Liberation of Random Projections / Todd Kemp, University of California, San Diego

Consider two random subspaces $V, W \subseteq \mathbb{C}^d$. Then the dimension of $V \cap W$ is almost surely equal to max{dim V + dim W - d, 0} (i.e. they are in general position). Depending on the definition of "almost sure", this easy theorem dates back 150 years or more. A more modern form could be stated thus: let P, Q be random projection matrices on \mathbb{C}^d , and let U_t be an independent Brownian motion on the unitary group $U(d; \mathbb{C})$. Conjugating P by U_t performs a random rotation of the subspace $P(\mathbb{C}^d)$; the general position statement can be written as $\operatorname{Tr}[U_t P U_t^* \wedge Q] = \max{\operatorname{Tr} P + \operatorname{Tr} Q - d, 0}$ a.s. for all t > 0 (here $P \wedge Q$ is the projection onto $P(\mathbb{C}^d) \cap Q(\mathbb{C}^d)$). What happens when $d \to \infty$? While there is no unitarily invariant measure in infinite dimensions, it is still possible to make sense of the unitary Brownian motion and the trace for some projections on infinite-dimensional Hilbert spaces. However, the easy techniques for proving the general position theorem are unavailable. Instead, one can analyze the spectral measure μ_t of the operator $U_t P U_t^* Q$ for smoothness. The Cauchy transform G(t, z) of μ_t satisfies a semilinear holomorphic PDE in the upper-half-plane:

$$\frac{\partial}{\partial t}G(t,z) = \frac{\partial}{\partial z} \left[z(z-1)G(t,z)^2 + (az+b)G(t,z) \right].$$

I will discuss the analysis of the characteristics of this PDE, and prove not only the general position claim in infinite-dimensions but a very strong smoothing theorem that settles (a special case of) an important conjecture in free probability theory.

This is joint work with Benoit Collins.