we recall the definition of a Calabi quasi-morphism introduced in [15]. We
start with the definition of the classical Calabi invariant (see [4] and [11]). Let (M,w) be
a closed connected symplectic manifold. Given a Hamiltonian function H: S' x M — R,
set H;, := H(t,-) and denote by ¢ the time-l-map of the Hamiltonian flow {¢% }. The
group of Hamiltonian diffeomorphisms Ham(M,w) consists of all such time-1-maps. Let
ﬁ;r/n(M ,w) be the universal cover of Ham(M,w). For a non-empty open subset U of
M, we denote by I/{EI;U(M ,w) the subgroup of I/{Ei/n(M ,w), consisting of all elements
that can be represented by a path {¢}; }icjo,1) starting at the identity and generated by
a Hamiltonian function H; supported in U for all ¢. For ¢ € ﬁa\LElU(M,w) we define
Caly: Hamy(M,w) — R by

1
<p»—>/ dt/ H,w".
0 M

This map is well defined, i.e., it is independent of the specific choice of the Hamilto-
nian function generating ¢. Moreover, it is a group homomorphism called the Calabi

homomorphism.
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Recall that a non-empty subset U of M is called Hamiltonianly displaceable if there exists
a Hamiltonian diffeomorphism ¢ € Ham(M,w) such that o(U) N Closure(U) = (). The

following two definitions were introduced in [15].

Definition 4.2.1. A quasi-morphism on P/I&\x_r?l(M,w) coinciding with the Calabi homo-
morphism Caly : ﬁa\r/nU(M,w) — R on any open and Hamiltonianly displaceable set U 1s

called a Calabi quasi-morphism.

Definition 4.2.2. A quasi-morphism r: ﬁ;r?l(]\/[, w) — R is said to be Lipschitz with

respect to Hofer’s metric if there exists a constant K > 0 so that
r(en) —r(ep)| < K- [[H = Fllco

For the relation of |H — F||co to the Hofer distance between the corresponding Hamilto-

nian diffeomorphisms ¢y and ¢y see e.g. [15].

4.3 The Quantum homology of our main examples

4.3.1 The quantum homology algebra

In this section we briefly recall the definition of the quantum homology ring of (M?",w).
We refer the readers to [35] for a detailed exposition on this subject. Let M be a closed
rational strongly semi-positive symplectic manifold of dimension 2n. By abuse of notation,
we shall write w(A) and ¢;(A) for the integrals of w and ¢; over A € my(M). Let I' be the

abelian group

I'=m(M) / (kerep Nkerw). (4.1)

We denote by A the Novikov ring

A= {Z/\AqA M €Q, #{AET [ A4 20, w(A) > ¢} < oo, VceR}. (4.2)

Ael

This ring comes with a natural grading defined by deg(q) = 2¢;(A). We shall denote by
Ay all the elements of A with degree k. Note that A, = () if k is not an integer multiple
of 2Ny, where N is the minimal Chern number of M defined by ¢; (ma(M)) = Ny Z.
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As a module, the quantum homology ring of (M, w) is defined as
QH.(M) =QH.(M,\) = H,(M,Q) ® A.

A grading on QH,(M) is given by deg(a ® ¢*) = deg(a) + 2¢;(A), where deg(a) is the
standard degree of the class a in the singular homology of M. Next, we define the
quantum product on QH,.(M) (cf. [35], [52]). For a € H;(M) and b € H;(M) we define
a*xb€ QHiyj o,(M) as

a*b:Z(a*b)A@)q’A,
Aer

where (a *b)a € Hijj_ontoc,(a)(M) is determined by the requirement that
(axb)a o c=Py(a,b,c) forall ce H(M).

Here o is the usual intersection product on H,(M), and ®4(a,b, c) denotes the Gromov-
Witten invariant that counts the number of pseudo-holomorphic curves representing the
class A and intersecting with a generic representative of each of a,b,c € H,(M). The
product * is extended to QH,.(M) by linearity over the ring A. Note that the fundamental

class [M] is the unity with respect to the quantum multiplication.

It follows from the definitions that the zero-degree component of a * b coincides with the
classical cap-product a N b in the singular homology. Moreover, there exists a natural
pairing A: QHi(M) x QHa,— (M) — Ay defined by
A (Z ax ®q", Z bp ® CIB> = Z (Z(G—B o bB+A))qA~
c1(A)=0 B

The fact that the inner sums on the right hand side are always finite follows from the
finiteness condition in (4.2). Moreover, the pairing A defines a Frobenius algebra structure
i.e., it is non-degenerate in the sense that A(«,3) = 0 for all # implies &« = 0, and
Aa, B) = A(a * 8,[M]). Notice that A associates to each pair of quantum homology
classes «, 3 € QH,.(M) the coefficient of the class P = [point] in their quantum product.

We also define a non-degenerate Q-valued pairing II to be the zero order term of A, i.e.,

M(Yaag" Y bp@g®) =D (apobp) (4.3)

B

Note that II(«a, 5) = H(a * 3, [M]) for every pair of quantum homology classes o and f3.
Furthermore, the finiteness condition in the definition of the Novikov ring (4.2) leads to
a natural valuation function val: QH.(M) — R defined by
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val(z as ® ¢") = max{w(A) | asx # 0}, and val(0) = —oc. (4.4)

4.3.2 The case of S? x 52

Let X, = S% x S? be equipped with the split symplectic form wy = w @ Aw, where
A > 1. In this subsection we discuss several issues regarding the quantum homology

of the manifold X, and in particular we show that the quantum homology subalgebra
QH4(X,) C QH.(X,) is a field for every A > 1.

Denote the standard basis of H, (X)) by P = [point], A = [S? X point], B = [point x S?]
and the fundamental class M = [X,]. The quantum homology of X, is generated over
the Novikov ring A by these elements. Since A > 1, it follows that I' = 75 (X)), where the
last is isomorphic to the free abelian group generated by A and B. From the following

Gromov-Witten invariants (see e.g. [15], [35]):
S (P, P,P)=1, ®¢(A,B,M)=1, ®4(P,B,B)=1, ®5(P,AA) =1,
one finds the quantum identities:
AxB=P, A’=Meq¢? B*=Moq¢* (4.5)

Next, instead of the standard basis {A, B} of ', we consider the basis {ej,es} = {B —
A, A}. Set x = ¢°* and y = ¢*2. In this notation, the quantum product of the generators
of QH.(X)) becomes

AxB=P, A*=Moz 'y, BP=Mey " (4.6)

It follows from the definition of the Novikov ring (4.2) that

A= {Z A - 7Y | Ao € @},

where each sum satisfies the following finiteness condition:

#{(aaﬁ) | )\a,ﬁ#[)) Oé()\_1>+ﬁ>0}<00, VeeR.
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Taking into account the above mentioned grading of A we get

Ay = {Z Aag -2y’ €A ‘ 40 = 2¢1(aey + PBey) = 4k}

_ {Z)\a-x“yk | #{a | A #0, a(A—1) > d} < o0, VdeR}.
The finiteness condition above implies that A, vanishes for large enough o’s.

Lemma 4.3.1. For any A > 1, the subalgebra QH,(X)) C QH.(X)) is a field.

Proof of Lemma Let 0 # v € QH(X),). Since QH (X)) = Hy( X)) @ Ao+ Ho( X)) @Ay,
it follows that

N = M@ZAQI 7 +P®y2)\a2 2,
where \,, and ), vanish for large enough «; and «s respectively. Next, let 3 = P®y be a

formal variable. From the above multiplicative relations (4.6), we see that 3% = M @ z~L.

Hence, we can consider the following ring identification:
QHL(X)) ~R[F] / T,

where 7 is the ideal generated by 5* — 27! and R = Q[[z] is the ring of Laurent series
> aja?, with coefficients in @, and all «; vanish for j greater than some large enough jo.
Note that for any Laurent series ®(z) € R, the maximal degree of ®*(z) is either zero
! and hence 7 is a maximal

ideal. Thus, we conclude that QH,(X)) is a two-dimensional extension field of R. This

or even. Therefore R does not contain a square root of x~

completes the proof of the lemma.

Remark 4.3.2. Note that the above statement no longer holds in the monotone case

where A\ = 1, since QH4(X;) contains zero divisors (see e.g. [15], [35]).

4.3.3 The case of CP?#CP2

Here we study the quantum homology algebra of YV, = (CPQ#W, wy), which is the
symplectic one-point blow-up of CP? introduced in Section 4.1. We will show that the
quantum homology subalgebra QH4(Y,), which plays a central role in the proof of The-
orem 4.1.1, is semi-simple. It is worth mentioning (see Remark 4.3.4 below) that the

algebraic structure of QH,(Y),) turns out to be dependent on .
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We denote by E the exceptional divisor and by L the class of the line [CP']. Recall that
for 0 < p < 1, w, is a symplectic form on Y, with w,(F) = p and w,(L) = 1. Denote
the class of a point by P = [point] and set ' = L — E. The elements P, E, ' and the
fundamental class M = [Y,] form a basis of H,(Y),).

The following description of the multiplicative relations for the generators of QH.,(Y))
can be found in [33].

PxP=(E+F)®qtr, ExP=F®q?t,
PxF=M®qgFF, ExE=-P+Eq¢P+Mxq?t,
ExF=P—-FE®q¥F, FxF=E®q?".

Consider the rational non-monotone case where % # 11 € QN (0,1). Note that in this case
I' ~ Z ®7Z. As in the previous example of S? x S?, we apply a unimodular change of

coordinates and consider the following basis of I

Spany{F —2E, E}, 0<pu< %

Spany{2FE — F, E}, s<pu<1

Denote e; = F — 2F, engWhen0<u<%andelz2E—F, engwhen§<u<1.
Set x = ¢°* and y = ¢°2. From the definition of the Novikov ring (4.2) we have

A= {Z Ao s1y” ’ Ao € Q} )

where each sum satisfies the following finiteness condition:
#{(a,0) | Aap #0, a]3u— 1]+ Bpu>c} < oo, Ve eR.
The graded Novikov ring has the form
Ny = {Z R %y e A | 203 = 2¢1(aey + PBes) = 2@}
_ {Z)\a.xayi | #{a| A #0, af3p—1] > d} < oo, VdeR}.

Next we present the quantum product of QH.(Y),) with respect to the above basis of T'.
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PxP=(E+F)®a"y 3, ExP=F®ax"y 2,
PxF =M® z y3, ExE=-P+EQy '+ My 2,
ExF=P-E®y, FxF=E®y,

where £ = sgn(3u — 1) i.e.,nzlfor%<u<1,andm:—1f0r0<u<%.

Lemma 4.3.3. The subalgebra QH,(Y,) C QH.(Y,) is semi-simple.

Proof of Lemma 4.3.3: Since QH4(Y,,) = Hy(Y,) ® Ao + Ho(Y,) ® Ao + Ho(Y),) @ Ay,
it follows that for every 0 # 6 € QH4(Y),)

0 = M®Z)\alxa1+E®yz/\a2x”
-+ F®yz>\a3$a3+P®y2Z)\a4xa4a

where \,, vanish for large enough «; for i = 1,2,3,4. Next, put 51 = EQy, fo=F®y
and 33 = P ® y?. From the above multiplication table, we see that

.

B = =P+ B+ z",
33 = b,

B3 = x"(B1 + B2)
B+ Be = B3 — [,
B2 - B3 = ",

By - B3 = 1" [Bs.

\

Thus, we have the following ring identification:

QH4(YM) = R[ﬁhﬁ%ﬁi’)] /Iu

where R = Q[[z] is the ring of Laurent series > oz’ and Z is the ideal generated by the
above relations. It is easy to check that the sixth equation follows immediately from the
second and the fifth equations and hence, it can be eliminated. Moreover, by isolating (3
and 3; from the first and the second equations respectively, we conclude that the above

system is equivalent to the following one:

(85 = By + a")* = 2°(55 + ()
B3 = =05 + x*, (4.7)
By (B3 — By +a") = a*,
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Moreover, we claim that in fact

QHy(Y,) = R[B1, 0, 05] /| T ~ R[Bo] | T

where J is the ideal generated by 35 + (335 — x*. Indeed, the first equation in (4.7) is
obtained by multiplying the third equation by /3 + (3, and assigning the second equation.
The third equation is obtained from the second after multiplying it by (5, — 1. Next, note
that the polynomial 33 + 35 — 2" does not share a common root with its derivative since
the roots of the derivative are 0 and —3/4. Thus, it has no multiple roots in R and hence

the quantum homology subalgebra (QH,(Y),) is semi-simple as required.

Remark 4.3.4. Strangely enough, it follows from the above lemma that the algebraic
structure of the quantum homology subalgebra QQH,(Y,,) depends on p. More precisely,
it can be shown that the polynomial 33 + 33 — 2* is irreducible over R for k = 1 while
reducible for kK = —1. Thus, QH4(Y,) is a field when 3 < p < 1, while for 0 < p < 3, it
is a direct sum of fields. We omit here the technical details because for our purpose, it is
sufficient that QH,(Y),) is semi-simple.

4.4 Preliminaries on Floer homology

In this section we give a brief review of Floer homology. In particular we present some
definitions and notions which will be relevant for the proof of our main results. We refer

the readers to [54] or [35] for a more detailed description.

Let (M,w) be a closed, connected and strongly semi-positive symplectic manifold. Let
J = {Ji}o<t<1 be a periodic family of w-compatible almost complex structures. We denote
by L the space of all smooth contractible loops z: S' = R/Z — M. Consider a covering
L of £ whose elements are equivalence classes [z, u] of pairs (z,u), where z € L, u is a

disk spanning x in M, and where
(x1,u1) ~ (w9, uz) if and only if x1 = x5 and w(uiF#ug) = ¢q(ur#uy) = 0.

The group of deck transformations of Lis naturally identified with the group I' (4.1), and
we denote by
0] > [o,uftA], AT
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the action of I on L. Moreover, we denote by H the set of all the zero-mean normalized

Hamiltonian functions i.e.,

H= {HGCC’O(Sl x M) | / Hyw" =0, forall t € [0,1]}.
M

For H € 'H, the symplectic action functional A : £ — R is defined as

A () = —/w—i— [ .0

Note that

Ap ([, u#A]) = An([z, u]) — w(A).
Let Py be the set of all contractible 1-periodic orbits of the Hamiltonian flow generated
by H. Denote by Py the subset of pairs [z,u] € L where z € Py. It is not difficult

to verify that 73;1 coincides with the set of critical points of Ay. We define the action

spectrum of H, denoted by Spec(H ), as
Spec(H) := {AH(a:,u) eER | [z,u] € 75;1}

Recall that the action spectrum is either a discrete or a countable dense subset of R [38].

We now turn to give the definition of the filtered Floer homology group. For a generic
H e Hand a € {R\ Spec(H)} U{oo} define the vector space CF(H) to be

CRH) = { Y Bealeul| By €@, pulloul) =k, A(fe,u) <a},  (48)

[z,u]G'IS(H)

where each sum satisfies the following finiteness condition:
# {[x,u] € Py | Bl # 0 and Ap([z,u]) > 5} < 00, for every ¢ € R. (4.9)

Here p([x,u]) denotes the Conley-Zehnder index fi: Py — Z (see e.g. [54]) which sat-
isfies p([z,u#A]) — u([z,u]) = 2¢1(A). In particular, the Conley-Zehnder index of an
element © € Py is well-defined modulo 2N,;, where N,; is the minimal Chern number
of (M,w). The complex CF°(H) is a module over the Novikov ring A (4.2), where the
scalar multiplication of £ € CF°(H) with A € A is given by

Z Z aa - Oy, uFAl.

A [z
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For each given [z,w] and [y,v] in Pur, let M(H, J,[x,u],[y,v]) be the moduli space of
Floer connecting orbits from [z, w] to [y, v] i.e., the set of solutions u: R x S — M of
the system
Osu + Ji(u) (0w — Xp,(u)) =0,
limg oo u(s,t) =x(t), lims .o u(s,t)=1y(t),

wHuFv represent the trivial class in I'.

It follows from the assumption of strongly semi-positivity and from Gromov’s compactness
theorem [20| that for a generic choice of J the moduli spaces M ([x, u], [y, v]), for p([z, u])—
w([y,v]) = 1, are compact.

The Floer boundary operator 0: CF}(H) — CFY (H) is defined by

Oz, w]) =Y n(lz,w], [y, v]) [y. 0],

where the sum runs over all the elements [y,v] € Py such that uly,v] = k — 1 and
n([x,w], [y, v]) denotes counting the (finitely many) un-parameterized Floer trajectories
with a sign determined by a coherent orientation. As proved by Floer in [17], the boundary
operator 0 is well defined, satisfies 9* = 0 and preserves the subspaces CF(H) (see [23]).
Therefore, defining the quotient group by

CFlY(H,J) = CF'H,J) | CF*(H,J) (—o0 <a<b<o00),

the boundary map induces a boundary operator 9: CF.*"(H) — CF\*" (H), and we can
define the Floer homology group by

HF*(J, H) = (CF(H), 9).

We will use the convention HF,(H,J) = HF. **\(H, J) and HF*(H,J) = HF ",
The graded homology HF,(H, J) is a module over the Novikov ring A, since the bound-
ary operator is linear over A. Note that these homology groups have been defined for
generic Hamiltonians only. However, one can extend the definition to all H € H us-
ing a continuation procedure (see e.g [15]). A key observation is that the Floer homol-
ogy groups are independent of the almost complex structure J and the Hamiltonian H
used to define them. Moreover, if two Hamiltonian functions H,, Ho € H generate the
same element ¢ € ﬁ;r/n(]\/[,w), then Spec(H,) = Spec(Hz) (see [40| and [55]) and the
spaces HF*(a’b](J, H,) and HF*(a’b](J, H,) can be canonically identified. Therefore, we
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shall drop the notation J and H in HF,(H,J) and denote HF,(p) = HF.(J, H) where
Y E }/I;L_r?l(M,w) is generated by H.

We denote by m: HF,(¢) — HF©®>l(p) the homomorphisms induced by the natural
projection CF(H) — CF.(H)/CF,(H) of Floer complexes and by i,: HF,(p) —
HF,(p) the homomorphism induced by the inclusion map i,: CF*(H) — CFX®(H).
Note that the homology long exact sequence yields Kernel 7, = Image i,. There exists
a natural ring structure on the Floer homology groups named Pair-of-pants product (see
e.g. [50])

tpp: HFu(p) X HE(V) — HFoy5(00).

In [50], Piunikhin, Salamon and Schwarz constructed a homomorphism between the
Quantum homology groups QH,(M) and the Floer homology groups HF,(M). Further-
more, they showed that the homomorphism ¢: QH.(M) — HF,(H) is an isomorphism
which preserves the grading and intertwines the quantum product on QH, (M) with the
pair-of-pants product on HF,(H) i.e., @ (iq1s(€ *pp 1)) = P (1a(€)) * @ (ig(n)), for every
¢ € HF,(v), n € HFs(¢). In what follows, we will refer to the isomorphism & as the
PSS isomorphism. We refer the reader to [50] and [35] for the precise definition and fur-
ther details on the isomorphism ®. In what follows we include a short discussion on the
PSS isomorphism in the case most relevant to this work i.e., the case of a closed strongly

semi-positive symplectic manifold (M?", w) which is also rational and non-monotone.

Let f: M — R be a Morse function such that the negative gradient flow of f is a Morse-
Smale with respect to the metric ¢ = w(-, J-), where J is a compatible almost complex
structure. We denote by HM . (f,A) = HM.(f,Q) ® A the Morse-Witten homology of f
with coefficients in the Novikov ring A (4.2) (see e.g. [35] for the precise definition). It is
known that there is a natural isomorphism between the quantum homology of M and the
Morse-Witten homology QH,(M,A) ~ HM (M, A) (see [35] and the references within).

Next, we consider the moduli space of spiked discs (or mixed trajectories) M9 (x,y) =

MPFPSS(x 5. J H, £, g) of all the pairs (v, u) where v : (—00,0] — M and u: R x St — M
which satisfy

Osu + J(u)(Opu = B(5) X, (u)) =0, 4+ VIfoy=0
lime,—oy(s) =z, lims,_oou(s,t) =7(0), lims . u(s,t)=y(t)
Jo S |us]Pdsdt < oo,
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where = € Crit(f) is a critical point of f, H is a generic time-dependent Hamiltonian
function, ¥y = [y,u,] € 73;;, and § : R — [0;1] is a smooth cut-off function such that
B(s)=0for s <3, B'(s) >0for s €R, and 3(s) =1 for s > 1.

For a generic choice of H, J, f, and g, the moduli space M?”%5(z,7) is a smooth manifold
of dimension pcz(Y)+ farorse(€) —n, where pcoy is the Conley-Zehnder index and fipsorse 18
the standard Morse index. In the strongly semi-positive case the O-dimensional component
of MP55(x, %) is compact and we shall denote by n(x,7) its cardinality. Following [50] we
define a chain map ¢ : CF,(H) — CM.,(f,A) between the Floer and the Morse-Witten
complexes by
d(y@qt) = > n(z,y) -z ® ¢ .

HMorse(T)=n—pcz(Y)
A universal energy bound ensures that this map is a well defined A-module homomorphism
which respects the grading. Moreover, standard arguments from Floer theory imply that
it descends to a A-module homomorphism ® : HF,(H) — HM.,(f,A) on the homology
level as well (see [50], [35] for the precise details).

Remark 4.4.1. Throughout we shall use the same notation for maps between chain

complexes and maps on the corresponding homology level.

In [50] it was shown that & is in fact an isomorphism. This was shown by constructing an
explicit inverse ¥ : H M, (f,\) — HF,(H) which is also a A-module homomorphism which
respect the grading and then showing that the maps ®oW¥ and Vo® are chain homotopic to
the identity. The precise definition of ¥ and the proof of the above mentioned arguments
can be found in [50] (see also [2], and [35]). In particular, both in [50] (Pages 189 — 192)
and in [35] (Figures 2 and 3 on Page 462) there are several pictures that illustrate the
ideas behind the arguments that the maps ® o ¥ and ¥ o & are chain homotopic to the
identity. We wish to emphasize that while the proof that ® o U = 1 is based on standard
techniques from Floer theory the other direction is slightly more delicate. However, in

the rational non-monotone case, using abstract dimension reasons it is sufficient to show
that ®o ¥ = 1 i.e.,

Claim 4.4.2. Let (M,w) be a rational non-monotone strongly semi-positive symplectic
manifold. Then
boV = ]lHM*(f,A) = WVod = ]lHF*(H)
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Proof of Claim 4.4.2: Denote by ®* : HFy,(H) — HM(f,A) and V* : HM,(f,A) —
HFy(H) the restrictions of the maps ® and ¥ to the corresponding graded components.
It follows from the assumption of the claim and from the fact that both ¥ and & respect
the grading that ®* o UF = N5 F, (m,0)- Moreover, in the rational non-monotone case we
have that both HF},(H) and HMy(f, A) are finite dimensional vector spaces over Ag of
the same dimension. Note that in the rational non-monotone case Ay can be identified as
the field of Laurent series with coefficients in Q. In order to check that both spaces have
the same dimension over A one should take H = ¢ f where € > 0 is sufficiently small (see
e.g. [35]). Thus we conclude that U* is a monomorphism over Ay between two spaces of
the same dimension over Ay, while ®* is an epimorphism between them. Thus both are
isomorphisms, inverse one to another. Since HF,(H) and HM.,(f,A) are both finitely
generated A-modules it follows that ¥ and ¢ are isomorphisms which are inverse one to

another as well. The proof of the claim is now complete.

4.5 The Existence of a Calabi Quasi-morphism

Let (M?" w) be a closed connected rational strongly semi-positive symplectic manifold.
Following the works of Viterbo [57], Schwarz [55], and Oh [39], we recall the definition
of a spectral invariant ¢ which plays a central role in the proof of Theorem 4.1.3. We
refer the readers to [39] and [35] for complete details of the construction and proofs of the
general properties of this spectral invariant. A brief description of Floer homology and

the PSS isomorphism was also given in the above Section 4.4.

We define the spectral invariant c: QH.(M) x ITIQE(M,w) — R as follows. For the
elements 0 # a € QH,.(M) and ¢ € ﬁe\u/n(M,w), we set

c(a,p) =inf{a € R | ®(a) € Image i},

where ®: QH,.(M) — HF,(p) is the PSS isomorphism between the quantum homology
and the Floer homology, and i,: HF,(¢) — HPF.(p) is the natural inclusion in the
filtered Floer homology. The non-trivial fact that —oco < ¢(a, p) < oo is proved in [39].
Moreover, c(a, ) has the following properties [39], [35]: For every a,b € QH,(M) and
every o, € ﬁaTr/n(]\/[)

(P1) claxb,p¢) < cfa, ) + (b, ¥),
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(P2) ¢(a, 1) = val(a),

(P3) c(a,p) = sup c(al™ ),

m

(P4) c(ag?, @) = c(a, p) +w(A), for every ¢* € A,

where a/™ is the grade-m-component of a, 1 is the identity in ﬁ;El(M ,w) and wval(+) is
the valuation function (4.4) defined in Subsection 4.3.1.
The following lemma, which can be considered as a Poincaré duality type lemma, enables

us to compare the spectral invariants of ¢ and ¢~ !. It is the analogue of Lemma 2.2 from

[15] in the rational non-monotone case .

Lemma 4.5.1. For every 0 # ~v € QH,.(M) and every ¢ € Ham(M, w)

c(y,¢) = —inf {c(6,97") | TI(6,7) # 0},

where I1(-, ) is the Q-valued pairing (4.3) defined in Subsection 4.3.1.

The proof of the lemma is given in Section 4.8 below. In order to prove Theorem 4.1.3
we will also need the following proposition. Assume that the subalgebra QH,, (M) C
QH.(M) is semi-simple over the field A and let QHy, (M) = QHL, (M) & --- & Q% (M)

be a decomposition of Q) Hs, (M) into a direct sum of fields. Then we have

Proposition 4.5.2. There exists a positive constant C' € R such that for every 0 # ~ €

val(y) +val(y™1) < C.

Postponing the proof of the above proposition we first present the proof of Theorem 4.1.3
and Theorem 4.1.1. In the proof of Theorem 4.1.3 we follow the strategy of the proof
used by Entov and Polterovich in [15].

Proof of Theorem 4.1.3: Let QHy,(M) = QHL,(M)®---®Q%, (M) be a decomposition
of QHs, (M) into a direct sum of fields. Consider the map 7: Iflgr/n(]\/[) — R defined by:

#(g) = —vol(M) - lim M,

n—oo n
where e; is the unit element of QHJ (M). This is a standard homogenization of the
map c(eq,-): ﬁ;r/n(M) — R. We claim that 7 is a Lipschitz homogenous Calabi quasi-

morphism. The proof of the Calabi property and the Lipschitz property of 7 goes along
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the same lines as the proof of Propositions 3.3 and 3.5 in [15] with the notations suitably
adapted. Thus, we will omit the details of the proof of these properties and concentrate
on proving that 7 is a quasi-morphism. We will show that c(ey,-) is a quasi-morphism,

this immediately implies that its homogenization 7 is also a quasi-morphism.

Notice that the upper bound follows easily from the triangle inequality (P1):
c(e1, ) = c(er xe1,p9) < c(er, ) +c(e1,9).
Next, it follows from (P1) and Lemma 4.5.1 that

C(el7 gp) < C(el7 ‘Pw) + C<€17 wil) =c (617 901/}) - a:H(iaI,lef;);éOC (aﬂ’l/}) :

From the definition of the intersection pairing I (4.3) we have that
{a | M(a,er) # 0} = {a | M, er) # 0} = {a | M(aT 5 e1, M) # 0}
Combining this with the above property (P3) we may further estimate

0(61, QD) < C(617 ¢¢) - inf C(a[O]v ¢) (410)
a:T(al%xe1,M)#£0

Our next step is to find a lower bound for the term c(al” +) provided that IT(a” x
e1, M) # 0. For this, we shall first “shift" and then “project”, roughly speaking, the
element al” € QHy(M) to the field QHJ, (M). More precisely, since we assumed that the
minimal Chern number N, divides n, there exists an element ¢* in the Novikov ring A
such that al%l¢? € QHy, (M). Thus, it follows from properties (P1) and (P4) that

() = e(ag", 1) —w(A) = eler x g, ¥) — cler, 1) — w(A). (4.11)

Moreover, it follows from the assumption I1(al” xe;, M) # 0 and from the definition of the
element e;, that e, x al¥l¢? € QHI (M) \ {0}. Hence, since QHJ, (M) is a field, e; * al%¢”

is an invertible element inside it. Using the triangle inequality (P1) once again we get
0(61, w) < C(@l * a[O]qAa ¢) + C((el * a[O}qA)—1’ ]1)

Here (e; * al%¢?)~! is the inverse of e; * al”¢” inside QH) . Next, by substituting this in

the above inequality (4.11) and applying (P2) we can conclude

c(a® ) > e(eqy,1h) — val ((e; * a[o]qA)’l) —wal(e) — w(A).
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By assigning this lower bound of c(al%, 1) into (4.10) we further conclude
cler,p) < cler, pp) —cler, )+ sup val ((er  a%g™)™") + ¢,
a:T1(al%xe;,M)#£0
where " is the value val(e;) +w(A). The last step of the proof is to find a universal upper
bound for val((e; * al®l¢*)~!) provided that II(al”l % e;, M) # 0. Note that the condition
I1(a!” % e1, M) # 0 implies that val (e; * a/)) > 0 and hence val (&1 * al”¢?) > —w(A).
Therefore, it follows from Proposition 4.5.2 that val((e; *al%¢?)~') < C'+w(A). We have

shown that c(ey, -) is a quasi-morphism, the proof of the theorem is thus complete.

Proof of Theorem 4.1.1: Let M be one of the manifolds (X, wy) or (Y,,w,) listed
in the theorem. It follows from Lemma 4.3.1 and Lemma 4.3.3 that the subalgebra
QQH,(M) is semi-simple. Moreover, the minimal Chern number of (X,,w,) and (Y),,w,)
is 2 and 1 respectively. Thus, it follows from Theorem 4.1.3 that there exists a Lipschitz
homogeneous Calabi quasi-morphism 7r: ﬁa\r/n(M ,w) — R as required.

Remark 4.5.3. As mentioned in Remark 4.3.4 above, in the case of (Y,,w,) where

1
39
the units of these fields alternately, Theorem 4.1.3 implies the existence of two Calabi

0 < p < 3, the subalgebra QH4(Y),) splits into direct sum of two fields. Thus, using

quasi-morphisms. We do not know whether they are equivalent or not.

We return now to the proof of Proposition 4.5.2. We will follow closely Lemma 3.2 in [15].

Proof of Proposition 4.5.2: From the definition of the graded Novikov ring it follows
that Ay can be identified with the field R = Q[[z] of Laurent series > «;27 with coefficients
in Q and «; = 0 for large enough j’s. Moreover, it is not hard to check that QHy(M) is
a finite dimensional module over Ag. We denote by o: R — 7Z the map which associates
to a nonzero element Y a;z? € R the maximal j, such that a; # 0. We set o(0) = —cc.
For v € R, put |k|; = exp o(k). Thus, | -|; is a non-Archimedean absolute value on R
and moreover, R is complete with respect to |- |;. For preliminaries on non-Archimedean
geometry we refer the readers to [3]. Since the field QHJ (M) can be considered as a
finite dimensional vector space over R, the absolute value |- |; can be extended to an
absolute value | - |5 on QH,, (M) (see [3]). Note that |- |» induces a multiplicative norm
| - |l2 on QH,,(M). On the other hand, we can consider a different norm on QH,, (M)
defined by ||7]|s = exp val(vy). Since all the norms on a finite dimensional vector space

are equivalent, there is a constant C; > 0 such that

19lls < C1+ 1]z, for every 0 # v € QH,, (M).
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Hence, for 0 # v € QH,, (M), we have

Ills - 11y ~Hls < CF - vl Iyl = CF.

Therefore, val(y) + val(y™') < C where C' = 2log C;. This completes the proof of the

proposition.

4.6 Restricting 7 to the fundamental group of Ham(M)

In this section we discuss the restriction of the above mentioned Calabi quasi-morphism
T I/{gl/n(M ) — R, where M is one of the manifolds listed in Theorem 4.1.1, to the abelian
subgroup i (Ham(M)) C Ham(M). For this purpose, we follow [15] and use the Seidel
representation W: mi (Ham(M)) — QHZ (M, R) (see e.g. [56], [27]), where QH (M, R)
denotes the group of units in the even part of the quantum homology algebra of M with

coefficients in a real Novikov ring. We start with the following preparation.

4.6.1 Hamiltonian fibrations over the two sphere

There is a one-to-one correspondence between homotopy classes of loops in Ham (M)
and isomorphism classes of Hamiltonian fibrations over the two-sphere S? given by the
following “clutching" construction (see e.g. [56], [27]). We assign to each loop ¢ = {p,} €
Ham(M) the bundle (M,w) — P, — S? obtained by gluing together the trivial fiber
bundles D x M along their boundary via (¢,7) — (t,:(z)). Here we consider S? as
DT U D™, where D* are closed discs with boundaries identified with S'. Moreover, we
orient the equator D™ N D~ as the boundary of D*. Note that this correspondence can

be reversed.

As noted in [56], there are two canonical cohomology classes associated with such a

fibration. One is the coupling class u, € H?*(P,,R) which is uniquely defined by the

@
following two conditions: the first is that it coincides with the class of the symplectic form
on each fiber, and the second is that its top power ug“ vanishes. The other cohomology
class is the first Chern class of the vertical tangent bundle c, = ¢,(T'P}™") € H*(FP,,R).
We define an equivalent relation on sections of the fibration P, — S? in the following

way: First, equip S? with a positive oriented complex structure j, and P, with an almost
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complex structure .J such that the restriction of J on each fiber is compatible with the
symplectic form on it, and the projection 7: P, — S?is a (J, j)-holomorphic map. Next,

two (J, j)-sections, vy and vy, of T: P, — S? are said to be I'-equivalent if
up[V1(S%)] = u,[1a(S?)], covi(S?)] = cp[12(S?)].

It has been shown in [56] that the set S, of all such equivalent classes is an affine space
modeled on the group I' (4.1).

4.6.2 The Seidel representation

The following description of the Seidel representation, which is somehow different from
Seidel’s original work, can be found in [27]. For technical reasons, it will be more con-
venient to work in what follows with a slightly larger Novikov ring than in (4.2). More
precisely, set Hg := H5 (M,R) / (kerc; N kerw), where H5 (M, R) is the image of (M)
in Hy(M,R). We define the real Novikov ring as

AR:{ZAAqAMAe@, H#{AET [ A4 #0, w(A) > ¢} < oo, vceR},
A€EHR

and set QH.(M) := QH.(M,Ar) = H.(M) ® Ag to be the real quantum homology of M.

Next, let ¢ be a loop of Hamiltonian diffeomorphisms and v be an equivalence class of
sections of P,. Set d = 2c,(v). We define a Ag-linear map U, ,: QH,. (M) — QH. .(M)
as follows: for « € H.(M,Z), V,, is the class in QH,;4(M) whose intersection with
be H.(M,Z) is given by

U,u(a) b= np,li(a),i(b);v +i(B))g ",
BeH

where i is the homomorphism H, (M) — H,.(P,), the intersection -/ is the linear extension
to QH,.(M) of the standard intersection pairing on H,(M,Q), and np,(v,w;u) is the
Gromov-Witten invariant which counts isolated J-holomorphic stable curves in P, of
genus 0 and two marked points, such that each curve represents the equivalence class u
and whose marked points go through given generic representatives of the classes v and
w in H,(P,,Z). When the manifold M is strongly semi-positive, these invariants are
well defined. Moreover, it follows from Gromov’s compactness theorem (see [20]) that for

each given energy level k, there are only finitely many section-classes p = v + i(B) with
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w(B) < k that are represented by a J-holomorphic curve in P,. Thus, U, , satisfies the

finiteness condition for elements in QH,.(M).

For reasons of dimension, np, (v, w; ) = 0 unless 2c,(p) + dim(v) + dim(w) = 2n. Thus,
Vo) => anpq® a,p € H(M),
where a,,5 -y b= np,(i(a),i(b);v +i(B)), and
dim(a,,g) = dim(a) + 2¢c,(v +i(B)) = dim(a) + 2¢,(v) + 2¢1(B).

Note also that ¥, 4 = ¥, ® ¢*. It has been shown by Seidel |56] (see also [27]) that

vV, is an isomorphism for all loops ¢ and sections v.

Next, we use U, , to define the Seidel representation ¥: 7w (Ham(M)) — QH. (M, Ag)*.
In order to do so, we take a canonical section class v, that (up to equivalence) satisfies the
composition rule v,y = vy#v, , where v,, denotes the obvious union of the sections in
the fiber sum Py, = Py#PF,. The section v, is uniquely determined by the requirement
that

uy(v,) =0 and c,(v,) = 0.

Moreover, it satisfies the above mentioned composition rule. Therefore, we get a group

homomorphism
p: m(Ham(M)) — Homp, (QH.(M, Ag)).

It has been shown in [56] that for all ¢ € 7 (Ham(M)) we have p(p)(a) = Uy, v,([M])*rpa.

The Seidel representation is defined to be the natural homomorphism
U: m(Ham(M)) — QH. (M, Ag)™,

given by ¢ — p(p)([M])

4.6.3 Relation with the spectral invariant

Throughout, 7 (Ham(M)) is considered as the group of all loops in Ham(M) based at
the identity 1 € Ham(M). Let £ be the space of all smooth contractible loops z: S =
R/Z — M and L its cover introduced in Section 4.4 . Let ¢ be a loop of Hamiltonian
diffecomorphisms. It is known (see e.g. [56]) that the orbits ¢;(z) of ¢ are contractible. We
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consider the map T,,: £ — £ which takes the loop () to ¢:(z(t)). In [56], Seidel showed
that this action can be lifted (not uniquely) to £. In fact it is not hard to check that there
is a one-to-one correspondence between such lifts of T), and equivalence classes of sections
v € S,. We denote by TW, the lift corresponding to v € S,,. Next, let ¢ € m(Ham(M))
be a given loop generated by a normalized Hamiltonian K € H. The following formula,
which can be found in [56] and [27], enables us to relate the Seidel representation with

the spectral invariant ¢ used to define the Calabi quasi-morphism 7
(T,) " Ay — Agpn = —u,(v), for every H € H. (4.12)

It has been shown in [56] that the isomorphism in the quantum homology level described in
Subsection 4.6.2, which is obtained by multiplication with W, v,([M]) corresponds, under
the identification between the Floer and the quantum homology, to the isomorphism
i: HF,(H) — HFyyy,)(K#H) induced by the action of (f;l,) on L. The following

proposition can be found in [41] or [15].

Proposition 4.6.1. For every loop [p] € m(Ham(M)) C ﬁe\xr/n(M) and every a €
QH.(M) we have

c(a, [¢]) = val(a x ¥([¢]) ).

Proof of Proposition 4.6.1:

Let K € H be the normalized Hamiltonian function generating the loop [p], and let
H € 'H be the zero Hamiltonian generating the identity. The proposition immediately
follows from (4.12) applied to H and K.

4.7 Proof of Theorem 4.1.2

Recall that a homogeneous quasi-morphism on an abelian group is always a homomor-
phism (see e.g. [15]). Hence, in order to prove Theorem 4.1.2, we need to show that
for the manifolds listed in the theorem, the restriction of the Calabi quasi-morphism
T ﬁ;I/n(M) — R on the fundamental group of Ham(M) is non-trivial. We will divide

the proof into two parts.
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4.7.1 The case of S? x S2.

Let Xy = S? x 5? be equipped with the split symplectic form wy = w ® Aw, where 1 < \.
As mentioned in Section 4.1, there is an element [¢] of infinite order in the fundamental
group of Ham(X)) (see [32]). This element can be represented by the following loop of
diffeomorphisms

pi(z,w) = (Z>Tz,t(w))v
where T, denotes the 2mt-rotation of the unit sphere S? around the axis through the

points z, —z. Seidel showed in [56] (see also [36]), by direct calculation, that
V() = (A= B) @ ¢ B3 g,
=0
where A and B in H,(X)) are the classes of [S? x point| and [point x S?] respectively,
and o, § € R were chosen such that 2¢;(0A + 3B) =1 and wy(aA + B) = 5 + 4.

Lemma 4.7.1. For every n € N we have

val(W([g]) ) = 1+

Proof First note that val((A — B)?") = max{val(A*B>*)}, where 0 < k < 2n.
Next, set ap = A*B?* Tt follows from the quantum multiplication relations (4.5)
that val(agie) = val(ag) + (A — 1) for every 0 < k < 2n — 2. Thus,

val((A — B)*") = max{val(A*),val(A**'B)} = —n + 1.

Set A = ¢*ATFB(32  ¢74=P)). Tt follow immediately that

1 1 n
l AQn — l 2n(aA+BB) —9 (_ _) — .
val(A*) = val(q ) n2—|—6>\ n+3)\
This completes the proof of the Lemma.
It follows from Lemma 4.3.1 that the subalgebra QH,(X),) is a field. Thus, combining

Proposition 4.6.1 and Lemma 4.7.1, we conclude that

e Cwal (U([e))7) 14
r([¢]) = —vol(Xy) - lim. o =~

£ 0.

We have shown that the restriction of the quasi-morphism 7: ﬁarx/n(X ») — R on the
fundametal group of Ham(X,) is non-trivial. This concludes the proof of Theorem 4.1.2

for the above case.
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4.7.2 The case of CP?#CP?

Let Y, = CP?#CP? be the symplectic one-point blow-up of CP? introduced in Sec-
tion 4.1, equipped with the symplectic form w,, where % # € (0,1). We will use here
the same notation as in Subsection 4.3.3. It has been shown by Abreu-McDuff in [1]
that the fundamental group of Ham(Y),) is isomorphic to Z with a generator given by the
rotation

—2mit

v (z1,22) — (e 21,22), 0<t<1.

The Seidel representation of ¢ was computed in [33], [36] to be

- (- 1—p)?
\Ij 1 — P E/2+3F/4 5(F 2E) h — ( . 41

The following lemma can be immediately deduced from Lemma 5.1 and Remark 5.5 which

both appear in [33].

Lemma 4.7.2. Let 5 # € (0,1). Then

y —Sw(F—2E), t<pu<i
lim % - (4.14)

k—o00
RO W(F—2E), 0<p<i.

Proof: Denote by Q the element P ® ¢®/?t3F/4 and consider its powers Q* where k € N.
It follows from the quantum multiplicative relations discussed in Subsection 4.3.2 that

the only two possible cycles obtained by multiplication by () are
P® qE/2+3F/4 N E®qF/2 N qE/2+F/4 - M—-P® qE/2+3F/4’
and
PPl L et o Me TR L pg gt

Thus, since the first cycle does not change the valuation, while the second cycle increases it
by w(F/4—E/2), we have that val(QF) is either bounded as k — oo when w(F/4—FE/2) <

0 or linearly grows otherwise. Hence, we get that
C—0kw(F —2F), s<p<l1

val(¥([e]) ") =
C+Ew(F/4—E/2)—w(d(F —2E)), 0<p<i,
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where C' is some universal constant. This completes the proof.

A straightforward calculation shows that the above expression (4.14) is strictly negative

for every 0 < p < 1. Thus, it follows from Proposition 4.6.1 and the fact that val(axb) <
val(a) + val(b) that

val (eq * ¥([p])~* val (¥ -k

#(J¢]) = —vol(Y,) lim (1 e ™) o —vol(Y,) lim (D) ™)

k—oo k k—oo

>0

Hence, the restriction of the quasi-morphism 7: EE;I/H(YM) — R on the fundamental group

of Ham(Y),) is non-trivial. The proof of Theorem 4.1.2 is now complete.

4.8 Proof of the Poincaré duality lemma

Let (M,w) be a closed, rational and strongly semi-positive symplectic manifold of dimen-
sion 2n. Note that for rational symplectic manifolds the action spectrum is a discrete
subset of R, and thus there are only a finite number of critical values of the action func-
tional Ay in any finite segment [a,b] C R. Let H(t,2) € H be a Hamiltonian function
generating ¢ € ﬁér/n(M), and denote by H(t,z) = —H(—t,z) the Hamiltonian function

1

generating the inverse symplectomorphism ¢~'. The set Py of critical points of Ay is

isomorphic to Pg via Z(t) = x(—t), and [z,u] € Py corresponds to [z,u] € 7/7?;, where

u(s,t) = u(=s,=t), [z, u]) = 2n — p([z,u]) and Ap([z,u]) = —Ag([z, q]).

We define a pairing L: CF,(H) x CFy,—x(H) — Ay by

L (Z o) - [, 1l Zﬁ[ﬂiﬂ : [@ﬂ) = Z(Z O] 'ﬁ[z,uikA])QA, (4.15)

Az

where the inner sum runs over all pairs [z, u] € Py and the outer sum runs over all A € T
with ¢;(A) = 0. The pairing L is well defined. Indeed, consider first the inner sum, the
finiteness condition in the definition of C'F,(H) implies that it contains only finitely many
elements. Secondly, it follows from the same reason that the power series on the right
hand side of (4.15) satisfies the finiteness condition from the definition of the Novikov
ring (4.2). It is not hard to check that the pairing L is linear over Ay and that it is non-

degenerate in the standard sense. Thus, since the vector spaces C'F(H) and CF,,_x(H)
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are finite dimensional over Ay, which is in our case a field, the pairing L determines an
isomorphism
CFy(H) ~ Homy, (CFZn,k(ff),Ao) .

From the universal coefficient theorem we obtain a Poincaré duality isomorphism
HFy(H) ~ Homy, (Han_k(ﬁ),A()) .

In [50] it has been shown that the pairing determined by this isomorphism, which by
abuse of notation we also denote by L, agrees with the intersection pairing A(-,-) on the
Quantum homology QH.(M). More precisely, let &: QH.(M) — HF.(H) be the PSS
isomorphism described in Section 4.4. Then, for every a € HF(H) and b € QHy, (M)
we have

A(®(a),b) = L (a,®(b)) . (4.16)

Next, we consider the filtered Floer homology complexes CF\ **/(H) and CF. *>/(H).
Note that these spaces are no longer vector spaces over Aj since they are not closed

with respect to the operation of multiplication by a scalar. We define a (Q-valued pairing
L': CFH) x CE“ (H) — Q by

L (Z Az * [JZ,U], Zﬁ[ﬂ,ﬂ : [@;m) = Z(a[w,u} : 6[m,u])
[z,u]
This pairing is well defined since any element in CFQ(;_O‘,;OO](}VI ) is a finite sum. It is
straightforward to check that the pairing L’ is non-degenerate in the standard sense and
that it coincides with the zero term of L. In other words, denote by 7: Ag — Q the map
sending > a4¢” to ap, then for any a € CF,C(_OO’Q](H) and b € C’an_k(ﬁ) we have

7L (igpm(a),b) = L'(a, 7r_aﬁ(b)). (4.17)
By abuse of notation, we also denote by L’ the induced pairing in the homology level:
L' HFNH) x HF *™/(H) — Q. Next, consider the following diagram:

QHW(M) < HE(H) <= HFm)

X1 XrL X

P ad T o, H

QHop_p(M) —2— HFy,_(H) —=% HF **N(H)

| l |

Q Q Q
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Combining equations (4.16) and (4.17) together we conclude that for every element a €
HE " (H) and b € QHyp_p(M) we have

(@ 0 ia(a),b) = 7L(iam(a), ®(0)) = L'(a,7_, 5 0 B(b)) (4.18)

We are now in a position to prove Lemma 4.5.1.

Proof of Lemma 4.5.1 We divide the proof into two steps.

1. Fix an arbitrary € > 0 and put o = ¢ — ¢(7, ¢). It follows from the definition of the
spectral invariant c that ®(vy) ¢ Image i_, . Note that Image i_, , = Kernel 7_,,
and thus & := m_,, o () # 0. Since the pairing L’ is non-degenerate there exists
n € HF (o1 such that L'(n, &) # 0. From (4.18) we have that I1(do, ) # 0,
where dp = &' 04, ,-1(n). It follows from the definition that ¢(dy, ') < a and
hence

inf ¢(0,07") <o, !) <a=e—c(y,9)

5:TI(8,7)7£0
This inequality holds for every € > 0, hence we conclude that
inf ¢(0,¢7") < —c(y, ).
5T1(5,7)#0
2. Fix an arbitrary ¢ > 0 and put o = —¢ — ¢(y,¢). From the definition of ¢(-,-)
it follows that ®(y) € Image i_,, = Kernel 7_,,. Hence, £ := m_,, 0 ®(y) =
0. Assume by contradiction that there exists § satisfying I1(d,v) # 0 such that
c(6,97') < a. We observe that ®(8) € Image io, 1. Let n € HFS (o) be
such that ®(0) = i, 4,-1(n). It follows from (4.18) that II(6,v) = L'(n,£) = 0. This
contradicts the above assumption that I1(9, ) # 0. Thus we must have ¢(d, o™!) > «
for every § satisfying I1(d,v) # 0. Hence,
inf ¢(6,07") >a=—e—c(y,p).

8:11(8,7)#0

Again, since this inequality holds for every ¢ > 0 we conclude that

inf c(6,07") > —c(y, ).

5:11(5,7)#0

The proof is now complete.
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