Power Weakly Mixing Ttansformations

March 26, 2012

Abstract

It follows from Furstenbergs proof of the multiple recurrence theorem that a weakly mixing, invertible, probability preserving transformation $T: (X, P) \to (X, P)$ satisfies that for every finite sequence $n_1, ..., n_k \in \mathbb{Z} \setminus \{0\}$,

 $T^{n_1} \times T^{n_2} \times \cdots \times T^{n_k}$

is an ergodic measure preserving tranformation of X^k . A transformation satisfying the latter property is called "power weakly mixing". We will survey some history around this property in the non probability preserving case and show constructions of a power weakly mixing, infinite measure preserving markovian \mathbb{R} -flows and a power weakly mixing non singular Bernoulli shift without an invariant P-equivalent σ finite measure.