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Abelian spin model

@ Ising model

@ XY model

@ Villain model

@ Zn (clock) model

@ Abelian Higgs model

@ Abelian lattice gauge theory
@ efc.
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The classical XY model

e ANCZ9, Sj = (cos 0;,sin Qj) es!,

BN (dS) ~ "% S5 [ oty ~ &l 0) [
jen Jjen
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The classical XY model

e ANCZ9, Sj = (cos 0;,sin Qj) es!,

]P’i\(y(dS) N eB >inj SiS H d@j ~ eﬁ 2inj cos(t‘)/—@j) H d@j.
jen Jjen

@ Modeling for liquid helium, magnetic insulator,
superconductor etc.
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The classical XY model

e ANCZ9, Sj = (cos 0;,sin Qj) es!,

]P’i\(y(dS) N eB >inj SiS H d@j ~ eﬁ 2inj cos(t‘)/—@j) H d@j.
jen Jjen

@ Modeling for liquid helium, magnetic insulator,
superconductor etc.
@ Infinite volume limit well-defined
o Ginibre;
e Bricmont-Fontaine-Landau;
o Messager-Miracle-Sole-Pfister.

Paul Dario (Tel Aviv University) Massless phases for the Villain model ind > 3



The Villain model

@ For 8> 1, using

i

e[j(cos(@j*@)fﬂ ~ Z efg(91701+27rm)2
meZ

Heat kernel on S’

obtain the following Villain approximation of the XY model:

e IS o 2(0—07+2rm)* NER

e=(i,j) meZ Jjen
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The Villain model

@ For 8> 1, using

B (cos(0i-06;) Z e 2(0i —g;+2rm)? ,
WS4

Heat kernel on S’

obtain the following Villain approximation of the XY model:

e IS o 2(0—07+2rm)* NER

e=(i,j) meZ Jjen

@ Challenge: highly non-convex; infinitely many local
minimums
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Phase transitions

Phase transition is often accompanied with broken of symmetry.

B L S e o G = e 1 G b S
— s Y
—e— T S
—_—m— s
e e e T e
e e e e e S

Il

Ferromagnet

The XY/Villain model
@ For d = 2, continuous symmetry is not broken at any
temperature. Phase transition characterized by topological
defects. Berezinskii-Kosterlitz-Thouless transition.
@ For d > 3, symmetry breaking at low temperature.
Macroscopic excitation/fluctuations are given by “spin wave
function”.
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Dimension higher than 3: Gaussian domination

Theorem: Long-range order (Fréhlich-Simon-Spencer 1976)
For any d > 3, let us define the long-range order parameter

o= lim (S Sexy .

two—point function
then we have

2G(0)
122\
c> E

>0 (if pislarge)
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Dimension higher than 3: Gaussian domination

Theorem: Long-range order (Fréhlich-Simon-Spencer 1976)
For any d > 3, let us define the long-range order parameter

X—00
two—point function

—_———

then we have

2G(0)
122
c> E

>0 (if pislarge)

Question: Asymptotic behavior of the two-point function?
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Low temperature phase: Spin-wave approximation

For g > 1, use the Gaussian approximation:
® ). cos (6; — 6;) ~ Const — gziNj(Oi - Hj)z.
o PXY/VI L o3 5i(0-0) [T dg; — GFF!

® (So+ Si)xyyvi = (€077 4y = @ (GO=ERN/E,
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Low temperature phase: Spin-wave approximation

For g > 1, use the Gaussian approximation:
® ). cos (6; — 6;) ~ Const — gziNj(Oi — 0))2.
o PXY/VI L g3 i) [ db; — GFF!
® (So Su)xy v = (€% ~ €7 (AOEN/E,

This gives in d > 3, using G(x) ~ ‘Xfﬁ

Ci
Blx|d-2"

(So+ Sx)g~ e FO/F 4
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Low temperature phase: Spin wave approximation

The spin-wave approximation ignores the vortices (only
heuristic!)
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3D Results and Conjectures

@ Conjecture: For d > 3, there exists 5.(d) € (0, ), such
that for 8 > B¢(d),

2 Ceff 1
<SO . SX> == <SO> + ‘X‘3_2 + 0 <‘X‘d_2> .
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3D Results and Conjectures

@ Conjecture: For d > 3, there exists 5.(d) € (0, ), such
that for 8 > B¢(d),

2 Ceff 1
<SO . SX> == <SO> + ‘X‘3_2 + 0 <‘X‘d_2> .

@ Fréhlich-Spencer 84: For 5 > 1,

b (5 (G0) - G(¥) ) = (S0

> exp <<—21ﬁ +o (;)) (G(0) — G(x))) .
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3D Results and Conjectures

@ Conjecture: For d > 3, there exists 5.(d) € (0, ), such
that for 8 > B¢(d),

2 Coff 1
<SO . SX> == <SO> + ‘X‘3_2 + 0 <‘X‘d_2> .

@ Fréhlich-Spencer 84: For 5 > 1,

v (5 (G(0) - G(x))) > (Sp- )

> exp << 550 (;)) (G(0) — G(x))) .

@ Bricmont-Fontaine-Lebowitz-Lieb-Spencer 81: For g > 1,

< (sin@(0)sin O(x)) < C1

_& _&
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Theorem (D.-Wu 20)

For 5> 1, there exists a constant c.4(d, 3) € R and an
exponent a(d) > 0 such that

c 1
(So - Sx) vy = <SO>VII + X ,foz +0 <|x]d—2+a> :
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Theorem (D.-Wu 20)

For 5> 1, there exists a constant c.4(d, 3) € R and an
exponent a(d) > 0 such that

Ceff 1
(So - Sx)yy = {So)ou + X ,Z 5+ 0 <|X,d_2+a> :

Remark
The constant ¢ is not equal to the constant C;/4:
b

1
— —Ce| <€ %Px =
B ° B

—_——

very small
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Strategy of the proof:
@ From Villain to Coulomb gas;

@ Vector calculus in dimension 3;
e Duality argument (Fréhlich-Spencer);
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Strategy of the proof:
@ From Villain to Coulomb gas;
e Vector calculus in dimension 3;
e Duality argument (Fréhlich-Spencer);
© From Coulomb gas to random surface;

@ Sine-Gordon representation;
o Cluster expansion (low temperature, Bauerschmidt);
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Strategy of the proof:
@ From Villain to Coulomb gas;
e Vector calculus in dimension 3;
e Duality argument (Fréhlich-Spencer);
© From Coulomb gas to random surface;
e Sine-Gordon representation;
o Cluster expansion (low temperature, Bauerschmidt);
© Quantitative homogenization of the random surface;

o Helffer-Sj6strand equation (Naddaf-Spencer 98);
e Quantitative stochastic homogenization
(Armstrong-Kuusi-Mourrat 2014-2020).
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Strategy of the proof:
@ From Villain to Coulomb gas;

@ Vector calculus in dimension 3;
e Duality argument (Fréhlich-Spencer);
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Strategy of the proof:
@ From Villain to Coulomb gas;

@ Vector calculus in dimension 3;
e Duality argument (Fréhlich-Spencer);

Outline of the argument: Decompose the partition and
two-point functions of the Villain model into

Villain = Gaussian free field x ~ Coulomb gas.

Explicit computations very small / more difficult
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Vector calculus in dimension 3

Two types of objects:
@ Functions: f: 73 - R
Vf:E(Z%) — R,
e=(x,y) — f(x) = (y).
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Vector calculus in dimension 3

Two types of objects:
@ Functions: f: 73 - R
Vf:E(Z%) — R,
e=(x,y) — f(x) = (y).

@ Vector fields: two possibilities

e Functions defined on the edges of Z° and valued in R;
e Functions defined on Z® and valued in R3.

e F (e1)
(&) . .
=  F(x)=|F(e) | eR®
X @ F (es)
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Vector calculus in dimension 3

This notations allows to define the standard differential
operators in R3:

@ The gradient: Functions — Vector fields;
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Vector calculus in dimension 3

This notations allows to define the standard differential
operators in R3:

@ The gradient: Functions — Vector fields;
@ The divergence: Vector fields — Functions;
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Vector calculus in dimension 3

This notations allows to define the standard differential
operators in R3:

@ The gradient: Functions — Vector fields;
@ The divergence: Vector fields — Functions;
@ The curl: Vector fields — Vector fields;
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Vector calculus in dimension 3

This notations allows to define the standard differential
operators in R3:

@ The gradient: Functions — Vector fields;
@ The divergence: Vector fields — Functions;

@ The curl: Vector fields — Vector fields;
@ The Laplacian:

e Functions — Functions: Af(x) =3, ., f(y) — f(x);
e Vector fields — Vector fields:

I_'_' = (F1, Fg, F3) — Ai‘l = (AF1,AF2,AF3).
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A standard identity:
@ For vector fields div curl = 0.
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A standard identity:
@ For vector fields div curl = 0.

Helmholtz-Hodge decomposition

Any vector field V which is in L2 (Z3) can be decomposed

v= V¢ + 1,
~—~ ~—~
potential field g, 1;:0

and we have the formula

= —A"" curlcurl V.
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The Villain model and Coulomb gas

z= /HZexp(—(V@ —27m) )Hde(x

e mel

- ¥ /Hexp (- (V6(e) — 2rii(e)) >Hd9(x)

meV(z9) X
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Split into “vortex charge”

2= > 2

me V(Zd) G:divg=0 m:curl m=g
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Split into “vortex charge”

2= > 2

me V(Zd) G:divg=0 m:curl m=g

The Helmholtz-Hodge decomposition implies

{r?) € V(Zd) ccurlm = C_i} = {ng)— A curlg: ¢ € F(Zd)}

Paul Dario (Tel Aviv University) Massless phases for the Villain model in d > 3



The Villain model and Coulomb gas

We had

Z = Z)/exp<—§ (Vo(e) — 2rm(e )Hde

meV(zd e

For each vector field m such that curl m = g, we have

exp (-i (Vo(e) - 27rm(e))2>

e

— exp (Z—g(v () + 2rVo(e 22772/)’< ! curl a(e))2>
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The Villain model and Coulomb gas

After computation, we obtain

z= [0 (—i (V0.v0)) [Taow

Gaussian free field

X Z exp (27r2[5 <(_j, Aqa))

Ge V(z8),div G=0

Coulomb gas

Factorizes into a Gaussian free field and a neutral Coulomb
gas.
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The Villain model and Coulomb gas

Strategy of the proof:
@ From Villain to Coulomb gas;
e Vector calculus in dimension 3;
e Duality argument (Fréhlich-Spencer);
© From Coulomb gas to random surface;

e Sine-Gordon representation;
o Cluster expansion (low temperature, Bauerschmidt);
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The Villain model and Coulomb gas

Strategy of the proof:
@ From Villain to Coulomb gas;

@ Vector calculus in dimension 3;
e Duality argument (Fréhlich-Spencer);

© From Coulomb gas to random surface;

e Sine-Gordon representation;
o Cluster expansion (low temperature, Bauerschmidt);

Objective of the argument:
Coulomb gas = (Complicated observable) g

where the measure p is a (complicated) vector-valued random
surface.
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Sine-Gordon representation
Zc = Z exp (27r25 (Ei, A_1C_i)>

Ge V(73),div =0

= Y e [FHE)]

qe V(23),div §=0
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Sine-Gordon representation
Zc = Z exp (27r25 (Ei, A_1C_i)>
q

Ge V(23),div §=0

= Y e [FHE)]

qe V(23),div §=0

Similar representation for the two-point function

(So+ Sx)yy = (/740N Zo(%0.x)

GFF  Z¢
7 imB1/2(8, -+ 5o
ZC(UO,X) = Z EGgrr {32’ 81/2(G,0+50 )} '
Ge V(Z3),div §=0
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One step renormalization

Strategy: decompose the GFF 3'/24 into two independent
Gaussian fields:

° </§1 which has covariance 3 (A*1 — ﬁ*%/d) ;
@ ¢, which has covariance 32 Id.
Ze(Gox)= Y. g PG g [gm2n(@ )],

%,_/ ol
GeV(z8),divg=0 is(very)small!
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One step renormalization

Since most charges canceled out locally, one may perform a
cluster expansion (following Bauerschmidt) to obtain

Zo(Goy)  Ea, [eXP (Za 2(3, g) cos 2 <5I, &1 +60x>)}

Zc Eg, [exp (Zq z(3,q) cos2m (q, ¢1>>}

)

—0‘81/2(6,6)
where |z(3,q9)| < e .

is (very) small!
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Expanding the cosine cos 27 (q, ¢1 + oox) gives

q

+ Zz(ﬁ, q) cos 2w ((E, 57) (cos 27 (dox, G) — 1)) > )

G|
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Expanding the cosine cos 27 (q, ¢1 + oox) gives

5o oms e

q

+ Zz(ﬁ, q) cos 2w ((E, 57) (cos 27 (dox, G) — 1)) > )

g
where
dps (&) =Const x exp( 5(%, V) - 2 53 Bn/g (v".v ¢))
it
X exp (Zz(ﬁ, )c0527r( ¢)) do.
g

perturbative term: cluster expansion
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A few remarks on the measure y3:
@ An explicit formula, for ¢ : Z3 — R3,

—

dug ((E) :=Const X exp —21/8(Vq§, Vgg)— 21 215%3:/2 (V”J V”@)
n>

X exp (Z z(B,q) cos2m (C_j 5)) do.

div g
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A few remarks on the measure y3:
@ An explicit formula, for ¢ : Z3 — R3,

i () s=Cons x ( B(V¢’ V)~ Z 23 5n/2 (v, V”5)>

X exp (Z z(B,q) cos2m (C_j 5)) do.

div g

@ The charge q satisfy the neutrality condition divg = 0: the
measure 13 depends only on V¢!
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A few remarks on the measure y3:
@ An explicit formula, for ¢ : Z3 — R3,

i () s=Cons x ( 5(V¢’ V)~ Z 23 5n/2 (v, V”5)>

X exp (Z z(B,q) cos2m (C_j QE)) do.

div g

@ The charge g satisfy the neutrality condition div g = 0: the
measure 13 depends only on V¢!

@ When S is large, the terms in red are small — the
measure L3 is a perturbation of a GFF!
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A few remarks on the measure y3:
@ An explicit formula, for ¢ : Z3 — R3,

e (5) Tromtxer ( 5(V¢, Vo) Z 24 5n/2 (Vn(j V”5)>

X exp (Z z(B,q) cos2m (c_j QE)) do.

divg

@ The charge g satisfy the neutrality condition div g = 0: the
measure 13 depends only on V¢!

@ When S is large, the terms in red are small — the
measure L3 is a perturbation of a GFF!

@ This object is a vector-valued random surface which is a
perturbation of the GFF.
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Gaussian Heuristics

A few remarks on the observable Z(5x)/Z(0):

For large 3, the charges are essentially supported on dipoles
g = z(B)(0x — bx+e;). Use the heuristics

> z(B)sin2n(Ve(e))sin 27 (oox(e))

eedges

~ Z z(B)2r(Vo(e))2n(oox(e)) = 2(B) (o — dx)-

eedges
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Gaussian Heuristics

A few remarks on the observable Z(5x)/Z(0):

For large 3, the charges are essentially supported on dipoles
g = z(B)(0x — bx+e;). Use the heuristics

> z(B)sin2n(Ve(e))sin 27 (oox(e))

eedges

~ Y 28)2n(Vole))2n(ooi(e)) = 2(8)(do — )

eedges
If 115 were Gaussian, this would imply

GFF Coulomb gas /random surface

(So * Sx)vi ~ <ei(¢(x)—¢(o))> X <ez(ﬁ)(¢0*®x)>

GFF
Co 1

=C — 40|l ——=].

(T <|x|d—2)

GFF
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Summary of what has been done so far:
@ By a duality argument, we have proved that

Villain = Gaussian free field x Coulomb gas;
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Summary of what has been done so far:
@ By a duality argument, we have proved that

Villain = Gaussian free field x Coulomb gas;

@ By applying the sine-Gordon representation and a cluster
expansion, we have

Coulomb gas = (Complicated observable) g

where the measure 13 is a (complicated) vector-valued
random surface which is a perturbation of the GFF (case
B> 1);
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Summary of what has been done so far:
@ By a duality argument, we have proved that

Villain = Gaussian free field x Coulomb gas;

@ By applying the sine-Gordon representation and a cluster
expansion, we have

Coulomb gas = (Complicated observable) g

where the measure 13 is a (complicated) vector-valued
random surface which is a perturbation of the GFF (case
B> 1);

@ We have reduced the problem: To understand Villain it is
enough to understand the large-scale behavior of the
random surface.
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Part 3: Quantitative homogenization

Strategy of the proof:
@ From Villain to Coulomb gas;
e Vector calculus in dimension 3;
e Duality argument (Fréhlich-Spencer);
© From Coulomb gas to random surface;
e Sine-Gordon representation;
o Cluster expansion (low temperature, Bauerschmidt);
© Quantitative homogenization of the random surface;

o Helffer-Sjéstrand equation (Naddaf-Spencer 98);
e Quantitative stochastic homogenization
(Armstrong-Kuusi-Mourrat 2014-2020).
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Part 3: Quantitative homogenization

Strategy of the proof:
@ From Villain to Coulomb gas;
e Vector calculus in dimension 3;
e Duality argument (Fréhlich-Spencer);
© From Coulomb gas to random surface;
e Sine-Gordon representation;
o Cluster expansion (low temperature, Bauerschmidt);
© Quantitative homogenization of the random surface;

o Helffer-Sjéstrand equation (Naddaf-Spencer 98);
e Quantitative stochastic homogenization
(Armstrong-Kuusi-Mourrat 2014-2020).

Answering the question:

How do we study quantitatively the large-scale behavior of
random surfaces (with uniformly convex potential)?
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A simplified model: the V¢ model

Consider the probability measure on the space
Q.= {¢> 79 — R} = infinite-dimensional vector space

defined by the formula

eedges

du(o) := Const x exp ( Z V(ng(e))) do,

where V : R — R is C?(R) and uniformly convex
O< A< V' <A< ).
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A simplified model: the V¢ model

Consider the probability measure on the space
Q.= {¢> 79 — R} = infinite-dimensional vector space

defined by the formula

eedges

du(o) := Const x exp ( Z V(ng(e))) do,

where V : R — R is C?(R) and uniformly convex
0< A< V"< A< ).
@ Well-defined in infinite-volume by approximation (in d > 3,
Funaki-Spohn);
@ For the Gaussian free field, V(x) = x2,and A~' = G

encodes covariance structure (and everything) about the
field.
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The V¢ model

Figure: A realization of the random surface (by C. Gu).
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The Witten Laplacian A,

How do we study this object?
@ Defining a derivative: for each "suitable” function f : Q — R

Paul Dario (Tel Aviv University) Massless phases for the Villain model ind > 3



The Witten Laplacian A,

How do we study this object?
@ Defining a derivative: for each "suitable” function f : Q — R

@ Defining the formal adjoint 95: for any "suitable” pair of
functions f,g : Q — R,

/ OxH(6)9(6)(d) = / (6)959(0)(do),

we have the explicit formula

= — O + (Z Vie(y) - ¢>(X))> Oy

y~x
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We can thus define the Witten-Laplacian

Dy = 00x
xezd
S (z V(o) —¢<x>>) 5
xezd xezd \y~x

This operator satisfies, for any pair of functions f,g : 2 — R,

(fAyg) = Z (OxfOxg) = (9A4f) .

xezd
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Helffer-Sjéstrand operator

For each edge e = (x,y), we leta(V¢(e)) = V" (Vo(e)).

Definition (Helffer-Sjéstrand operator)
The Helffer-Sjéstrand operator is defined by the formula

£:A¢+Vav

which acts on functions f : Q x Z9 — R.
@ The operator A, is the Witten-Laplacian, it acts on the field
variable (infinite-dimensional);

@ The operator V - aV is a uniformly elliptic operator, it acts
on the space variable (dimension d).
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Helffer-Sjéstrand operator

Definition (Helffer-Sj6strand operator)
The Helffer-Sjéstrand operator is defined by the formula

L:=As+V-av

which acts on functions f: Q x 29 — R.
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Helffer-Sjéstrand operator

Definition (Helffer-Sj6strand operator)
The Helffer-Sjostrand operator is defined by the formula

L:=As+V-av

which acts on functions f: Q x 29 — R.

Proposition: Solvability of the Helffer-Sjéstrand equation

Given a function g : Q x Z9 — R, we can solve the equation
LG =ginQx 2z,

variationally by considering the minimum of

inf > <|ayG|2>M+ 3 ((VG~aVG>H - (G,g)u>.

vaezd xezd
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Helffer-Sjéstrand representation

Theorem: H.-S. representation (Naddaf-Spencer 98)
Given two random variables F, G : Q — R, we denote by:
°® f(x,9) = 0xF(9);
® g(x,¢) = 0xG(9);
@ G:Q x Z9 — R the solution of the equation
LG =9inQx 29,

then we have

COV[F, G] — Z <f(X7 ¢)g(xa ¢)>M

xezd
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Helffer-Sjéstrand representation

Objective: Understand the large-scale behavior of the
solutions of the Helffer-Sjéstrand equation.
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Helffer-Sjéstrand representation

Objective: Understand the large-scale behavior of the
solutions of the Helffer-Sjéstrand equation.

Homogenization heuristic

There exists a coefficient a > 0 such that, for any map
g:Q x 79 = R, if we consider the solution of the equation

LG =9inQx 79,
and we let G : Z9 — R be the map
—aAG=(g), inZ°,

m

then we have

_ 1
1G6(x,") — G(X)HLZ(M) < TX[-2Fa for some o > 0.
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Helffer-Sjéstrand representation

Remark: Some results:
@ Qualitatively: Naddaf-Spencer, Giacomin-Olla-Spohn;
@ Quantitatively: Armstrong-Wu;

@ Extend the techniques of (Armstrong-Kuusi-Mourrat) and
(Armstrong-Wu) to the case of systems of equations and
infinite range operators and elliptic systems;

@ Requires mixing of the random field.
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Homogenization for the dual Villain model

Some tools:

@ Borrow the perturbative idea from Schauder theory and the
fact that, for large 3,

1
EHS = _ﬁA + Epen.

Therefore the solution can be approximated by harmonic
functions. A C%'~< regularity is available, with ¢ — 0 as
b — oo.

@ Use quantitative ergodic theorem to study the associated
subadditive energy quantities (like in A-K-M and A-W).

@ To prove the mixing, take 0, to the H-S £4sG = g to obtain
the second-order Helffer-Sjdstrand equation

A CO1—¢ regularity is then available.
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Open questions

@ Massive scaling limit. Consider the XY model in the
external field

ZY = / e vy cos(0i=61) +heos0) TT g
Jen

Conjectured for small hand g > S,

(So - Sx) ~ exp (—\/§|X> :

Lebowitz-Penrose obtained (Sp - Sx) < exp (—ch|x|) using
Lee-Yang theorem.

@ Prove the asymptotic two-point function for d = 2 and large
5. (Kosterlitz-Thouless phase).
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Thank you for your attention!
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