Random walks on planar maps and Liouville BM

Nathanaël Berestycki Universität Wien*

Horowitz seminar, Tel-Aviv (online)

* on leave from University of Cambridge

Motivation

Benjamini and Schramm 2001

Q: What does a random walk on a random planar map look like?

© J. Miller

UIPT (Angel–Schramm, 2003): local limit of random triangulations with *n* faces, $n \rightarrow \infty$.

Motivation

Ambjørn, Watabiki (nonrigourous): "Spectral dim of LQG" = 2 i.e., $p_t(x,x) \approx 1/t$.

Some remarkable results

Theorem (Benjamini and Schramm (2001))

Subject to bounded degree, **every** local limit of a sequence of planar maps (rooted at a randomly chosen vertex) is recurrent.

Theorem (Gurel-Gurevitch and Nachmias (2013))

Exponential tail on degree suffices. In particular, **UIPT** is recurrent.

See Nachmias' Saint Flour notes for recent survey.

This talk: scaling limits of random walks.

DDK Ansatz (cf. Duplantier-Sheffield)

Metric of the form

$$ds^2 = e^{\gamma h} (dx^2 + dy^2).$$

where $\gamma \in \mathbb{R} \leftrightarrow$ central charge; *h* is the Gaussian free field.

Gaussian free field A random "function" $D \to \mathbb{R}$ $(h, f) \sim \mathcal{N}(0, \sigma^2);$ $\sigma^2 = \iint G(x, y)f(x)f(y)dxdy$ where G = Green function on D.

Continuum theory ???

That gives h(z), but what about $e^{\gamma h(z)}$?

Three objects:

A Riemannian **metric** on sphere \mathbb{S}^2 or domain $D \subset \mathbb{C}$

 $e^{\gamma h(z)}(dx^2 + dy^2)$

A volume measure

A **diffusion** (Brownian motion on surface)

 $e^{\gamma h(z)} dz$

$$dZ_t = e^{-\frac{\gamma}{2}h(Z_s)}dB_s.$$

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > <

Continuum theory !!!

Three objects:

A (Riemannian) **metric** on the sphere \mathbb{S}^2 or domain $D \subset \mathbb{C}$

A volume measure

$$e^{\gamma h(z)} dz$$

 $e^{\frac{\gamma}{d_{\gamma}}h(z)}(dx^2+dy^2)$

A **diffusion** (Brownian motion on surface)

$$dZ_t = e^{-\frac{\gamma}{2}h(Z_s)}dB_s. \qquad \forall$$

\/*

*: announced in 2019 by Gwynne–Miller x5; Dubédat–Falconnet–Gwynne–Pfeffer–Sun For $\gamma = \sqrt{8/3}$, already known by Miller–Sheffield.

Continuum theory: volume measure

Consider a regularisation $h_{\varepsilon}(z)$, e.g., the circle average value of h.

Theorem (Kahane 1985; Duplantier–Sheffield 2010; Shamov 2017; B. 2017)

Define:

$$\mu_{\gamma}(S) = \lim_{\varepsilon \to 0} \varepsilon^{\gamma^2/2} \int_{S} e^{\gamma h_{\varepsilon}(z)} dz$$

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > <

exists in probability.

 μ_{γ} is Gaussian multiplicative chaos associated to GFF.

Visualisation of Liouville measure

 $\gamma = 0.2$

©R. Rhodes < □ > < ₫ > < ≣ > < ≣ > < ♡

Visualisation of Liouville measure

 $\gamma = 1$

©R. Rhodes

æ

・ロト ・ 日 ト ・ モ ト ・ モ ト

Visualisation of Liouville measure

 $\gamma = 1.8$

Liouville Brownian motion

Question:

How to define a canonical Brownian motion in this surface?

- In Riemannian case, metric defines smooth "connection"
- This induces a Laplace–Beltrami operator Δ .
- Brownian motion on manifold defined in terms of Δ .

Problem

Here none of these tools apply. We have to invent something else!

Liouville Brownian motion

Instead we have to do a regularisation procedure again.

Theorem (B. 2015, Garban–Rhodes–Vargas 2018)

The ε -regularised Brownian motion converges to a process, Liouville Brownian motion.

 ε -regularised Liouville Brownian motion:

$$dZ_s^{arepsilon} = arepsilon^{\gamma^2/4} e^{-rac{\gamma}{2}h_arepsilon(Z_s)} dB_s$$

In other words,

$$Z_{s}^{\varepsilon} = B_{\phi_{\varepsilon}^{-1}(t)}; \phi_{\varepsilon}(t) = \varepsilon^{\gamma^{2}/2} \int_{0}^{t} e^{\gamma h_{\varepsilon}(B_{s})} ds$$

Then $\lim_{\varepsilon \to 0} Z_s^{\varepsilon}$ exists (i.e., $\lim_{\varepsilon \to 0} \phi_{\varepsilon}(t)$ exists).

Liouville Brownian motion

Properties (Garban, Rhodes, Vargas, B., Jackson)

- Continuous; does not stay stuck
- μ_h is a.s. an invariant measure for Liouville Brownian motion given h.
- Spends all its time in a set of measure zero.
- \bullet for $\gamma>\sqrt{2},$ the trajectory has zero derivative at almost every time.

- Spectral dimension $d_s = 2$ a.s. (\rightarrow Ambjørn).
- ...

Connection between discrete and continuum theories?

- Two stories should be "two sides of same coin".
- Need good embedding of planar maps in Euclidean space:
- Riemann mapping theorem, or Circle Packing theorem of Koebe–Andreev–Thurston; or Tutte embedding *.

* two cases: infinite maps / finite maps with boundary.

Tutte embedding

ⓒJ. Miller ∢□▶∢률▶∢≣▶∢≣▶ ≅ ∽੧

A big conjecture.

Let $T_n =$ uniform random triangulation, $\psi: T_n \to \mathbb{C}$ some nice embedding (circle packing, Tutte) Let $\mu_n =$ measure putting mass 1/n at each centre.

Conjecture

 μ_n converges in distribution to Liouville measure with $\gamma = \sqrt{8/3}$. Moreover, if X = SRW on T_n then $\psi(X)$ converges to Liouville Brownian motion.

Main result

The punchline

Jointly with Ewain Gwynne we prove the first such result for a class of planar maps called mated-CRT planar maps.

Mated-CRT planar maps

• Nice discretisations of LQG;

• Coarse-grained versions of more natural models of planar maps (such as **UIPT** for $\gamma = \sqrt{8/3}$).

Mated-CRT maps

Two flavours

Finite; with boundary \rightarrow disc topology; or infinite; no boundary \rightarrow spherical topology (=whole plane)

Each case has two equivalent descriptions:

- using SLE/LQG theory
- or as topological gluing of a pair of CRTs.

(Equivalence: Duplantier-Miller-Sheffield.)

Description 1 (full plane)

Fix $\gamma \in (0, 2)$. Let h = quantum cone: roughly, $h = GFF + \gamma \log(1/|z|)$ in \mathbb{C} . Let $\eta =$ space-filling SLE_{κ} where $\kappa = 16/\gamma^2 \in (4, \infty)$. For any $\varepsilon > 0$, break \mathbb{C} into cells $\eta([t_n, t_{n+1}])$ of μ_h -mass ε .

© J. Miller

 $\mathcal{G}^{\varepsilon}$: adjacency graph.

Let (L, R) be a pair of correlated two-sided Brownian motions;

$$\operatorname{Cov}(L_t, R_t) = -\cos(\frac{4\pi}{\gamma^2})|t|.$$

Glue the associated CRTs to one another...

Bijections (Sheffield, Bernardi, Holden–Sun,...)

Natural models of planar maps close to Description 2

Statement of result

Let $X^{z,\epsilon} = \mathsf{RW}$ from z on $\mathcal{G}^{\varepsilon}$. Rescaling

 $m_{\epsilon} := (\text{median exit time of } \eta(X^{0,\epsilon}) \text{ from } B_{1/2})$

We can show $m_{\varepsilon} \simeq \varepsilon^{-1}$.

Theorem (B.–Gwynne 2020)

 $\forall z \in \mathbb{C}$, conditional law of $(\eta(X_{m_{\epsilon}t}^{z,\epsilon}))_{t\geq 0}$ given (h,η) converges in probability to rescaled law of γ -LBM from z associated with h.

(Prokhorov topology induced by local uniform metric on curves $[0,\infty) \rightarrow \mathbb{C}$.) In fact, convergence is uniform over z in any compact subset of \mathbb{C} . Also true for Tutte embedding in the disc case.

Rough sketch of argument

1. Previous work

By work of Gwynne–Miller–Sheffield (2018), Tutte embedding ψ converges to LQG:

$$\sup_{x\in\mathcal{VG}^{\varepsilon}}|\psi(x)-\eta(x)|\to 0$$

in probability. Furthermore: up to parametrization, RW converges to BM.

So, "only" only need to deal with parametrisation.

2. Tightness

Let $B = B_x(r)$ be a Euclidean ball, $\tau^{\varepsilon} =$ exit time by RW of B. Moments \rightarrow **Green function** G^{ε} : eg,

$$\mathbb{E}(\tau^{\varepsilon}) = \sum_{y \in B} G_B^{\varepsilon}(x, y) \stackrel{?}{\asymp} \varepsilon^{-1} \int_B G_B(x, y) \mu_h(dy)?$$

Main issue: $G^{\varepsilon}(x, y) \asymp G(x, y)$ (uniformly if possible).

Already know (bounded) discrete harmonic functions converge to continuum harmonic functions.

GMS (2018) On-diagonal estimates: $G(x, x) \leq \varepsilon^{o(1)}$ uniformly whp.

Electrical network theory (Grigoryan's lemma) + Harnack inequality: $G_{\varepsilon}(x, y)$ relates to R_{eff}^{ε} .

Hence find f^{ε} minimising Dirichlet energy $\mathcal{E}(f^{\varepsilon}, f^{\varepsilon})$ subj. to boundary conditions.

Can use continuum guess to test!

Obtain $G^{\varepsilon}(x,y) \asymp G_B(x,y)$ for $|y-x| \ge \varepsilon^{\beta}$, for some small β .

Use naive diagonal bound in $B(x, \varepsilon^{\beta})$ and a priori uniform polynomial control for GMC.

3. Characterisation of LBM

Suppose $\forall z$ we have a law P_z such that $z \mapsto P_z$ is continuous and:

- *P_z* is Markovian given *h*;
- ▶ *P_z* is a (random) time-change of BM from *z*;
- ► P leaves the Liouville measure µ = µ_h associated to h invariant.

Theorem (B.–Gwynne 2020)

Then there is a (possibly random) constant c s.t. $P_z = law$ of $(X_{ct}^z, t \ge 0)$, where X^z is LBM associated with h, starting from z.

Key idea: Revuz measure.

Definition (Positive Continuous Additive Functional (PCAF))

Let $\mathcal{A} = (\mathcal{A}_t(\omega); t \ge 0)$ be a functional on path space. \mathcal{A} is a PCAF for the Markov process X if

• \mathcal{A} is increasing in t

•
$$\mathcal{A}_t = \mathcal{A}_s + \mathcal{A}_{t-s} \circ \theta_s$$
 for every s, t .

In words $\ensuremath{\mathcal{A}}$ increases in a way that depends only on the future of the trajectory.

Ex: $F(t) = \int_0^t e^{\gamma h(B_s)} ds$ the Liouville clock (given h) is a PCAF for B.

Revuz measure of a PCAF

Definition

A measure μ is a Revuz measure for X is $\mu(A) = 0$ whenever X does not hit A a.s.

Theorem (Revuz; Fukushima)

For each PCAF of a Hunt process there exists a unique Revuz measure μ such that for all test functions f, g:

$$\int_{\mathbb{C}} \mathbb{E}_{z} \left[\int_{0}^{t} g(B_{s}) d\mathcal{A}_{s} \right] f(z) dz = \int_{0}^{t} \left[\iint f(z) p_{s}(z, w) \mu(dw) g(w) dz \right] ds.$$

Moreover μ determines A uniquely.

In words, $dA_t = ``\mu(B_t)dt''$ (in an integrated sense)

Here:

Let *F* be the time-change of $Z \sim P_z$ so that $B_t = Z_{F(t)}$.

Lemma

F is a PCAF for B.

Let μ = its Revuz measure. It **suffices** to show μ = Liouville μ_h ! One can check μ is necessarily invariant, but so is μ_h (assumption). Z is strongly Feller so invariant measure is unique up to constants!

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > <