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Random walks in random environment as rough paths

Program: lifting invariance principles to rough path topology.

Two aspects/schools:

RWRE / particle systems: richer picture of the model on large scales: limiting
path, area anomaly.

S(P)DEs: Non-trivial noise approximations. Universality.
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Rough paths
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Universality of the Brownian motion?

Donsker’s invariance principle. X (simple) random walk.

X n
t = n−1Xbtn2c ↘

W standard Brownian motion

X̃ n
t = X n

t + (tn2 − btn2c)(X n
t+1/n2 − X n

t )↗
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Universality of the Brownian motion?

Fun fact about SDE approximations [Wong-Zakai ’65]: f nice real function,
f (0) = 0, stochastic integration yields a limit

Y n
t+1 = Y n

t + f (Y n
t )(X n

t+1 − X n
t ), t = k/n2 −→ Yt =

∫ t

0

f (Ys)dWs (Ito).

But the Riemann–Stieltjes integral has a different limit

Ỹ n
t =

∫ t

0

f (Ỹs)dX̃ n(s) −→ Ỹt =

∫ t

0

f (Ys)dWs +
1

2

∫ t

0

f ′(Ys)f (Ys)ds

=:

∫ t

0

f (Ys) ◦ dWs (Stratonovich).

Observations

incomplete information: knowing W alone does not determine the SDE:
Ito map X 7→ Y is not continuous in the Skorohod uniform topology.
However, true for every (nice) f

 some kind of universality, if we fix the notion of integration.
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Rough paths

Definition (Lyons ’98)

Let α ∈ ( 1
3 ,

1
2 ). A α-Hölder rough path is a pair (Z ,Z) defined by

(Zs,t ,Zs,t) ∈ Rd × Rd⊗d for 0 ≤ s < t ≤ T so that Zs,t = Zt − Zs ,

(i) Z ∈ Cα, Z ∈ C 2α and

(ii) Zs,t − Zs,u − Zu,t = Zs,u ⊗ Zu,t (“Chen’s relation”).

Norm by Cα ⊕ C 2α.

Morally: Zs,t =
∫ t

s

∫ r1
s

dZr2 ⊗ dZr1 . Set Z := (Z ,Z).

Theorem (Lyons ’98, Gubinelli ’04)

Construction of rough integral; (Y ,Y ′,Z) 7→
∫ ·

0
YsdZs is continuous (if Y is

controlled); Itô-Lyons map Z 7→ Yt = Y0 +
∫ t

0
f (Ys)dZs is continuous.

In particular, if (Z n,Zn) =: Zn → Z in rough path topology then

Y n
t = Y n

0 +

∫ t

0

f (Y n
s )dZn

s → Yt = Y0 +

∫ t

0

f (Ys)dZs .
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Second level perturbation  new drift term

Kelly ’16: Assume Stratonovich lift of semimartingales (Z n,Zn)→ (Z ,Z) in rough
path topology, where for some Γ ∈ Rd×d

Zs,t =

∫ t

s

∫ r1

s

dZr2 ⊗ ◦dZr1 + (t − s)Γ.

Let f ∈ C 1(R,Rd), then the solutions to

Y n
t = Y n

0 +

∫ t

0

f (Y n
s ) ◦ dZ n

s

converge weakly in the rough path topology to the solution to

Yt = Y0 +

∫ t

0

f (Ys) ◦ dZs +

∫ t

0

Γf (Ys) · f ′(Ys)ds,

where Γf (Ys) · f ′(Ys) =
∑d

i,j=1 Γi,j f ′i (Ys)fj(Ys).
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Random walks in random environment
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Random walks in random environment on Zd

Environment ω ∈ Ω : for every x ∈ Zd

ωx(y) ≥ 0,
∑

y :|x−y |=1

ωx(y) = 1.

For fixed ω, let (Xn)n≥0 be a Markov chain on Zd starting at the origin, with
the quenched law:

Pω(Xn+1 = y |Xn = x) = ωx(y), for every |x − y | = 1, n ≥ 0.

For a probability P on Ω the annealed law P on the random walk is

P(·) =

∫
Ω

Pω(·)dP(ω).

Tal Orenshtein Rough walks 9 / 29



Ballistic RWRE: the measure P on Ω satisfies

(ωx)x∈Zd is i.i.d. and uniformly elliptic (P(κ ≤ ω ≤ 1− κ) = 1 for some κ > 0) and

Sznitman’s T ′ ballisticity condition holds
(ballisticity means Xn

n → v 6= 0 P-a.s).

Random conductance model:

environment coming from random (ergodic and elliptic) weights
(conductances) on (sometimes long range) edges of Zd .

reversibility, no ballisticity: v = 0.
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Regeneration structure, strong LLN, functional CLT

Sznitman-Zerner ’99:

Regeneration structure. P- a.s. ∃ times 0 =: τ0 < τ1 < τ2 < ... <∞ so that
τk have all moments and(

{Xτk ,τk+m}0≤m≤τk+1−τk , τk+1 − τk
)
k≥1

are i.i.d..

Strong LLN. Xn

n →
E[Xτ1,τ2

]

E[τ2−τ1] =: v P-a.s.

Sznitman ’00: Let

X n(t) :=
1

n
(X̄bn2tc + (n2t − bn2tc)(X̄bn2tc+1 − X̄bn2tc), X̄n := Xn − nv

be the centering & rescaling.

Functional CLT. Under P

X n(·)⇒ B, a Brownian motion, in C ([0,T ],Rd).

Covariance: Σ2
i,j =

E[X̄ i
τ1,τ2

X̄ j
τ1,τ2

]

E[τ2−τ1] .
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Homogenization phenomenon

Environment non-homogeneous.

Averaging effect: on large scales walk’s fluctuations are approaching a
(Gaussian) limit.

However, generally covariance is different than in homogenous case.
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Ballistic RWRE as rough paths
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Ballistic RWRE: convergence & area anomaly

(X n
t ,Xn

s,t) - centred & rescaled linearly interpolated lift.

Theorem (Lopusanschi - O ’18)

Ballistic RWRE, d ≥ 2. Under P:

(X n,Xn)⇒ (B,BStr + Γ·)

in the α-Hölder rough path topology, for every α < 1/2.

B - Brownian motion, BStr - its iterated integral w.r.t. Stratonovich
integration

Γ is a deterministic d × d matrix with the explicit form

Γ =
E[Antisym(X1

τ1,τ2
)]

E[τ2 − τ1]
,

where Antisym(A)i,j = 1
2 (Ai,j − Aj,i ).

Tal Orenshtein Rough walks 14 / 29



Ballistic RWRE: remarks

The solution to an SDE approximated by X̄ converges to a solution of an
SDE with an explicit correction in terms of Γ.

Our proof is general to any process on Rd having a regeneration structure
and enough moments, where moments translates to regularity.

Example for @ arbitrary large moments: Random walks in Dirichlet
environments with a large trap parameter.

Area anomaly has a geometric interpretation: Γ is the expected signed
stochastic area of X̄ , the re-centered walk, on a regeneration interval,
normalized by its expected size:

Γ =
E[Antisym(X1

τ1,τ2
)]

E[τ2 − τ1]
.
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Ballistic RWRE: the measure P on Ω satisfies
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Random walk in random conductances

Random conductances (discrete time):
Ω ={ωx,y = ωy,x : x , y ∈ Zd , |x − y | = 1}; for fixed ω

Pω(Xn+1 = y |Xn = x) =
ωx,y∑
z ωx,z

.

Functional CLT: X n(t) = n−1Xn2t . Assume conductances i.i.d with values in

[c,C ] ⊂ (0,∞) (uniform ellipticity). Under P: X n converges weakly in D([0,T ],Rd)

to a Brownian motion with a covariance matrix Σ = Σ(law(ω)) [Künnemann ’83].

Again, homogenization: on large scales walk feels the environment in an
“averaged” sense, covariance is different than in homogenous case.
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Random walk in random conductances - two routes

Annealed (or in probability) results: additive functionals of MCs: Kozlov 79,
Papanicolaou-Varadhan 81, Kipnis-Varadhan 86, De Masi, Ferrari, Goldstein
and Wick 89 (very partial list).

Quenched results for the continuous time process with variable speed using
cocycle spaces: Sidoravicius-Snitzman 04, Berger-Biskup 07,
Mathieu-Piatnitski 07 (very partial list).

Variety of conditions. Extends to stationary ergodic conductances, with some
regularity conditions on the conductances. Typically some positive and
negative moment condition for µ =

∑
y ω(0, y) the total rates at the origin

and regularity of the jumps (e.g. second moment).
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Random conductances and rough paths
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Strategy 1. Additive functionals of
Markov processes as rough paths
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Kipnis-Varadhan theory in rough path topology

Theorem (Deuschel - O - Perkowski ’19)

X Markov with generator L, µ stationary and ergodic for L,L∗. F : E → Rd

bounded and measurable with
∫
Fdµ = 0 and Z n

t = n−1
∫ n2t

0
F (Xs)ds. Assume

H−1 condition. Then

(Z n,Zn)→
(
B,BStr + · lim

λ→0
E[Φλ ⊗ LAΦλ]

)
in (p-variation) rough path topology (for all p > 2), where B is a Brownian
motion with covariance

〈B,B〉t = 2t lim
λ→0

E[Φλ ⊗ (−LS)Φλ].

Note: correction vanishes if L = L∗.
H−1 condition. For (λ− L)Φλ = F : λ

∫
|Φλ|2dµ +

∫
(Φλ − Φλ′ )⊗ (−L)(Φλ − Φλ′ )dµ→ 0.
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Application to random conductances
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Convergence in rough path topology and area anomaly

Theorem (Deuschel - O - Perkowski ’19)

Assume i.i.d and uniformly elliptic conductances. For the Itô lift (X n,Xn), under
P we have a rough path convergence

(X n,Xn)→
(
B,

∫ ·
0

Bs ⊗ dBs +
1

2
〈B,B〉· + ·Γ

)
,

where Γ = −diag (E[ω(0, ei )], i = 1, ..., d).

Started from Itô, so would not expect Stratonovich integrals.

For linear interpolations we get converges to Stratonovich (without
anomaly!).
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Strategy 2. Cocycle space and the
corrector process

Tal Orenshtein Rough walks 24 / 29



Classical quenched FCLT

∃ Hilbert space H of cocycle functions on Ω× Zd with H = Hsol ⊕ Hpot ,

H 3 Π = Ψ + χ for the position field Π(ω, x) = x and

Xt = Π(ω,Xt) = Ψ(ω,Xt) + χ(ω,Xt)

is a decomposition to a martingale plus a “corrector”.

Analytical tools  corrector is sublinear  vanishes in limit
(e.g. Sidoravicius and Sznitman ’04).

Quenched CLT for X then follows from martingale CLT for Ψ(ω,Xt).

‖Ψ‖2
H = E[

∑
x ω(0, x)(Ψ(ω, x))⊗2].

Ψ is a cocycle if Ψ(ω, x)−Ψ(ω, y) = Ψ(τyω, x − y).
Hpot is a closure of gradient functions Φ(ω, x) = ϕ(τxω)− ϕ(ω) so that ϕ is local.
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Rough path treatment

With Johaness Bäumler, Noam Berger, and Martin Slowik.

Anealed result for general conditions.

Remark: corrector χ(ω,Xt) vanishes BUT its iterated integral converges to a
the non-zero linear function t‖χ‖2

H .

Compared to area anomaly we got using rough path Kipnis-Varadhan.

Π ∈ H, stationary ergodic, jump a.s. positive and has 1+ moments.
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Quenched - in progress

Classical quenched invariance principle: Sidoravicius-Snitzman 04,
Berger-Biskup 07, Mathieu-Piatnitski 07.

Zd , d ≥ 3, i.i.d nearest neighbor conductances in {0} ∪ [a, b]

Recent work by Paul Dario on moments of the corrector in space
E|χ(ω, x)|p < Cp.

Quenched Heat kernel bounds: Mathieu-Remy 04, Barlow 04.

We deduce quenched moments of the corrector on the process uniformly in
time

Eω0 [|χ(ω,Xt)|p] < cp(ω) for all p > 0.

Bounded jumps which enables transferring the estimates to the martingale
part: |∆Ψ(ω,X·)|+ |∆χ(ω,X·)| = 1

(after some work) get a quenched result.
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Summary

Program: invariance principle for rough walks in random environment.

Approximation of SDEs. Universality.
Richer understanding of path structure in RWRE models.

Ballistic RWRE (non-reversible case).

Identification of area anomaly in terms of a stochastic area in regeneration
interval.

Kipnis-Varadhan theory in rough path topology.

No area anomaly if the process is reversible.
Application to random conductances: canonical limit for linear interpolations,
correction for Itô rough path.
Method extends to many other models, not necessary reversible, e.g. periodic
diffusions.

Cocycle space for random conductances.

Area anomaly in Itô case, identified by the H norm of the corrector.
Holds quenched whenever the corrector has enough moments (2 + ε should be
enough).
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Thank you for your attention!
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