Massless phases for the Villain model in $d \ge 3$

Paul Dario (Tel Aviv University)

joint work with Wei Wu (University of Warwick)

Paul Dario (Tel Aviv University) Massless phases for the Villain model in $d \ge 3$

Abelian spin model

- Ising model
- XY model
- Villain model
- \mathbb{Z}_n (clock) model
- Abelian Higgs model
- Abelian lattice gauge theory
- etc.

The classical XY model

•
$$\Lambda \subset \mathbb{Z}^d$$
, $S_j = (\cos \theta_j, \sin \theta_j) \in \mathbb{S}^1$,

$$\mathbb{P}^{XY}_{\Lambda}(dS) \sim e^{\beta \sum_{i \sim j} S_i \cdot S_j} \prod_{j \in \Lambda} d heta_j \sim e^{\beta \sum_{i \sim j} \cos(heta_i - heta_j)} \prod_{j \in \Lambda} d heta_j.$$

- Modeling for liquid helium, magnetic insulator, superconductor etc.
- Infinite volume limit well-defined
 - Ginibre;
 - Bricmont-Fontaine-Landau;
 - Messager-Miracle-Sole-Pfister.

The classical XY model

•
$$\Lambda \subset \mathbb{Z}^d$$
, $S_j = (\cos \theta_j, \sin \theta_j) \in \mathbb{S}^1$,

$$\mathbb{P}^{XY}_{\Lambda}(dS) \sim e^{eta \sum_{i \sim j} S_i \cdot S_j} \prod_{j \in \Lambda} d heta_j \sim e^{eta \sum_{i \sim j} \cos(heta_i - heta_j)} \prod_{j \in \Lambda} d heta_j.$$

- Modeling for liquid helium, magnetic insulator, superconductor etc.
- Infinite volume limit well-defined
 - Ginibre;
 - Bricmont-Fontaine-Landau;
 - Messager-Miracle-Sole-Pfister.

The classical XY model

•
$$\Lambda \subset \mathbb{Z}^d$$
, $S_j = (\cos \theta_j, \sin \theta_j) \in \mathbb{S}^1$,

$$\mathbb{P}^{XY}_{\Lambda}(dS) \sim e^{eta \sum_{i \sim j} S_i \cdot S_j} \prod_{j \in \Lambda} d heta_j \sim e^{eta \sum_{i \sim j} \cos(heta_i - heta_j)} \prod_{j \in \Lambda} d heta_j.$$

- Modeling for liquid helium, magnetic insulator, superconductor etc.
- Infinite volume limit well-defined
 - Ginibre;
 - Bricmont-Fontaine-Landau;
 - Messager-Miracle-Sole-Pfister.

The Villain model

• For $\beta \gg 1$, using

$$e^{\beta\left(\cos\left(heta_{i}- heta_{j}
ight)-1
ight)}pprox \underbrace{\sum_{m\in\mathbb{Z}}e^{-rac{eta}{2}\left(heta_{i}- heta_{j}+2\pi m
ight)^{2}}}_{ ext{Heat kernel on }\mathbb{S}^{1}},$$

obtain the following Villain approximation of the XY model:

$$\left|\mathbb{P}^{Vil}_{\Lambda} \sim \prod_{\boldsymbol{e}=(i,j)} \sum_{m \in \mathbb{Z}} \boldsymbol{e}^{-\frac{\beta}{2} \left(\theta_{i} - \theta_{j} + 2\pi m\right)^{2}} \prod_{j \in \Lambda} d\theta_{j}.\right|$$

 Challenge: highly non-convex; infinitely many local minimums

The Villain model

• For $\beta \gg 1$, using

$$e^{\beta(\cos(\theta_i-\theta_j)-1)} \approx \underbrace{\sum_{m\in\mathbb{Z}} e^{-rac{eta}{2}(\theta_i-\theta_j+2\pi m)^2}}_{ ext{Heat kernel on }\mathbb{S}^1},$$

obtain the following Villain approximation of the XY model:

$$\left|\mathbb{P}^{Vil}_{\Lambda}\sim\prod_{m{e}=(i,j)}\sum_{m\in\mathbb{Z}}m{e}^{-rac{eta}{2}ig(heta_{i}- heta_{j}+2\pi mig)^{2}}\prod_{j\in\Lambda}m{d} heta_{j}.
ight.$$

 Challenge: highly non-convex; infinitely many local minimums

Phase transitions

Phase transition is often accompanied with broken of symmetry.

The XY/Villain model

- For d = 2, continuous symmetry is not broken at any temperature. Phase transition characterized by *topological defects*. Berezinskii-Kosterlitz-Thouless transition.
- For *d* ≥ 3, symmetry breaking at low temperature. Macroscopic excitation/fluctuations are given by "spin wave function".

Dimension higher than 3: Gaussian domination

Theorem: Long-range order (Fröhlich-Simon-Spencer 1976)

For any $d \ge 3$, let us define the long-range order parameter

$$c = \lim_{x \to \infty} \underbrace{\langle S_0 \cdot S_x \rangle_{\chi \gamma}}_{\text{two-point function}},$$

then we have

$$c \geq 1 - rac{2G(0)}{eta} > 0$$
 (if eta is large)

Question: Asymptotic behavior of the two-point function?

Dimension higher than 3: Gaussian domination

Theorem: Long-range order (Fröhlich-Simon-Spencer 1976)

For any $d \ge 3$, let us define the long-range order parameter

$$c = \lim_{x \to \infty} \underbrace{\langle S_0 \cdot S_x \rangle_{XY}}_{\text{two-point function}},$$

then we have

$$c \geq 1 - rac{2G(0)}{eta} > 0$$
 (if eta is large)

Question: Asymptotic behavior of the two-point function?

Low temperature phase: Spin-wave approximation

For $\beta \gg 1$, use the **Gaussian approximation**:

•
$$\beta \sum_{i \sim j} \cos(\theta_i - \theta_j) \approx Const - \frac{\beta}{2} \sum_{i \sim j} (\theta_i - \theta_j)^2.$$

•
$$\mathbb{P}^{XY/Vil}_{\Lambda} \sim e^{-\frac{\beta}{2}\sum_{i,j}(\theta_i - \theta_j)^2} \prod d\theta_j \implies \mathsf{GFF!}$$

•
$$\langle S_0 \cdot S_x \rangle_{XY/Vil} = \langle e^{i(\theta_0 - \theta_x)} \rangle_{XY/Vil} \approx e^{-(G(0) - G(x))/\beta}.$$

This gives in $d \ge 3$, using $G(x) \approx \frac{C_1}{|x|^{d-2}}$,

$$\langle S_0 \cdot S_x
angle_eta pprox e^{-G(0)/eta} + rac{C_1}{eta |x|^{d-2}}.$$

Low temperature phase: Spin-wave approximation

For $\beta \gg 1$, use the **Gaussian approximation**:

•
$$\beta \sum_{i \sim j} \cos(\theta_i - \theta_j) \approx Const - \frac{\beta}{2} \sum_{i \sim j} (\theta_i - \theta_j)^2.$$

•
$$\mathbb{P}^{XY/Vil}_{\Lambda} \sim e^{-\frac{\beta}{2}\sum_{i,j} (\theta_i - \theta_j)^2} \prod d\theta_j \implies \mathsf{GFF!}$$

•
$$\langle S_0 \cdot S_x \rangle_{XY/Vil} = \langle e^{i(\theta_0 - \theta_x)} \rangle_{XY/Vil} \approx e^{-(G(0) - G(x))/\beta}.$$

This gives in $d \ge 3$, using $G(x) \approx \frac{C_1}{|x|^{d-2}}$,

$$\langle S_0 \cdot S_x \rangle_{eta} pprox e^{-G(0)/eta} + rac{C_1}{eta |x|^{d-2}}.$$

The spin-wave approximation ignores the vortices (only heuristic!)

3D Results and Conjectures

Conjecture: For d ≥ 3, there exists β_c(d) ∈ (0,∞), such that for β > β_c(d),

$$\langle S_0 \cdot S_x \rangle = \langle S_0 \rangle^2 + rac{C_{eff}}{|x|^{d-2}} + o\left(rac{1}{|x|^{d-2}}
ight).$$

• Fröhlich-Spencer 84: For $\beta \gg 1$,

$$\exp\left(-\frac{1}{2\beta}\left(G(0)-G(x)\right)\right) \ge \langle S_0 \cdot S_x \rangle$$
$$\ge \exp\left(\left(-\frac{1}{2\beta}+o\left(\frac{1}{\beta}\right)\right)\left(G(0)-G(x)\right)\right).$$

• Bricmont-Fontaine-Lebowitz-Lieb-Spencer 81: For $\beta \gg 1$,

$$\frac{c_2}{|x|^{d-2}} \le \langle \sin \theta(0) \sin \theta(x) \rangle \le \frac{c_1}{|x|^{d-2}}$$

3D Results and Conjectures

Conjecture: For d ≥ 3, there exists β_c(d) ∈ (0,∞), such that for β > β_c(d),

$$\langle S_0 \cdot S_x \rangle = \langle S_0 \rangle^2 + rac{C_{eff}}{|x|^{d-2}} + o\left(rac{1}{|x|^{d-2}}
ight).$$

• Fröhlich-Spencer 84: For $\beta \gg 1$,

$$\begin{split} \exp\left(-\frac{1}{2\beta}\left(G(0)-G(x)\right)\right) &\geq \langle S_0 \cdot S_x \rangle \\ &\geq \exp\left(\left(-\frac{1}{2\beta}+o\left(\frac{1}{\beta}\right)\right)\left(G(0)-G(x)\right)\right). \end{split}$$

• Bricmont-Fontaine-Lebowitz-Lieb-Spencer 81: For $\beta \gg 1$,

$$\frac{c_2}{|x|^{d-2}} \le \langle \sin \theta(0) \sin \theta(x) \rangle \le \frac{c_1}{|x|^{d-2}}$$

3D Results and Conjectures

Conjecture: For d ≥ 3, there exists β_c(d) ∈ (0,∞), such that for β > β_c(d),

$$\langle S_0 \cdot S_x \rangle = \langle S_0 \rangle^2 + rac{C_{eff}}{|x|^{d-2}} + o\left(rac{1}{|x|^{d-2}}
ight).$$

• Fröhlich-Spencer 84: For $\beta \gg 1$,

$$\begin{split} \exp\left(-\frac{1}{2\beta}\left(G(0)-G(x)\right)\right) &\geq \langle S_0\cdot S_x\rangle\\ &\geq \exp\left(\left(-\frac{1}{2\beta}+o\left(\frac{1}{\beta}\right)\right)\left(G(0)-G(x)\right)\right). \end{split}$$

• Bricmont-Fontaine-Lebowitz-Lieb-Spencer 81: For $\beta \gg 1$,

$$\frac{c_2}{|x|^{d-2}} \leq \langle \sin \theta(0) \sin \theta(x) \rangle \leq \frac{c_1}{|x|^{d-2}}.$$

Theorem (D.-Wu 20)

For $\beta \gg 1$, there exists a constant $c_{eff}(d, \beta) \in \mathbb{R}$ and an exponent $\alpha(d) > 0$ such that

$$\langle S_0 \cdot S_x \rangle_{Vil} = \langle S_0 \rangle_{Vil}^2 + \frac{c_{eff}}{|x|^{d-2}} + O\left(\frac{1}{|x|^{d-2+\alpha}}\right)$$

Remark

The constant c_{eff} is **not** equal to the constant C_1/eta :

$$\underbrace{\left|\frac{C_1}{\beta} - c_{eff}\right|}_{\text{very small}} \le e^{-c\beta} \ll \frac{1}{\beta}.$$

Theorem (D.-Wu 20)

For $\beta \gg 1$, there exists a constant $c_{eff}(d, \beta) \in \mathbb{R}$ and an exponent $\alpha(d) > 0$ such that

$$\langle S_0 \cdot S_x \rangle_{Vil} = \langle S_0 \rangle_{Vil}^2 + \frac{c_{eff}}{|x|^{d-2}} + O\left(\frac{1}{|x|^{d-2+lpha}}\right)$$

Remark

The constant c_{eff} is **not** equal to the constant C_1/β :

$$\underbrace{\left|\frac{C_1}{\beta} - c_{eff}\right|}_{\text{very small}} \leq e^{-c\beta} \ll \frac{1}{\beta}.$$

- From Villain to Coulomb gas;
 - Vector calculus in dimension 3;
 - Duality argument (Fröhlich-Spencer);
- Prom Coulomb gas to random surface;
 - Sine-Gordon representation;
 - Cluster expansion (low temperature, Bauerschmidt);
- Quantitative homogenization of the random surface;
 - Helffer-Sjöstrand equation (Naddaf-Spencer 98);
 - Quantitative stochastic homogenization (Armstrong-Kuusi-Mourrat 2014-2020).

- From Villain to Coulomb gas;
 - Vector calculus in dimension 3;
 - Duality argument (Fröhlich-Spencer);
- Prom Coulomb gas to random surface;
 - Sine-Gordon representation;
 - Cluster expansion (low temperature, Bauerschmidt);
- Quantitative homogenization of the random surface;
 - Helffer-Sjöstrand equation (Naddaf-Spencer 98);
 - Quantitative stochastic homogenization (Armstrong-Kuusi-Mourrat 2014-2020).

- From Villain to Coulomb gas;
 - Vector calculus in dimension 3;
 - Duality argument (Fröhlich-Spencer);
- Prom Coulomb gas to random surface;
 - Sine-Gordon representation;
 - Cluster expansion (low temperature, Bauerschmidt);
- Quantitative homogenization of the random surface;
 - Helffer-Sjöstrand equation (Naddaf-Spencer 98);
 - Quantitative stochastic homogenization (Armstrong-Kuusi-Mourrat 2014-2020).

- From Villain to Coulomb gas;
 - Vector calculus in dimension 3;
 - Duality argument (Fröhlich-Spencer);

Outline of the argument: Decompose the partition and two-point functions of the Villain model into

- From Villain to Coulomb gas;
 - Vector calculus in dimension 3;
 - Duality argument (Fröhlich-Spencer);

Outline of the argument: Decompose the partition and two-point functions of the Villain model into

$$Villain = \underbrace{Gaussian free field}_{Explicit computations} \times \underbrace{Coulomb gas.}_{very small / more difficult}$$

Vector calculus in dimension 3

Two types of objects:

• Functions: $f : \mathbb{Z}^3 \to \mathbb{R}$

$$\begin{cases} \nabla f: E(\mathbb{Z}^3) \to \mathbb{R}, \\ \boldsymbol{e} = (x, y) \mapsto f(x) - f(y). \end{cases}$$

Vector fields: two possibilities

- Functions defined on the edges of Z³ and valued in ℝ;
- Functions defined on \mathbb{Z}^3 and valued in \mathbb{R}^3 .

Vector calculus in dimension 3

Two types of objects:

• Functions: $f : \mathbb{Z}^3 \to \mathbb{R}$

$$\begin{cases} \nabla f: E(\mathbb{Z}^3) \to \mathbb{R}, \\ \boldsymbol{e} = (x, y) \mapsto f(x) - f(y). \end{cases}$$

- Vector fields: two possibilities
 - Functions defined on the edges of Z³ and valued in ℝ;
 - Functions defined on Z³ and valued in R³.

- The gradient: Functions → Vector fields;
- The divergence: Vector fields → Functions;
- The curl: Vector fields → Vector fields;
- The Laplacian:
 - Functions \rightarrow Functions: $\Delta f(x) = \sum_{v \sim x} f(y) f(x);$
 - Vector fields \rightarrow Vector fields:

$$\vec{F} = (F_1, F_2, F_3) \longmapsto \Delta \vec{F} = (\Delta F_1, \Delta F_2, \Delta F_3).$$

- The gradient: Functions → Vector fields;
- The divergence: Vector fields \rightarrow Functions;
- The curl: Vector fields → Vector fields;
- The Laplacian:
 - Functions \rightarrow Functions: $\Delta f(x) = \sum_{v \sim x} f(y) f(x);$
 - Vector fields \rightarrow Vector fields:

$$\vec{F} = (F_1, F_2, F_3) \longmapsto \Delta \vec{F} = (\Delta F_1, \Delta F_2, \Delta F_3).$$

- The gradient: Functions → Vector fields;
- The divergence: Vector fields \rightarrow Functions;
- The curl: Vector fields \rightarrow Vector fields;
- The Laplacian:
 - Functions \rightarrow Functions: $\Delta f(x) = \sum_{y \sim x} f(y) f(x);$
 - Vector fields \rightarrow Vector fields:

$$\vec{F} = (F_1, F_2, F_3) \longmapsto \Delta \vec{F} = (\Delta F_1, \Delta F_2, \Delta F_3).$$

- The gradient: Functions → Vector fields;
- The divergence: Vector fields \rightarrow Functions;
- The curl: Vector fields \rightarrow Vector fields;
- The Laplacian:
 - Functions \rightarrow Functions: $\Delta f(x) = \sum_{y \sim x} f(y) f(x);$
 - Vector fields \rightarrow Vector fields:

$$\vec{F} = (F_1, F_2, F_3) \longmapsto \Delta \vec{F} = (\Delta F_1, \Delta F_2, \Delta F_3).$$

A standard identity:

• For vector fields div curl = 0.

Helmholtz-Hodge decomposition

Any vector field \vec{v} which is in $L^2(\mathbb{Z}^3)$ can be decomposed

and we have the formula

 $\vec{\psi} = -\Delta^{-1}$ curl curl \vec{v} .

A standard identity:

• For vector fields div curl = 0.

Helmholtz-Hodge decomposition

Any vector field \vec{v} which is in $L^2(\mathbb{Z}^3)$ can be decomposed

and we have the formula

$$\vec{\psi} = -\Delta^{-1}$$
 curl curl \vec{v} .

The Villain model and Coulomb gas

$$Z = \int \prod_{e} \sum_{m \in \mathbb{Z}} \exp\left(-\frac{\beta}{2} \left(\nabla \theta(e) - 2\pi m\right)^2\right) \prod_{x} d\theta(x)$$
$$= \sum_{\vec{m} \in \vec{V}(\mathbb{Z}^d)} \int \prod_{e} \exp\left(-\frac{\beta}{2} \left(\nabla \theta(e) - 2\pi \vec{m}(e)\right)^2\right) \prod_{x} d\theta(x)$$

$$=\sum_{\vec{m}\in\vec{V}(\mathbb{Z}^d)}\int \exp\left(-\frac{\beta}{2}\sum_{e}\left(\nabla\theta(e)-2\pi\vec{m}(e)\right)^2\right)\prod_{x}d\theta(x)$$

Split into "vortex charge"

$$\sum_{\vec{m}\in\vec{V}(\mathbb{Z}^d)} = \sum_{\vec{q}: \text{div}\,\vec{q}=0} \sum_{\vec{m}: \text{curl}\,\vec{m}=\vec{q}}$$

The Helmholtz-Hodge decomposition implies

$$\left\{ ec{m} \in ec{V}(\mathbb{Z}^d) : \operatorname{curl} ec{m} = ec{q}
ight\} = \left\{
abla \phi - \Delta^{-1} \operatorname{curl} ec{q} \, : \, \phi \in F(\mathbb{Z}^d)
ight\}$$

Split into "vortex charge"

$$\sum_{\vec{m}\in\vec{V}(\mathbb{Z}^d)} = \sum_{\vec{q}: \operatorname{div}\vec{q}=0} \sum_{\vec{m}: \operatorname{curl}\vec{m}=\vec{q}}$$

The Helmholtz-Hodge decomposition implies

$$\left\{\vec{m}\in\vec{V}(\mathbb{Z}^d):\operatorname{curl}\vec{m}=\vec{q}\right\}=\left\{\nabla\phi-\Delta^{-1}\operatorname{curl}\vec{q}\,:\,\phi\in F(\mathbb{Z}^d)\right\}$$

The Villain model and Coulomb gas

We had

$$Z = \sum_{\vec{m} \in \vec{V}(\mathbb{Z}^d)} \int \exp\left(-\frac{\beta}{2} \sum_{e} \left(\nabla \theta(e) - 2\pi \vec{m}(e)\right)^2\right) \prod_{x} d\theta(x).$$

For each vector field \vec{m} such that curl $\vec{m} = \vec{q}$, we have

$$\exp\left(-\frac{\beta}{2}\sum_{e}\left(\nabla\theta(e) - 2\pi\vec{m}(e)\right)^{2}\right)$$
$$= \exp\left(\sum_{e}-\frac{\beta}{2}(\nabla\theta(e) + 2\pi\nabla\phi(e))^{2} - \sum_{e}2\pi^{2}\beta\left(\Delta^{-1}\operatorname{curl}\vec{q}(e)\right)^{2}\right)$$

The Villain model and Coulomb gas

After computation, we obtain

$$Z = \underbrace{\int \exp\left(-\frac{\beta}{2} \left(\nabla\phi, \nabla\phi\right)\right) \prod_{x} d\phi(x)}_{\text{Gaussian free field}}$$
$$\times \underbrace{\sum_{\vec{q} \in \vec{V}(\mathbb{Z}^{3}), \text{div } \vec{q} = 0}_{\text{Coulomb gas}} \exp\left(2\pi^{2}\beta\left(\vec{q}, \Delta^{-1}\vec{q}\right)\right)}_{\text{Coulomb gas}}$$

Factorizes into a Gaussian free field and a neutral Coulomb gas.

- From Villain to Coulomb gas;
 - Vector calculus in dimension 3;
 - Duality argument (Fröhlich-Spencer);
- From Coulomb gas to random surface;
 - Sine-Gordon representation;
 - Cluster expansion (low temperature, Bauerschmidt);

Objective of the argument:

Coulomb gas = $\langle \text{Complicated observable} \rangle_{\mu_{\beta}}$,

where the measure μ_β is a (complicated) vector-valued random surface.

- From Villain to Coulomb gas;
 - Vector calculus in dimension 3;
 - Duality argument (Fröhlich-Spencer);
- From Coulomb gas to random surface;
 - Sine-Gordon representation;
 - Cluster expansion (low temperature, Bauerschmidt);

Objective of the argument:

Coulomb gas = $\langle \text{Complicated observable} \rangle_{\mu_{\beta}}$,

where the measure μ_β is a (complicated) vector-valued random surface.

Sine-Gordon representation

$$egin{aligned} Z_{\mathcal{C}} &:= \sum_{ec{q} \in ec{\mathcal{V}}(\mathbb{Z}^3), ext{div} \, ec{q} = 0} \exp\left(2\pi^2eta\left(ec{q}, \Delta^{-1}ec{q}
ight)
ight) \ &= \sum_{ec{q} \in ec{\mathcal{V}}(\mathbb{Z}^3), ext{div} \, ec{q} = 0} \mathbb{E}_{egin{subarray}{c} GFF}\left[ellow^{2i\pieta^{1/2}\left(ec{q}, ec{\phi}
ight)}
ight]. \end{aligned}$$

Similar representation for the two-point function

$$ig \langle S_0 \cdot S_x
angle_{ ext{Vil}} = \Big \langle e^{i(\phi(x) - \phi(0))} \Big
angle_{ ext{GFF}} rac{Z_C(ec{\sigma}_{0,x})}{Z_C},$$

where $\vec{\sigma}_{0,x} := \vec{G} - \vec{G}(\cdot - x)$ and

$$Z_C(\vec{\sigma}_{0,x}) = \sum_{\vec{q} \in \vec{V}(\mathbb{Z}^3), \text{div} \, \vec{q} = 0} \mathbb{E}_{GFF} \left[e^{2i\pi\beta^{1/2} \left(\vec{q}, \vec{\phi} + \vec{\sigma}_{0x} \right)} \right].$$

Sine-Gordon representation

$$egin{aligned} Z_{\mathcal{C}} &:= \sum_{ec{q} \in ec{V}(\mathbb{Z}^3), ext{div} \, ec{q} = 0} \exp\left(2\pi^2eta\left(ec{q}, \Delta^{-1}ec{q}
ight)
ight) \ &= \sum_{ec{q} \in ec{V}(\mathbb{Z}^3), ext{div} \, ec{q} = 0} \mathbb{E}_{egin{subarray}{c} GFF}\left[ellow^{2i\pieta^{1/2}\left(ec{q}, ec{\phi}
ight)}
ight]. \end{aligned}$$

Similar representation for the two-point function

$$\left| \left\langle S_0 \cdot S_x
ight
angle_{ ext{Vil}} = \left\langle e^{i(\phi(x) - \phi(0))}
ight
angle_{ ext{GFF}} rac{Z_C(ec{\sigma}_{0,x})}{Z_C},$$

where $\vec{\sigma}_{0,x} := \vec{G} - \vec{G}(\cdot - x)$ and

$$Z_{\mathcal{C}}(\vec{\sigma}_{0,x}) = \sum_{\vec{q} \in \vec{V}(\mathbb{Z}^3), \text{div} \ \vec{q} = 0} \mathbb{E}_{GFF} \left[e^{2i\pi\beta^{1/2} \left(\vec{q}, \vec{\phi} + \vec{\sigma}_{0x} \right) \right]}.$$

Strategy: decompose the GFF $\beta^{1/2}\phi$ into two independent Gaussian fields:

• $\vec{\phi}_1$ which has covariance $\beta\left(\Delta^{-1} - \beta^{-\frac{1}{2}} I d\right)$;

• $\vec{\phi}_2$ which has covariance $\beta^{\frac{1}{2}} Id$.

$$Z_C(\vec{\sigma}_{0x}) = \sum_{\vec{q} \in \vec{V}(\mathbb{Z}^3), \text{div } \vec{q} = 0} \underbrace{e^{-\pi^2 \beta^{1/2}(\vec{q}, \vec{q})}}_{\text{is (very) small!}} \mathbb{E}_{\vec{\phi}_1} \left[e^{-2i\pi \left(\vec{q}, \vec{\phi}_1 + \vec{\sigma}_{0x}\right)} \right].$$

Since most charges canceled out locally, one may perform a cluster expansion (following Bauerschmidt) to obtain

$$\frac{Z_C\left(\vec{\sigma}_{0x}\right)}{Z_C} = \frac{\mathbb{E}_{\vec{\phi}_1}\left[\exp\left(\sum_{\vec{q}} Z(\beta, \vec{q}) \cos 2\pi \left(\vec{q}, \vec{\phi}_1 + \vec{\sigma}_{0x}\right)\right)\right]}{\mathbb{E}_{\vec{\phi}_1}\left[\exp\left(\sum_{\vec{q}} Z(\beta, \vec{q}) \cos 2\pi \left(\vec{q}, \vec{\phi}_1\right)\right)\right]},$$

where
$$|z(\beta, q)| \leq \underbrace{e^{-c\beta^{1/2}(\vec{q}, \vec{q})}}_{\text{is (very) small!}}$$
.

Expanding the cosine $\cos 2\pi (q, \phi_1 + \sigma_{0x})$ gives

$$\frac{Z(\vec{\sigma}_{0x})}{Z(0)} = \left\langle \exp\left(\sum_{\vec{q}} Z(\beta, \vec{q}) \sin 2\pi \left(\vec{\phi}, \vec{q}\right) \sin 2\pi \left(\vec{\sigma}_{0x}, \vec{q}\right) + \sum_{\vec{q}} Z(\beta, q) \cos 2\pi \left(\vec{\phi}, \vec{q}\right) \left(\cos 2\pi \left(\vec{\sigma}_{0x}, \vec{q}\right) - 1\right) \right) \right\rangle$$

$$+\sum_{\vec{q}} Z(\beta, q) \cos 2\pi \left(\vec{\phi}, \vec{q}\right) \left(\cos 2\pi \left(\vec{\sigma}_{0x}, \vec{q}\right) - 1\right) \right) \Big\rangle_{\mu_{\beta}},$$

$$d\mu_{\beta}\left(\vec{\phi}\right) := \text{Const} \times \exp\left(-\frac{1}{2\beta}(\nabla\vec{\phi},\nabla\vec{\phi}) - \sum_{n\geq 1}\frac{1}{2\beta}\frac{1}{\beta^{n/2}}\left(\nabla^{n}\vec{\phi},\nabla^{n}\vec{\phi}\right)\right)$$

$$\text{Law of }\phi_{1}$$

$$\times \exp\left(\sum_{\vec{q}}Z(\beta,\vec{q})\cos 2\pi\left(\vec{q},\vec{\phi}\right)\right) d\phi.$$
perturbative term: cluster expansion

Expanding the cosine $\cos 2\pi (q, \phi_1 + \sigma_{0x})$ gives

$$\frac{Z(\vec{\sigma}_{0x})}{Z(0)} = \left\langle \exp\left(\sum_{\vec{q}} Z(\beta, \vec{q}) \sin 2\pi \left(\vec{\phi}, \vec{q}\right) \sin 2\pi \left(\vec{\sigma}_{0x}, \vec{q}\right) \right. \right\rangle$$

$$+\sum_{\vec{q}} Z(\beta, q) \cos 2\pi \left(\vec{\phi}, \vec{q}\right) \left(\cos 2\pi \left(\vec{\sigma}_{0x}, \vec{q}\right) - 1\right) \right) \Big\rangle_{\mu_{\beta}},$$

where

$$d\mu_{\beta}\left(\vec{\phi}\right) := \operatorname{Const} \times \exp\left(-\frac{1}{2\beta}(\nabla\vec{\phi},\nabla\vec{\phi}) - \sum_{n\geq 1}\frac{1}{2\beta}\frac{1}{\beta^{n/2}}\left(\nabla^{n}\vec{\phi},\nabla^{n}\vec{\phi}\right)\right)$$

$$\operatorname{Law of } \phi_{1}$$

$$\times \exp\left(\sum_{\vec{q}} z(\beta,\vec{q})\cos 2\pi\left(\vec{q},\vec{\phi}\right)\right) d\phi.$$
perturbative term: cluster expansion

$$d\mu_{\beta}\left(\vec{\phi}\right) := \operatorname{Const} \times \exp\left(-\frac{1}{2\beta}(\nabla\vec{\phi},\nabla\vec{\phi}) - \sum_{n\geq 1}\frac{1}{2\beta}\frac{1}{\beta^{n/2}}\left(\nabla^{n}\vec{\phi},\nabla^{n}\vec{\phi}\right)\right)$$
$$\times \exp\left(\sum_{\operatorname{div}\vec{q}} Z(\beta,\vec{q})\cos 2\pi\left(\vec{q},\vec{\phi}\right)\right) d\phi.$$

- The charge *q* satisfy the neutrality condition div *q* = 0: the measure μ_β depends only on ∇φ!
- When β is large, the terms in red are small ⇒ the measure μ_β is a perturbation of a GFF!
- This object is a vector-valued random surface which is a perturbation of the GFF.

$$d\mu_{\beta}\left(\vec{\phi}\right) := \operatorname{Const} \times \exp\left(-\frac{1}{2\beta}(\nabla\vec{\phi},\nabla\vec{\phi}) - \sum_{n\geq 1}\frac{1}{2\beta}\frac{1}{\beta^{n/2}}\left(\nabla^{n}\vec{\phi},\nabla^{n}\vec{\phi}\right)\right)$$
$$\times \exp\left(\sum_{\operatorname{div}\vec{q}} Z(\beta,\vec{q})\cos 2\pi\left(\vec{q},\vec{\phi}\right)\right) d\phi.$$

- The charge *q* satisfy the neutrality condition div *q* = 0: the measure μ_β depends only on ∇φ!
- When β is large, the terms in red are small ⇒ the measure μ_β is a perturbation of a GFF!
- This object is a vector-valued random surface which is a perturbation of the GFF.

$$d\mu_{\beta}\left(\vec{\phi}\right) := \operatorname{Const} \times \exp\left(-\frac{1}{2\beta}(\nabla\vec{\phi},\nabla\vec{\phi}) - \sum_{n\geq 1}\frac{1}{2\beta}\frac{1}{\beta^{n/2}}\left(\nabla^{n}\vec{\phi},\nabla^{n}\vec{\phi}\right)\right)$$
$$\times \exp\left(\sum_{\operatorname{div}\vec{q}} Z(\beta,\vec{q})\cos 2\pi\left(\vec{q},\vec{\phi}\right)\right) d\phi.$$

- The charge *q* satisfy the neutrality condition div *q* = 0: the measure μ_β depends only on ∇φ!
- When β is large, the terms in red are small ⇒ the measure μ_β is a perturbation of a GFF!
- This object is a vector-valued random surface which is a perturbation of the GFF.

$$d\mu_{\beta}\left(\vec{\phi}\right) := \operatorname{Const} \times \exp\left(-\frac{1}{2\beta}(\nabla\vec{\phi},\nabla\vec{\phi}) - \sum_{n\geq 1}\frac{1}{2\beta}\frac{1}{\beta^{n/2}}\left(\nabla^{n}\vec{\phi},\nabla^{n}\vec{\phi}\right)\right)$$
$$\times \exp\left(\sum_{\operatorname{div}\vec{q}} Z(\beta,\vec{q})\cos 2\pi\left(\vec{q},\vec{\phi}\right)\right) d\phi.$$

- The charge *q* satisfy the neutrality condition div *q* = 0: the measure μ_β depends **only** on ∇φ!
- When β is large, the terms in red are **small** \implies the measure μ_{β} is **a perturbation** of a GFF!
- This object is a vector-valued random surface which is a perturbation of the GFF.

Gaussian Heuristics

A few remarks on the observable $Z(\vec{\sigma}_{0x})/Z(0)$:

For large β , the charges are essentially supported on dipoles $q = z(\beta)(\delta_x - \delta_{x+e_i})$. Use the heuristics

$$\sum_{e \text{ edges}} z(\beta) \sin 2\pi (\nabla \phi(e)) \sin 2\pi (\sigma_{0x}(e))$$

$$\approx \sum_{\boldsymbol{e} \text{ edges}} z(\beta) 2\pi(\nabla \phi(\boldsymbol{e})) 2\pi(\sigma_{0x}(\boldsymbol{e})) \approx z(\beta)(\phi_0 - \phi_x).$$

If μ_{β} were Gaussian, this would imply

$$\langle S_0 \cdot S_x \rangle_{\text{Vil}} \approx \overline{\left\langle e^{i(\phi(x) - \phi(0))} \right\rangle_{GFF}} \times \overline{\left\langle e^{z(\beta)(\phi_0 - \phi_x)} \right\rangle_{GFF}}$$
$$= C_1 + \frac{C_2}{|x|^{d-2}} + o\left(\frac{1}{|x|^{d-2}}\right).$$

Gaussian Heuristics

A few remarks on the observable $Z(\vec{\sigma}_{0x})/Z(0)$:

For large β , the charges are essentially supported on dipoles $q = z(\beta)(\delta_x - \delta_{x+e_i})$. Use the heuristics

$$\sum_{e \text{ edges}} z(\beta) \sin 2\pi (\nabla \phi(e)) \sin 2\pi (\sigma_{0x}(e))$$

$$\approx \sum_{\boldsymbol{e} \text{ edges}} z(\beta) 2\pi(\nabla \phi(\boldsymbol{e})) 2\pi(\sigma_{0x}(\boldsymbol{e})) \approx z(\beta)(\phi_0 - \phi_x).$$

If μ_{β} were Gaussian, this would imply

$$\langle S_0 \cdot S_x \rangle_{\text{Vil}} \approx \overline{\left\langle \frac{e^{i(\phi(x) - \phi(0))}}{e^{i(\phi(x) - \phi(0))}} \right\rangle_{GFF}} \times \overline{\left\langle \frac{e^{z(\beta)(\phi_0 - \phi_x)}}{e^{i(\phi_0 - \phi_x)}} \right\rangle_{GFF}}$$
$$= C_1 + \frac{C_2}{|x|^{d-2}} + o\left(\frac{1}{|x|^{d-2}}\right).$$

Summary

Summary of what has been done so far:

• By a duality argument, we have proved that

Villain = Gaussian free field \times Coulomb gas;

• By applying the sine-Gordon representation and a cluster expansion, we have

Coulomb gas = $\langle \text{Complicated observable} \rangle_{\mu_{\beta}}$,

where the measure μ_{β} is a (complicated) vector-valued random surface which is a perturbation of the GFF (case $\beta \gg 1$);

• We have reduced the problem: To understand Villain it is enough to understand the large-scale behavior of the random surface.

Summary

Summary of what has been done so far:

• By a duality argument, we have proved that

Villain = Gaussian free field \times Coulomb gas;

• By applying the sine-Gordon representation and a cluster expansion, we have

Coulomb gas = $\langle \text{Complicated observable} \rangle_{\mu_{\beta}}$,

where the measure μ_{β} is a (complicated) vector-valued random surface which is a perturbation of the GFF (case $\beta \gg 1$);

• We have reduced the problem: To understand Villain it is enough to understand the large-scale behavior of the random surface.

Summary

Summary of what has been done so far:

• By a duality argument, we have proved that

Villain = Gaussian free field \times Coulomb gas;

• By applying the sine-Gordon representation and a cluster expansion, we have

Coulomb gas = $\langle \text{Complicated observable} \rangle_{\mu_{\beta}}$,

where the measure μ_{β} is a (complicated) vector-valued random surface which is a perturbation of the GFF (case $\beta \gg 1$);

• We have reduced the problem: To understand Villain it is enough to understand the large-scale behavior of the random surface.

Part 3: Quantitative homogenization

Strategy of the proof:

- From Villain to Coulomb gas;
 - Vector calculus in dimension 3;
 - Duality argument (Fröhlich-Spencer);
- From Coulomb gas to random surface;
 - Sine-Gordon representation;
 - Cluster expansion (low temperature, Bauerschmidt);
- Quantitative homogenization of the random surface;
 - Helffer-Sjöstrand equation (Naddaf-Spencer 98);
 - Quantitative stochastic homogenization (Armstrong-Kuusi-Mourrat 2014-2020).

Answering the question:

How do we study quantitatively the large-scale behavior of random surfaces (with uniformly convex potential)?

Part 3: Quantitative homogenization

Strategy of the proof:

- From Villain to Coulomb gas;
 - Vector calculus in dimension 3;
 - Duality argument (Fröhlich-Spencer);
- From Coulomb gas to random surface;
 - Sine-Gordon representation;
 - Cluster expansion (low temperature, Bauerschmidt);
- Quantitative homogenization of the random surface;
 - Helffer-Sjöstrand equation (Naddaf-Spencer 98);
 - Quantitative stochastic homogenization (Armstrong-Kuusi-Mourrat 2014-2020).

Answering the question:

How do we study quantitatively the large-scale behavior of random surfaces (with uniformly convex potential)?

A simplified model: the $\nabla \phi$ model

Consider the probability measure on the space

$$\Omega := \left\{ \phi : \mathbb{Z}^d \to \mathbb{R} \right\} \implies \text{infinite-dimensional vector space}$$

defined by the formula

$$oldsymbol{d} \mu(\phi) := oldsymbol{Const} imes \exp\left(-\sum_{oldsymbol{e} ext{ edges }} oldsymbol{V} \left(
abla \phi(oldsymbol{e})
ight) oldsymbol{d} \phi,$$

where $V : \mathbb{R} \to \mathbb{R}$ is $C^2(\mathbb{R})$ and uniformly convex $(0 < \lambda \leq V'' \leq \Lambda < \infty)$.

- Well-defined in infinite-volume by approximation (in *d* ≥ 3, Funaki-Spohn);
- For the Gaussian free field, $V(x) = x^2$, and $\Delta^{-1} = G$ encodes covariance structure (and everything) about the field.

A simplified model: the $\nabla \phi$ model

Consider the probability measure on the space

$$\Omega := \left\{ \phi : \mathbb{Z}^{d} \to \mathbb{R} \right\} \implies \text{infinite-dimensional vector space}$$

defined by the formula

$$oldsymbol{d} \mu(\phi) := oldsymbol{Const} imes \exp\left(-\sum_{oldsymbol{e} ext{ edges }} oldsymbol{V} \left(
abla \phi(oldsymbol{e})
ight) oldsymbol{d} \phi,$$

where $V : \mathbb{R} \to \mathbb{R}$ is $C^2(\mathbb{R})$ and uniformly convex $(0 < \lambda \leq V'' \leq \Lambda < \infty)$.

- Well-defined in infinite-volume by approximation (in *d* ≥ 3, Funaki-Spohn);
- For the Gaussian free field, $V(x) = x^2$, and $\Delta^{-1} = G$ encodes covariance structure (and everything) about the field.

The $\nabla \phi$ model

Figure: A realization of the random surface (by C. Gu).

Paul Dario (Tel Aviv University) Massless phases for the Villain model in $d \ge 3$

The Witten Laplacian Δ_{ϕ}

How do we study this object?

• Defining a derivative: for each "suitable" function $f: \Omega \to \mathbb{R}$

$$\partial_{x}f(\phi) := \lim_{h \to 0} \frac{f(\phi + h \mathbb{1}_{x}) - f(\phi)}{h}$$

Defining the formal adjoint ∂^{*}_x: for any "suitable" pair of functions f, g : Ω → ℝ,

$$\int_\Omega \partial_x f(\phi) g(\phi) \mu(d\phi) = \int_\Omega f(\phi) \partial_x^* g(\phi) \mu(d\phi),$$

we have the explicit formula

$$\partial_x^* = -\partial_x + \left(\sum_{y \sim x} V'(\phi(y) - \phi(x))\right) \partial_y.$$

The Witten Laplacian Δ_{ϕ}

How do we study this object?

• Defining a derivative: for each "suitable" function $f: \Omega \to \mathbb{R}$

$$\partial_{x}f(\phi) := \lim_{h \to 0} \frac{f(\phi + h \mathbb{1}_{x}) - f(\phi)}{h}$$

Defining the formal adjoint ∂^{*}_x: for any "suitable" pair of functions f, g : Ω → ℝ,

$$\int_\Omega \partial_x f(\phi) g(\phi) \mu({oldsymbol d} \phi) = \int_\Omega f(\phi) \partial_x^* g(\phi) \mu({oldsymbol d} \phi),$$

we have the explicit formula

$$\partial_x^* = -\partial_x + \left(\sum_{y \sim x} V'(\phi(y) - \phi(x))\right) \partial_y.$$

We can thus define the Witten-Laplacian

$$\begin{split} \Delta_{\phi} &:= \sum_{\boldsymbol{X} \in \mathbb{Z}^d} \partial_{\boldsymbol{X}}^* \partial_{\boldsymbol{X}} \\ &= -\sum_{\boldsymbol{X} \in \mathbb{Z}^d} \partial_{\boldsymbol{X}}^2 + \sum_{\boldsymbol{X} \in \mathbb{Z}^d} \left(\sum_{\boldsymbol{y} \sim \boldsymbol{X}} V'(\phi(\boldsymbol{y}) - \phi(\boldsymbol{X})) \right) \partial_{\boldsymbol{X}}. \end{split}$$

This operator satisfies, for any pair of functions $f, g : \Omega \to \mathbb{R}$,

$$\langle f \Delta_{\phi} g \rangle = \sum_{x \in \mathbb{Z}^d} \langle \partial_x f \partial_x g \rangle = \langle g \Delta_{\phi} f \rangle \,.$$

Helffer-Sjöstrand operator

For each edge e = (x, y), we let $\mathbf{a}(\nabla \phi(e)) = V''(\nabla \phi(e))$.

Definition (Helffer-Sjöstrand operator)

The Helffer-Sjöstrand operator is defined by the formula

 $\mathcal{L} := \Delta_{\phi} + \nabla \cdot \mathbf{a} \nabla$

which acts on functions $f : \Omega \times \mathbb{Z}^d \to \mathbb{R}$.

- The operator Δ_φ is the Witten-Laplacian, it acts on the field variable (infinite-dimensional);
- The operator ∇ · a∇ is a uniformly elliptic operator, it acts on the space variable (dimension *d*).

Definition (Helffer-Sjöstrand operator)

The Helffer-Sjöstrand operator is defined by the formula

 $\mathcal{L} := \Delta_{\phi} + \nabla \cdot \mathbf{a} \nabla$

which acts on functions $f : \Omega \times \mathbb{Z}^d \to \mathbb{R}$.

Proposition: Solvability of the Helffer-Sjöstrand equation

Given a function $g: \Omega \times \mathbb{Z}^d \to \mathbb{R}$, we can solve the equation

 $\mathcal{LG} = g \text{ in } \Omega \times \mathbb{Z}^d,$

variationally by considering the minimum of

$$\inf_{G} \sum_{x,y \in \mathbb{Z}^d} \left\langle |\partial_y G|^2 \right\rangle_{\mu} + \sum_{x \in \mathbb{Z}^d} \left(\langle \nabla G \cdot \mathbf{a} \nabla G \rangle_{\mu} - \langle G, g \rangle_{\mu} \right).$$

Definition (Helffer-Sjöstrand operator)

The Helffer-Sjöstrand operator is defined by the formula

 $\mathcal{L} := \Delta_{\phi} + \nabla \cdot \mathbf{a} \nabla$

which acts on functions $f : \Omega \times \mathbb{Z}^d \to \mathbb{R}$.

Proposition: Solvability of the Helffer-Sjöstrand equation

Given a function $g: \Omega \times \mathbb{Z}^d \to \mathbb{R}$, we can solve the equation

 $\mathcal{LG} = g \text{ in } \Omega \times \mathbb{Z}^d,$

variationally by considering the minimum of

$$\inf_{G} \sum_{x,y \in \mathbb{Z}^d} \left\langle \left| \partial_y G \right|^2 \right\rangle_{\mu} + \sum_{x \in \mathbb{Z}^d} \left(\langle \nabla G \cdot \mathbf{a} \nabla G \rangle_{\mu} - \langle G, g \rangle_{\mu} \right).$$

Theorem: H.-S. representation (Naddaf-Spencer 98)

Given two random variables $F, G : \Omega \to \mathbb{R}$, we denote by:

•
$$f(\mathbf{x},\phi) = \partial_{\mathbf{x}}F(\phi);$$

•
$$g(x,\phi) = \partial_x G(\phi);$$

• $\mathcal{G}: \Omega \times \mathbb{Z}^d \to \mathbb{R}$ the solution of the equation

$$\mathcal{LG} = g \text{ in } \Omega imes \mathbb{Z}^d,$$

then we have

$$\operatorname{Cov}[F,G] = \sum_{x \in \mathbb{Z}^d} \langle f(x,\phi) \mathcal{G}(x,\phi) \rangle_{\mu}.$$

Helffer-Sjöstrand representation

Objective: Understand the large-scale behavior of the solutions of the Helffer-Sjöstrand equation.

Homogenization heuristic

There exists a coefficient $\overline{\mathbf{a}} > 0$ such that, for any map $g: \Omega \times \mathbb{Z}^d \to \mathbb{R}$, if we consider the solution of the equation

 $\mathcal{LG} = g \text{ in } \Omega \times \mathbb{Z}^d,$

and we let $\overline{G} : \mathbb{Z}^d \to \mathbb{R}$ be the map

 $-\overline{\mathbf{a}}\Delta\overline{\mathbf{G}}=\langle g\rangle_{\mu}$ in \mathbb{Z}^{d} ,

then we have

$$\left\|\mathcal{G}(x,\cdot)-\bar{G}(x)\right\|_{L^{2}(\mu)}\leq rac{1}{|x|^{d-2+lpha}} ext{ for some } lpha>0.$$

Helffer-Sjöstrand representation

Objective: Understand the large-scale behavior of the solutions of the Helffer-Sjöstrand equation.

Homogenization heuristic

There exists a coefficient $\overline{\mathbf{a}} > 0$ such that, for any map $g: \Omega \times \mathbb{Z}^d \to \mathbb{R}$, if we consider the solution of the equation

 $\mathcal{LG} = g \text{ in } \Omega \times \mathbb{Z}^d,$

and we let $\overline{G} : \mathbb{Z}^d \to \mathbb{R}$ be the map

$$-\overline{\mathbf{a}}\Delta\overline{G}=\langle g
angle _{\mu }$$
 in $\mathbb{Z}^{d},$

then we have

$$\left\|\mathcal{G}(x,\cdot)-\bar{G}(x)\right\|_{L^{2}(\mu)}\leq rac{1}{|x|^{d-2+lpha}} ext{ for some } lpha>0.$$

Remark: Some results:

- Qualitatively: Naddaf-Spencer, Giacomin-Olla-Spohn;
- Quantitatively: Armstrong-Wu;
- Extend the techniques of (Armstrong-Kuusi-Mourrat) and (Armstrong-Wu) to the case of systems of equations and infinite range operators and elliptic systems;
- Requires mixing of the random field.

Homogenization for the dual Villain model

Some tools:

 Borrow the perturbative idea from Schauder theory and the fact that, for large β,

$$\mathcal{L}_{HS} := -rac{1}{2eta}\Delta + \mathcal{L}_{pert}.$$

Therefore the solution can be approximated by harmonic functions. A $C^{0,1-\epsilon}$ regularity is available, with $\epsilon \to 0$ as $\beta \to \infty$.

- Use quantitative ergodic theorem to study the associated subadditive energy quantities (like in A-K-M and A-W).
- To prove the mixing, take ∂_y to the H-S L_{HS}G = g to obtain the second-order Helffer-Sjöstrand equation

$$-\mathcal{L}_{der}\partial_y \mathcal{G} = \partial_y f.$$

A $C^{0,1-\epsilon}$ regularity is then available.

Open questions

 Massive scaling limit. Consider the XY model in the external field

$$Z^{XY}_{\Lambda} = \int e^{\beta \sum_{i \sim j} \cos(\theta_i - \theta_j) + h\cos(\theta_i)} \prod_{j \in \Lambda} d\theta_j.$$

Conjectured for small *h* and $\beta > \beta_c$,

$$\langle S_0 \cdot S_x \rangle \sim \exp\left(-\sqrt{\frac{h}{\beta}}|x|\right)$$

Lebowitz-Penrose obtained $\langle S_0 \cdot S_x \rangle \leq exp(-ch|x|)$ using Lee-Yang theorem.

• Prove the asymptotic two-point function for d = 2 and large β . (Kosterlitz-Thouless phase).

Thank you for your attention!