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Abelian spin model

Ising model
XY model
Villain model
Zn (clock) model
Abelian Higgs model
Abelian lattice gauge theory
etc.
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The classical XY model

Λ ⊂ Zd , Sj =
(
cos θj , sin θj

)
∈ S1,

PXY
Λ (dS) ∼ eβ

∑
i∼j Si ·Sj

∏
j∈Λ

dθj ∼ eβ
∑

i∼j cos(θi−θj)
∏
j∈Λ

dθj .

Modeling for liquid helium, magnetic insulator,
superconductor etc.
Infinite volume limit well-defined

Ginibre;
Bricmont-Fontaine-Landau;
Messager-Miracle-Sole-Pfister.
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The Villain model

For β � 1, using

eβ(cos(θi−θj)−1) ≈
∑
m∈Z

e−
β
2 (θi−θj +2πm)

2

︸ ︷︷ ︸
Heat kernel on S1

,

obtain the following Villain approximation of the XY model:

PVil
Λ ∼

∏
e=(i,j)

∑
m∈Z

e−
β
2 (θi−θj +2πm)

2 ∏
j∈Λ

dθj .

Challenge: highly non-convex; infinitely many local
minimums
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Phase transitions

Phase transition is often accompanied with broken of symmetry.

The XY/Villain model
For d = 2, continuous symmetry is not broken at any
temperature. Phase transition characterized by topological
defects. Berezinskii-Kosterlitz-Thouless transition.
For d ≥ 3, symmetry breaking at low temperature.
Macroscopic excitation/fluctuations are given by “spin wave
function”.
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Dimension higher than 3: Gaussian domination

Theorem: Long-range order (Fröhlich-Simon-Spencer 1976)

For any d ≥ 3, let us define the long-range order parameter

c = lim
x→∞

〈S0 · Sx〉XY ,︸ ︷︷ ︸
two−point function

then we have

c ≥ 1− 2G(0)

β
> 0 (if β is large)

Question: Asymptotic behavior of the two-point function?
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Low temperature phase: Spin-wave approximation

For β � 1, use the Gaussian approximation:

β
∑

i∼j cos
(
θi − θj

)
≈ Const − β

2
∑

i∼j(θi − θj)
2.

PXY/Vil
Λ ∼ e−

β
2
∑

i,j(θi−θj)
2 ∏

dθj =⇒ GFF!

〈S0 · Sx〉XY/Vil =
〈
ei(θ0−θx )

〉
XY/Vil ≈ e−(G(0)−G(x))/β.

This gives in d ≥ 3, using G(x) ≈ C1
|x |d−2 ,

〈S0 · Sx〉β ≈ e−G(0)/β +
C1

β|x |d−2 .
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Low temperature phase: Spin wave approximation

The spin-wave approximation ignores the vortices (only
heuristic!)
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3D Results and Conjectures

Conjecture: For d ≥ 3, there exists βc(d) ∈ (0,∞), such
that for β > βc(d),

〈S0 · Sx〉 = 〈S0〉2 +
ceff

|x |d−2 + o
(

1
|x |d−2

)
.

Fröhlich-Spencer 84: For β � 1,

exp

(
− 1

2β
(G(0)−G(x))

)
≥ 〈S0 · Sx〉

≥ exp

((
− 1

2β
+ o

(
1
β

))
(G(0)−G(x))

)
.

Bricmont-Fontaine-Lebowitz-Lieb-Spencer 81: For β � 1,
c2

|x |d−2 ≤ 〈sin θ(0) sin θ(x)〉 ≤ c1

|x |d−2 .
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Theorem (D.-Wu 20)

For β � 1, there exists a constant ceff (d , β) ∈ R and an
exponent α(d) > 0 such that

〈S0 · Sx〉Vil = 〈S0〉2Vil +
ceff

|x |d−2 + O
(

1
|x |d−2+α

)
.

Remark
The constant ceff is not equal to the constant C1/β:∣∣∣∣C1

β
− ceff

∣∣∣∣︸ ︷︷ ︸
very small

≤ e−cβ� 1
β
.
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Strategy of the proof:
1 From Villain to Coulomb gas;

Vector calculus in dimension 3;
Duality argument (Fröhlich-Spencer);

2 From Coulomb gas to random surface;
Sine-Gordon representation;
Cluster expansion (low temperature, Bauerschmidt);

3 Quantitative homogenization of the random surface;
Helffer-Sjöstrand equation (Naddaf-Spencer 98);
Quantitative stochastic homogenization
(Armstrong-Kuusi-Mourrat 2014-2020).
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Strategy of the proof:
1 From Villain to Coulomb gas;

Vector calculus in dimension 3;
Duality argument (Fröhlich-Spencer);

Outline of the argument: Decompose the partition and
two-point functions of the Villain model into

Villain = Gaussian free field︸ ︷︷ ︸
Explicit computations

× Coulomb gas.︸ ︷︷ ︸
very small /more difficult
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Vector calculus in dimension 3

Two types of objects:

Functions: f : Z3 → R{
∇f : E(Z3)→ R,
e = (x , y) 7→ f (x)− f (y).

Vector fields: two possibilities
Functions defined on the edges of Z3 and valued in R;
Functions defined on Z3 and valued in R3.

e1

e3 e2

x

⇐⇒ ~F (x) =


~F (e1)

~F (e2)

~F (e3)

 ∈ R3.
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Vector calculus in dimension 3

This notations allows to define the standard differential
operators in R3:

The gradient: Functions→ Vector fields;
The divergence: Vector fields→ Functions;
The curl: Vector fields→ Vector fields;
The Laplacian:

Functions→ Functions: ∆f (x) =
∑

y∼x f (y)− f (x);
Vector fields→ Vector fields:

~F = (F1,F2,F3) 7−→ ∆~F = (∆F1,∆F2,∆F3).
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A standard identity:
For vector fields div curl = 0.

Helmholtz-Hodge decomposition

Any vector field ~v which is in L2 (Z3) can be decomposed

~v = ∇φ︸︷︷︸
potential field

+ ~ψ,︸︷︷︸
div ~ψ=0

and we have the formula

~ψ = −∆−1 curl curl~v .
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The Villain model and Coulomb gas

Z =

ˆ ∏
e

∑
m∈Z

exp

(
−β

2
(∇θ(e)− 2πm)2

)∏
x

dθ(x)

=
∑

~m∈~V (Zd )

ˆ ∏
e

exp

(
−β

2
(
∇θ(e)− 2π~m(e)

)2
)∏

x

dθ(x)

=
∑

~m∈~V (Zd )

ˆ
exp

(
−β

2

∑
e

(
∇θ(e)− 2π~m(e)

)2

)∏
x

dθ(x)
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Split into “vortex charge”∑
~m∈~V (Zd )

=
∑

~q:div~q=0

∑
~m:curl ~m=~q

The Helmholtz-Hodge decomposition implies{
~m ∈ ~V (Zd ) : curl ~m = ~q

}
=
{
∇φ−∆−1 curl~q : φ ∈ F (Zd )

}
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The Villain model and Coulomb gas

We had

Z =
∑

~m∈~V (Zd )

ˆ
exp

(
−β

2

∑
e

(
∇θ(e)− 2π~m(e)

)2

)∏
x

dθ(x).

For each vector field ~m such that curl ~m = ~q, we have

exp

(
−β

2

∑
e

(
∇θ(e)− 2π~m(e)

)2

)

= exp

(∑
e

−β
2

(∇θ(e) + 2π∇φ(e))2−
∑

e

2π2β
(

∆−1 curl~q(e)
)2
)
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The Villain model and Coulomb gas

After computation, we obtain

Z =

ˆ
exp

(
−β

2
(∇φ,∇φ)

)∏
x

dφ(x)︸ ︷︷ ︸
Gaussian free field

×
∑

~q∈~V (Z3),div~q=0

exp
(

2π2β
(
~q,∆−1~q

))
︸ ︷︷ ︸

Coulomb gas

Factorizes into a Gaussian free field and a neutral Coulomb
gas.
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The Villain model and Coulomb gas

Strategy of the proof:
1 From Villain to Coulomb gas;

Vector calculus in dimension 3;
Duality argument (Fröhlich-Spencer);

2 From Coulomb gas to random surface;
Sine-Gordon representation;
Cluster expansion (low temperature, Bauerschmidt);

Objective of the argument:

Coulomb gas = 〈Complicated observable〉µβ ,

where the measure µβ is a (complicated) vector-valued random
surface.
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Sine-Gordon representation

ZC :=
∑

~q∈~V (Z3),div~q=0

exp
(

2π2β
(
~q,∆−1~q

))
=

∑
q∈~V (Z3),div~q=0

EGFF

[
e2iπβ1/2(~q, ~φ )

]
.

Similar representation for the two-point function

〈S0 · Sx〉Vil =
〈

ei(φ(x)−φ(0))
〉

GFF

ZC(~σ0,x )

ZC
,

where ~σ0,x := ~G − ~G(· − x) and

ZC(~σ0,x ) =
∑

~q∈~V (Z3),div~q=0

EGFF

[
e2iπβ1/2(~q,~φ+~σ0x)

]
.
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One step renormalization

Strategy: decompose the GFF β1/2φ into two independent
Gaussian fields:

~φ1 which has covariance β
(

∆−1 − β−
1
2 Id
)

;

~φ2 which has covariance β
1
2 Id .

ZC (~σ0x ) =
∑

~q∈~V (Z3),div~q=0

e−π
2β1/2(~q,~q)︸ ︷︷ ︸

is (very) small!

E~φ1

[
e−2iπ(~q,~φ1+~σ0x)

]
.

Paul Dario (Tel Aviv University) Massless phases for the Villain model in d ≥ 3



One step renormalization

Since most charges canceled out locally, one may perform a
cluster expansion (following Bauerschmidt) to obtain

ZC (~σ0x )

ZC
=

E~φ1

[
exp

(∑
~q z(β, ~q) cos 2π

(
~q, ~φ1 + ~σ0x

))]
E~φ1

[
exp

(∑
~q z(β, ~q) cos 2π

(
~q, ~φ1

))] ,

where |z(β,q)| ≤ e−cβ1/2(~q,~q)︸ ︷︷ ︸
is (very) small!

.
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Expanding the cosine cos 2π (q, φ1 + σ0x ) gives

Z (~σ0x )

Z (0)
=

〈
exp

∑
~q

z(β, ~q) sin 2π
(
~φ, ~q

)
sin 2π

(
~σ0x , ~q

)

+
∑
~q

z(β,q) cos 2π
(
~φ, ~q

) (
cos 2π

(
~σ0x , ~q

)
− 1
)〉

µβ

,

where

dµβ
(
~φ
)

:=Const× exp

− 1
2β

(∇~φ,∇~φ)−
∑
n≥1

1
2β

1
βn/2

(
∇n~φ,∇n~φ

)
︸ ︷︷ ︸

Law ofφ1

× exp

∑
~q

z(β, ~q) cos 2π
(
~q, ~φ

)
︸ ︷︷ ︸

perturbative term: cluster expansion

dφ.
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A few remarks on the measure µβ:

An explicit formula, for ~φ : Z3 → R3,

dµβ
(
~φ
)

:=Const× exp

− 1
2β

(∇~φ,∇~φ)−
∑
n≥1

1
2β

1
βn/2

(
∇n~φ,∇n~φ

)
× exp

∑
div~q

z(β, ~q) cos 2π
(
~q, ~φ

) dφ.

The charge q satisfy the neutrality condition div q = 0: the
measure µβ depends only on ∇φ!
When β is large, the terms in red are small =⇒ the
measure µβ is a perturbation of a GFF!
This object is a vector-valued random surface which is a
perturbation of the GFF.

Paul Dario (Tel Aviv University) Massless phases for the Villain model in d ≥ 3



A few remarks on the measure µβ:

An explicit formula, for ~φ : Z3 → R3,

dµβ
(
~φ
)

:=Const× exp

− 1
2β

(∇~φ,∇~φ)−
∑
n≥1

1
2β

1
βn/2

(
∇n~φ,∇n~φ

)
× exp

∑
div~q

z(β, ~q) cos 2π
(
~q, ~φ

) dφ.

The charge q satisfy the neutrality condition div q = 0: the
measure µβ depends only on ∇φ!
When β is large, the terms in red are small =⇒ the
measure µβ is a perturbation of a GFF!
This object is a vector-valued random surface which is a
perturbation of the GFF.

Paul Dario (Tel Aviv University) Massless phases for the Villain model in d ≥ 3



A few remarks on the measure µβ:

An explicit formula, for ~φ : Z3 → R3,

dµβ
(
~φ
)

:=Const× exp

− 1
2β

(∇~φ,∇~φ)−
∑
n≥1

1
2β

1
βn/2

(
∇n~φ,∇n~φ

)
× exp

∑
div~q

z(β, ~q) cos 2π
(
~q, ~φ

) dφ.

The charge q satisfy the neutrality condition div q = 0: the
measure µβ depends only on ∇φ!
When β is large, the terms in red are small =⇒ the
measure µβ is a perturbation of a GFF!
This object is a vector-valued random surface which is a
perturbation of the GFF.

Paul Dario (Tel Aviv University) Massless phases for the Villain model in d ≥ 3



A few remarks on the measure µβ:

An explicit formula, for ~φ : Z3 → R3,

dµβ
(
~φ
)

:=Const× exp

− 1
2β

(∇~φ,∇~φ)−
∑
n≥1

1
2β

1
βn/2

(
∇n~φ,∇n~φ

)
× exp

∑
div~q

z(β, ~q) cos 2π
(
~q, ~φ

) dφ.

The charge q satisfy the neutrality condition div q = 0: the
measure µβ depends only on ∇φ!
When β is large, the terms in red are small =⇒ the
measure µβ is a perturbation of a GFF!
This object is a vector-valued random surface which is a
perturbation of the GFF.

Paul Dario (Tel Aviv University) Massless phases for the Villain model in d ≥ 3



Gaussian Heuristics

A few remarks on the observable Z (~σ0x )/Z (0):

For large β, the charges are essentially supported on dipoles
q = z(β)(δx − δx+ei ). Use the heuristics∑

e edges

z(β) sin 2π(∇φ(e)) sin 2π(σ0x (e))

≈
∑

e edges

z(β)2π(∇φ(e))2π(σ0x (e)) ≈ z(β)(φ0 − φx ).

If µβ were Gaussian, this would imply

〈S0 · Sx〉Vil ≈

GFF︷ ︸︸ ︷〈
ei(φ(x)−φ(0))

〉
GFF
×

Coulomb gas/random surface︷ ︸︸ ︷〈
ez(β)(φ0−φx )

〉
GFF

= C1 +
C2

|x |d−2 + o
(

1
|x |d−2

)
.
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Summary

Summary of what has been done so far:
By a duality argument, we have proved that

Villain = Gaussian free field× Coulomb gas;

By applying the sine-Gordon representation and a cluster
expansion, we have

Coulomb gas = 〈Complicated observable〉µβ ,

where the measure µβ is a (complicated) vector-valued
random surface which is a perturbation of the GFF (case
β � 1);
We have reduced the problem: To understand Villain it is
enough to understand the large-scale behavior of the
random surface.
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Part 3: Quantitative homogenization

Strategy of the proof:
1 From Villain to Coulomb gas;

Vector calculus in dimension 3;
Duality argument (Fröhlich-Spencer);

2 From Coulomb gas to random surface;
Sine-Gordon representation;
Cluster expansion (low temperature, Bauerschmidt);

3 Quantitative homogenization of the random surface;
Helffer-Sjöstrand equation (Naddaf-Spencer 98);
Quantitative stochastic homogenization
(Armstrong-Kuusi-Mourrat 2014-2020).

Answering the question:

How do we study quantitatively the large-scale behavior of
random surfaces (with uniformly convex potential)?

Paul Dario (Tel Aviv University) Massless phases for the Villain model in d ≥ 3



Part 3: Quantitative homogenization

Strategy of the proof:
1 From Villain to Coulomb gas;

Vector calculus in dimension 3;
Duality argument (Fröhlich-Spencer);

2 From Coulomb gas to random surface;
Sine-Gordon representation;
Cluster expansion (low temperature, Bauerschmidt);

3 Quantitative homogenization of the random surface;
Helffer-Sjöstrand equation (Naddaf-Spencer 98);
Quantitative stochastic homogenization
(Armstrong-Kuusi-Mourrat 2014-2020).

Answering the question:

How do we study quantitatively the large-scale behavior of
random surfaces (with uniformly convex potential)?

Paul Dario (Tel Aviv University) Massless phases for the Villain model in d ≥ 3



A simplified model: the ∇φ model

Consider the probability measure on the space

Ω :=
{
φ : Zd → R

}
=⇒ infinite-dimensional vector space

defined by the formula

dµ(φ) := Const × exp

− ∑
e edges

V (∇φ(e))

 dφ,

where V : R→ R is C2(R) and uniformly convex
(0 < λ ≤ V ′′ ≤ Λ <∞).

Well-defined in infinite-volume by approximation (in d ≥ 3,
Funaki-Spohn);
For the Gaussian free field, V (x) = x2, and ∆−1 = G
encodes covariance structure (and everything) about the
field.
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The ∇φ model

Figure: A realization of the random surface (by C. Gu).
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The Witten Laplacian ∆φ

How do we study this object?
Defining a derivative: for each ”suitable” function f : Ω→ R

∂x f (φ) := lim
h→0

f (φ+ h1x )− f (φ)

h
.

Defining the formal adjoint ∂∗x : for any ”suitable” pair of
functions f ,g : Ω→ R,

ˆ
Ω
∂x f (φ)g(φ)µ(dφ) =

ˆ
Ω

f (φ)∂∗x g(φ)µ(dφ),

we have the explicit formula

∂∗x = −∂x +

(∑
y∼x

V ′(φ(y)− φ(x))

)
∂y .
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We can thus define the Witten-Laplacian

∆φ :=
∑
x∈Zd

∂∗x∂x

= −
∑
x∈Zd

∂2
x +

∑
x∈Zd

(∑
y∼x

V ′(φ(y)− φ(x))

)
∂x .

This operator satisfies, for any pair of functions f ,g : Ω→ R,

〈f ∆φg〉 =
∑
x∈Zd

〈∂x f∂xg〉 = 〈g∆φf 〉 .
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Helffer-Sjöstrand operator

For each edge e = (x , y), we let a(∇φ(e)) = V ′′ (∇φ(e)).

Definition (Helffer-Sjöstrand operator)
The Helffer-Sjöstrand operator is defined by the formula

L := ∆φ +∇ · a∇

which acts on functions f : Ω× Zd → R.
The operator ∆φ is the Witten-Laplacian, it acts on the field
variable (infinite-dimensional);
The operator ∇ · a∇ is a uniformly elliptic operator, it acts
on the space variable (dimension d).
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Helffer-Sjöstrand operator

Definition (Helffer-Sjöstrand operator)
The Helffer-Sjöstrand operator is defined by the formula

L := ∆φ +∇ · a∇

which acts on functions f : Ω× Zd → R.

Proposition: Solvability of the Helffer-Sjöstrand equation

Given a function g : Ω× Zd → R, we can solve the equation

LG = g in Ω× Zd ,

variationally by considering the minimum of

inf
G

∑
x ,y∈Zd

〈
|∂yG|2

〉
µ

+
∑
x∈Zd

(
〈∇G · a∇G〉µ − 〈G,g〉µ

)
.
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Helffer-Sjöstrand representation

Theorem: H.-S. representation (Naddaf-Spencer 98)
Given two random variables F ,G : Ω→ R, we denote by:

f (x , φ) = ∂xF (φ);
g(x , φ) = ∂xG(φ);
G : Ω× Zd → R the solution of the equation

LG = g in Ω× Zd ,

then we have

Cov[F ,G] =
∑
x∈Zd

〈f (x , φ)G(x , φ)〉µ .
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Helffer-Sjöstrand representation

Objective: Understand the large-scale behavior of the
solutions of the Helffer-Sjöstrand equation.

Homogenization heuristic

There exists a coefficient a > 0 such that, for any map
g : Ω× Zd → R, if we consider the solution of the equation

LG = g in Ω× Zd ,

and we let Ḡ : Zd → R be the map

−a∆Ḡ = 〈g〉µ in Zd ,

then we have∥∥G(x , ·)− Ḡ(x)
∥∥

L2(µ)
≤ 1
|x |d−2+α

for some α > 0.
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Helffer-Sjöstrand representation

Remark: Some results:
Qualitatively: Naddaf-Spencer, Giacomin-Olla-Spohn;
Quantitatively: Armstrong-Wu;
Extend the techniques of (Armstrong-Kuusi-Mourrat) and
(Armstrong-Wu) to the case of systems of equations and
infinite range operators and elliptic systems;
Requires mixing of the random field.
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Homogenization for the dual Villain model

Some tools:
Borrow the perturbative idea from Schauder theory and the
fact that, for large β,

LHS := − 1
2β

∆ + Lpert.

Therefore the solution can be approximated by harmonic
functions. A C0,1−ε regularity is available, with ε→ 0 as
β →∞.
Use quantitative ergodic theorem to study the associated
subadditive energy quantities (like in A-K-M and A-W).
To prove the mixing, take ∂y to the H-S LHSG = g to obtain
the second-order Helffer-Sjöstrand equation

−Lder∂yG = ∂y f .

A C0,1−ε regularity is then available.
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Open questions

Massive scaling limit. Consider the XY model in the
external field

Z XY
Λ =

ˆ
eβ

∑
i∼j cos(θi−θj)+h cos(θi )

∏
j∈Λ

dθj .

Conjectured for small h and β > βc ,

〈S0 · Sx〉 ∼ exp

(
−

√
h
β
|x |

)
.

Lebowitz-Penrose obtained 〈S0 · Sx〉 ≤ exp (−ch|x |) using
Lee-Yang theorem.
Prove the asymptotic two-point function for d = 2 and large
β. (Kosterlitz-Thouless phase).
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Thank you for your attention!
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