Singular Vectors on Fractals

Osama Khalil

University of Utah

Horowitz Seminar

June 15, 2020

Theorem (Dirichlet)

For every $\mathbf{x} \in \mathbb{R}^d$ and for all $N \ge 1$, there exist $\mathbf{0} \neq (p, \mathbf{q}) \in \mathbb{Z} \times \mathbb{Z}^d$ such that $\|\mathbf{q} \cdot \mathbf{x} - p\| \le 1/N, \qquad \|\mathbf{q}\| \le N^{1/d}.$

 For 0 < ε < 1, x is ε-Dirichlet improvable (DI_ε) if for all N ≫ 1, there is 0 ≠ (p, q) ∈ Z × Z^d such that

$$\begin{cases} \|\mathbf{q} \cdot \mathbf{x} - p\| \leq \varepsilon/N, \\ \|\mathbf{q}\| \leq N^{1/d}. \end{cases}$$

• **x** is singular if $\mathbf{x} \in \bigcap_{\varepsilon > 0} \mathrm{DI}_{\varepsilon} =: \mathrm{Sing}(d)$.

Theorem (Dirichlet)

For every $\mathbf{x} \in \mathbb{R}^d$ and for all $N \ge 1$, there exist $\mathbf{0} \neq (p, \mathbf{q}) \in \mathbb{Z} \times \mathbb{Z}^d$ such that

 $\|\mathbf{q}\cdot\mathbf{x}-p\|\leqslant 1/N, \qquad \|\mathbf{q}\|\leqslant N^{1/d}.$

• For $0 < \varepsilon < 1$, **x** is ε -Dirichlet improvable (DI $_{\varepsilon}$) if for all $N \gg 1$, there is $\mathbf{0} \neq (p, \mathbf{q}) \in \mathbb{Z} \times \mathbb{Z}^d$ such that

$$\begin{cases} \|\mathbf{q} \cdot \mathbf{x} - p\| \leqslant \varepsilon / N, \\ \|\mathbf{q}\| \leqslant N^{1/d}. \end{cases}$$

• **x** is singular if $\mathbf{x} \in \bigcap_{\varepsilon > 0} \mathrm{DI}_{\varepsilon} =: \mathrm{Sing}(d)$.

•
$$G = \operatorname{SL}(d+1, \mathbb{R}), \Gamma = \operatorname{SL}(d+1, \mathbb{Z}),$$

 $g_t = \begin{pmatrix} e^{dt} & \mathbf{0} \\ \mathbf{0} & e^{-t} \operatorname{I}_d \end{pmatrix}, \quad u(\mathbf{x}) = \begin{pmatrix} 1 & \mathbf{x} \\ \mathbf{0} & \operatorname{I}_d \end{pmatrix}.$

• Dani's Correspondence:

 $\mathbf{x} \in \operatorname{Sing}(d) \iff (g_t u(\mathbf{x}) \Gamma)_{t \ge 0}$ diverges in G/Γ .

- Ergodicity of $g_t \Longrightarrow \operatorname{Sing}(d)$ has 0 Lebesgue measure.
- Y. Cheung (Annals '11): singular vectors in ℝ² have dimension 4/3.
 Cheung-Chevallier (Duke '16): singular vectors in ℝ^d have dimension d²/(d + 1).

Question (Buguead, Cheung, Chevallier)

What is dim_H(Sing(2) $\cap \mathcal{K}$), where $\mathcal{K} = \mathcal{C} \times \mathcal{C}$ and \mathcal{C} is Cantor's middle 1/3 set?

- Ergodicity of $g_t \Longrightarrow \operatorname{Sing}(d)$ has 0 Lebesgue measure.
- **Y. Cheung** (Annals '11): singular vectors in \mathbb{R}^2 have dimension 4/3.
 - **Cheung-Chevallier** (Duke '16): singular vectors in \mathbb{R}^d have dimension $d^2/(d+1)$.

Question (Buguead, Cheung, Chevallier)

What is dim_{*H*}(Sing(2) $\cap \mathcal{K}$), where $\mathcal{K} = \mathcal{C} \times \mathcal{C}$ and \mathcal{C} is Cantor's middle 1/3 set?

Theorem (Khalil '19)

If \mathcal{K} is a product of two copies of Cantor's middle thirds set, then

$$\dim_H(\operatorname{Sing}(2) \cap \mathcal{K}) \leqslant \frac{2}{3} \frac{\log 4}{\log 3}$$

• Remark: dim_{*H*}(
$$\mathcal{K}$$
) = $\frac{\log 4}{\log 3}$.

• Iterated Function Systems (IFS): $\mathcal{F} = \{f_i : \mathbb{R}^d \to \mathbb{R}^d : 1 \le i \le n\};$

$$f_i =
ho_i O_i + b_i,$$

 $0 <
ho_i < 1, \quad O_i \in \mathrm{SO}(d, \mathbb{R}), \quad b_i \in \mathbb{R}^d.$

- There is a unique \mathcal{F} -invariant compact set $\mathcal{K} = \bigcup_i f_i(\mathcal{K})$.
- Examples:

 - Missing digit Cantor sets, Koch snowflakes, Sierpinski carpets, etc.

• Iterated Function Systems (IFS): $\mathcal{F} = \{f_i : \mathbb{R}^d \to \mathbb{R}^d : 1 \le i \le n\};$

$$f_i =
ho_i O_i + b_i,$$

 $0 <
ho_i < 1, \quad O_i \in \mathrm{SO}(d, \mathbb{R}), \quad b_i \in \mathbb{R}^d.$

- There is a unique \mathcal{F} -invariant compact set $\mathcal{K} = \bigcup_i f_i(\mathcal{K})$.
- Examples:

 - Ø Missing digit Cantor sets, Koch snowflakes, Sierpinski carpets, etc.

• For a probability vector (p_1, \ldots, p_n) , a measure μ is **self-similar** if

$$\mu = \sum_i p_i(f_i)_*\mu.$$

Theorem (Moran 1945)

If $s = \dim_{H}(\mathcal{K})$, then s is the unique solution of $\sum_{i} \rho_{i}^{s} = 1$. The self-similar measure for $p_{i} = \rho_{i}^{s}$ is the restriction of the Hausdorff measure to \mathcal{K} (assuming the open set condition).

• Example: Cantor's set: $\rho = 1/3$, $s = \log 2/\log 3$, $p_1 = p_2 = 1/2$.

• For a probability vector (p_1, \ldots, p_n) , a measure μ is **self-similar** if

$$\mu = \sum_i p_i(f_i)_*\mu.$$

Theorem (Moran 1945)

If $s = \dim_{H}(\mathcal{K})$, then *s* is the unique solution of $\sum_{i} \rho_{i}^{s} = 1$. The self-similar measure for $p_{i} = \rho_{i}^{s}$ is the restriction of the Hausdorff measure to \mathcal{K} (assuming the open set condition).

• Example: Cantor's set: $\rho = 1/3$, $s = \log 2/\log 3$, $p_1 = p_2 = 1/2$.

- If $\mathcal{L} \subset \mathbb{R}^d$ is a proper rational affine subspace, then $\mathcal{L} \subset \operatorname{Sing}(d)$.
- The main result can be thought of as a quantitative converse to this statement for fractals:

 $\dim_{H} \left(\begin{array}{c} \text{singular vectors in the support} \\ \text{of a fractal measure } \mu \end{array} \right) \leqslant \left(\begin{array}{c} \text{non-concentration} \\ \text{parameters of } \mu \end{array} \right)$

• $\alpha_{\ell}(\mu)$ is the largest number:

 $\mu(\varepsilon \text{ neighborhood of } \mathcal{L}) \leqslant \varepsilon^{\alpha_{\ell}(\mu) - o(1)}$

for all affine subspaces \mathcal{L} of dimension $d - \ell$.

- The smaller $\alpha_{\ell}(\mu)$ is, the more concentrated its support is near subspaces of dimension $d \ell$.
- Frostman exponents of projections of μ : take limit in ε is for subspaces \mathcal{L} in a given "direction".

• $\alpha_{\ell}(\mu)$ is the largest number:

```
\mu(\varepsilon \text{ neighborhood of } \mathcal{L}) \leqslant \varepsilon^{\alpha_{\ell}(\mu) - o(1)}
```

for all affine subspaces \mathcal{L} of dimension $d - \ell$.

- The smaller $\alpha_{\ell}(\mu)$ is, the more concentrated its support is near subspaces of dimension $d \ell$.
- Frostman exponents of projections of μ : take limit in ε is for subspaces \mathcal{L} in a given "direction".

Theorem (Khalil '19)

Let μ be the Hausdorff measure on a self-similar fractal \mathcal{K} . Then,

$$\dim_{H}(\operatorname{Sing}(d) \cap \mathcal{K}) \leqslant \dim_{H}(\mathcal{K}) - \min_{1 \leq \ell \leq d} \frac{(d - \ell + 1)\alpha_{\ell}(\mu)}{d + 1}$$

• IFS irreducible $\Longrightarrow \alpha_{\ell}(\mu) > 0.$

• Example:
$$\mathcal{K} = [0, 1]^d$$
, $\alpha_\ell(Leb) = \ell$.
dim_H(Sing(d)) $\leqslant \frac{d^2}{d+1} = \frac{d}{d+1}d$

(recovers Cheung-Chevallier).

• IFS irreducible $\Longrightarrow \alpha_{\ell}(\mu) > 0.$

• Example:
$$\mathcal{K} = [0, 1]^d$$
, $\alpha_\ell(Leb) = \ell$.

$$\dim_H(\operatorname{Sing}(d)) \leqslant \frac{d^2}{d+1} = \frac{d}{d+1}d$$
 (recovers Cheung-Chevallier).

Proofs

Recall

•
$$G = SL(d+1,\mathbb{R}), \Gamma = SL(d+1,\mathbb{Z}),$$

$$g_t = \begin{pmatrix} e^{dt} & \mathbf{0} \\ \mathbf{0} & e^{-t} \mathbf{I}_d \end{pmatrix}, \qquad u(\mathbf{x}) = \begin{pmatrix} \mathbf{1} & \mathbf{x} \\ \mathbf{0} & \mathbf{I}_d \end{pmatrix}.$$

• Dani's Correspondence:

$$\mathbf{x} \in \operatorname{Sing}(d) \iff (g_t u(\mathbf{x}) \Gamma)_{t \ge 0}$$
 diverges in G/Γ .

• The plan: show orbits are **biased** to return to compact sets.

Definition: a proper function f on G/Γ .

Example: f : $SL(2, \mathbb{R})/SL(2, \mathbb{Z}) \rightarrow \mathbb{R}_+$ is given by the *y*-coordinate in the upper half plane model.

$\mathrm{SL}(n,\mathbb{R})/\mathrm{SL}(n,\mathbb{Z}) \leftrightarrow \{\text{unimodular lattices in } \mathbb{R}^n\}$

The idea of Kadyrov-Kleinbock-Lindenstrauss-Margulis (Lebesgue case):

• Build a Margulis function $f: G/\Gamma \to \mathbb{R}_+$:

$$\int_{B(0,1)} f(g_t u(\mathbf{x}) y) \ d\text{Leb}(\mathbf{x}) \leqslant e^{-\beta t} f(y) + b,$$

for fixed β , *t* and *b*.

• Ultimately:

$$\dim_H(\operatorname{Sing}(d)) \leqslant d - \frac{\beta}{d+1}.$$

• $x \in G/\Gamma$:

Covolume of a subgroup *H* of the lattice
$$x = \left\| \bigwedge \text{ basis of } H \right\|$$
.

An idea of Margulis reduces contraction inequality to proving:

$$\int_{B(0,1)} \|g_t u(\mathbf{x})v\|^{-\gamma} d\mu(\mathbf{x}) \leqslant e^{-\gamma' t} \|v\|^{-\gamma}$$

for good choices of γ and γ' and all $v \in \bigwedge^* \mathbb{R}^n$.

• $x \in G/\Gamma$:

Covolume of a subgroup *H* of the lattice $x = \left\| \bigwedge \text{ basis of } H \right\|$.

An idea of Margulis reduces contraction inequality to proving:

$$\int_{B(0,1)} \|g_t u(\mathbf{x})v\|^{-\gamma} d\mu(\mathbf{x}) \leqslant e^{-\gamma' t} \|v\|^{-\gamma}$$

for good choices of γ and γ' and all $v \in \bigwedge^* \mathbb{R}^n$.

Proposition (K '19)

For every
$$0 \neq v \in \bigwedge^{\ell} \mathbb{R}^{d+1}$$
,

$$\int \|g_t u(\mathbf{x})v\|^{-\alpha_{\ell}(\mu)+o(1)} d\mu(\mathbf{x}) \leq Ce^{-\beta t} \|v\|^{-\alpha_{\ell}(\mu)+o(1)},$$

$$\beta = \frac{\alpha_{\ell}(\mu)(d-\ell+1)}{d+1} - o(1).$$

• The key point is that the exponent $\alpha_{\ell}(\mu)$ works for the representation $\bigwedge^{\ell} \mathbb{R}^{d}$.

$$\int \|g_t u(\mathbf{x})v\|^{-\alpha_\ell(\mu)+o(1)} d\mu \leqslant e^{-\beta t} \int \|\pi_+(u(\mathbf{x})v)\|^{-\alpha_\ell(\mu)+o(1)} d\mu$$

• In the standard basis, coordinates of $u(\mathbf{x})v$ are linear equations in \mathbf{x} .

Proposition (Khalil '19)

There are ℓ expanding coordinates of g_t in $\bigwedge^{\ell} \mathbb{R}^{d+1}$, depending on v, which are **transversal!**

• Remark: dimension of expanding subspace is $\binom{d}{\ell-1}$.

Key idea 1: transversality

- If π₊(u(x)v) is small, then x must be simulatnaeuously in a small neighborhood of ℓ transversal hyperplanes: i.e. in a neighborhood of a (d − ℓ)-dimensional subspace.
- μ decays like $\alpha_{\ell}(\mu)$ near $(d \ell)$ -dimensional subspaces!

• Using $g_{(N+1)t}u(\mathbf{x}) = g_t u(e^{Nt}\mathbf{x})g_{Nt}$, you get

$$\oint_{B(\mathbf{x}_0,e^{-Nt})} f(g_{(N+1)t}u(\mathbf{x})y) \ d\text{Leb} = \int_{B(0,1)} f(g_tu(\mathbf{x})\tilde{y}) \ d\text{Leb}$$

• An induction argument based on iterating the contraction inequality gives:

Leb
$$\begin{pmatrix} \text{orbits spending } \delta \text{ proportion} \\ \text{of } [0, T] \text{ in the cusp} \end{pmatrix} \lesssim e^{-\beta \delta T}$$

● Lebesgue measure is invariant by translation and transforms precisely under scaling ⇒ facilitates scaling

2

When the IFS has different contraction ratios, the shape of the contraction inequality is **not** preserved under iteration.

• Loss in β by log $\frac{\rho_{\text{max}}}{\rho_{\text{min}}}$.

Resolution: schematic

- top row: fractal at stage *k*.
- Black piece needs less time to become size 1 than red piece.

• Key idea 2: Non-uniform contraction inequality:

$$\int \rho(\mathbf{x},k)^{-\beta} f(g_{\rho(\mathbf{x},k)} u(\mathbf{x}) y) \ d\mu(\mathbf{x}) \leqslant f(y) + b.$$

- ρ(x, k) is a cocycle given by the diameter of the piece of the fractal containing x at stage k.
- The induction argument needs to be reimagined ...

More Consequences

Consequences - Homogeneous Fractals

- An IFS \mathcal{F} is **homogeneous** if each $f_i = \rho O + b_i$ (rotation and contraction are independent of *i*).
- A deep result of **Shmerkin** in his work resolving Furstenberg's intersection conjecture calculates the Frostman exponents of projections of μ in **every** direction when \mathcal{F} is homogeneous on \mathbb{R}^2 with irrational rotation.
- Using prior ideas of Nazarov, Perez, Shmerkin:

Theorem (Khalil '19)

Suppose ${\mathcal F}$ is a homogeneous IFS on ${\mathbb R}^2$, with rotation part $otin {\mathbb Q} \pi.$ Then,

 $\alpha_1(\mu)$ = the Frostman exponent in a.e. direction.

Consequences - Homogeneous Fractals

- An IFS \mathcal{F} is **homogeneous** if each $f_i = \rho O + b_i$ (rotation and contraction are independent of *i*).
- A deep result of **Shmerkin** in his work resolving Furstenberg's intersection conjecture calculates the Frostman exponents of projections of μ in **every** direction when \mathcal{F} is homogeneous on \mathbb{R}^2 with irrational rotation.
- Using prior ideas of Nazarov, Perez, Shmerkin:

Theorem (Khalil '19)

Suppose \mathcal{F} is a homogeneous IFS on \mathbb{R}^2 , with rotation part $\notin \mathbb{Q}\pi$. Then,

 $\alpha_1(\mu) =$ the Frostman exponent in a.e. direction.

Corollary (Khalil '19)

If \mathcal{F} is a homogeneous IFS on \mathbb{R}^2 , with ergodic rotation part, then

$$\dim_{H}(\mathcal{K}\cap \operatorname{Sing}(2)) \leqslant \frac{2}{3} \dim_{H}(\mathcal{K}).$$

Theorem (H. Masur (Duke '92))

The Hausdorff dimension of the set of directions \mathbb{S}^1 in which the straight line flow on a flat surface S is non-uniquely ergodic is at most 1/2.

Our method shows

Theorem (Khalil '19)

The Hausdorff dimension of the set of directions in a fractal $\mathcal{K} \subseteq \mathbb{S}^1$ in which the straight line flow on a flat surface *S* is non-uniquely ergodic is at most dim_H(\mathcal{K})/2.

Theorem (H. Masur (Duke '92))

The Hausdorff dimension of the set of directions \mathbb{S}^1 in which the straight line flow on a flat surface S is non-uniquely ergodic is at most 1/2.

Our method shows

Theorem (Khalil '19)

The Hausdorff dimension of the set of directions in a fractal $\mathcal{K} \subseteq \mathbb{S}^1$ in which the straight line flow on a flat surface S is non-uniquely ergodic is at most $\dim_H(\mathcal{K})/2$.

Thanks!