Rough walks in random environment

Tal Orenshtein

Technical University Berlin

Weierstrass Institute

Berlin Mathematical School

イロト イヨト イヨト イヨト

Horowitz seminar (online)

Tel Aviv University April 27, 2020

Random walks in random environment as rough paths

- Program: lifting invariance principles to rough path topology.
- Two aspects/schools:
 - RWRE / particle systems: richer picture of the model on large scales: limiting path, area anomaly.
 - S(P)DEs: Non-trivial noise approximations. Universality.

イロン イ団 とく ヨン イヨン

Rough paths

Donsker's invariance principle. X (simple) random walk.

$$X_t^n = n^{-1} X_{\lfloor tn^2 \rfloor} \searrow$$

W standard Brownian motion

イロト イヨト イヨト イヨト

$$\tilde{X}_t^n = X_t^n + (tn^2 - \lfloor tn^2 \rfloor)(X_{t+1/n^2}^n - X_t^n) \nearrow$$

2

Universality of the Brownian motion?

• Fun fact about SDE approximations [Wong-Zakai '65]: f nice real function, f(0) = 0, stochastic integration yields a limit

$$Y_{t+1}^n = Y_t^n + f(Y_t^n)(X_{t+1}^n - X_t^n), t = k/n^2 \longrightarrow Y_t = \int_0^t f(Y_s) dW_s$$
 (Ito).

But the Riemann-Stieltjes integral has a different limit

$$\begin{split} \tilde{Y}_t^n &= \int_0^t f(\tilde{Y}_s) d\tilde{X}^n(s) \longrightarrow \tilde{Y}_t = \int_0^t f(Y_s) dW_s + \frac{1}{2} \int_0^t f'(Y_s) f(Y_s) ds \\ &=: \int_0^t f(Y_s) \circ dW_s \text{ (Stratonovich).} \end{split}$$

イロト 不得 トイヨト イヨト

Universality of the Brownian motion?

• Fun fact about SDE approximations [Wong-Zakai '65]: f nice real function, f(0) = 0, stochastic integration yields a limit

$$Y_{t+1}^n = Y_t^n + f(Y_t^n)(X_{t+1}^n - X_t^n), t = k/n^2 \longrightarrow Y_t = \int_0^t f(Y_s) dW_s$$
 (Ito).

But the Riemann-Stieltjes integral has a different limit

$$\begin{split} \tilde{Y}_t^n &= \int_0^t f(\tilde{Y}_s) d\tilde{X}^n(s) \longrightarrow \tilde{Y}_t = \int_0^t f(Y_s) dW_s + \frac{1}{2} \int_0^t f'(Y_s) f(Y_s) ds \\ &=: \int_0^t f(Y_s) \circ dW_s \text{ (Stratonovich).} \end{split}$$

Observations

- incomplete information: knowing W alone does not determine the SDE: Ito map X → Y is not continuous in the Skorohod uniform topology.
- However, true for every (nice) f
- \rightsquigarrow some kind of universality, if we fix the notion of integration.

Tal Orenshtein

Rough paths

Definition (Lyons '98)

Let $\alpha \in (\frac{1}{3}, \frac{1}{2})$. A α -Hölder rough path is a pair (Z, \mathbb{Z}) defined by $(Z_{s,t}, \mathbb{Z}_{s,t}) \in \mathbb{R}^d \times \mathbb{R}^{d \otimes d}$ for $0 \leq s < t \leq T$ so that $Z_{s,t} = Z_t - Z_s$, (i) $Z \in C^{\alpha}$, $\mathbb{Z} \in C^{2\alpha}$ and (ii) $\mathbb{Z}_{s,t} - \mathbb{Z}_{s,u} - \mathbb{Z}_{u,t} = Z_{s,u} \otimes Z_{u,t}$ ("Chen's relation"). Norm by $C^{\alpha} \oplus C^{2\alpha}$.

Morally: $\mathbb{Z}_{s,t} = \int_s^t \int_s^{r_1} dZ_{r_2} \otimes dZ_{r_1}$. Set $\mathbf{Z} := (Z, \mathbb{Z})$.

Theorem (Lyons '98, Gubinelli '04)

Construction of rough integral; $(Y, Y', \mathbb{Z}) \mapsto \int_0^t Y_s d\mathbb{Z}_s$ is continuous (if Y is controlled); Itô-Lyons map $\mathbb{Z} \mapsto Y_t = Y_0 + \int_0^t f(Y_s) d\mathbb{Z}_s$ is continuous.

In particular, if $(Z^n, \mathbb{Z}^n) =: \mathbf{Z}^n \to \mathbf{Z}$ in rough path topology then

$$Y_t^n = Y_0^n + \int_0^t f(Y_s^n) d\mathbf{Z}_s^n \to Y_t = Y_0 + \int_0^t f(Y_s) d\mathbf{Z}_s.$$

Second level perturbation \rightsquigarrow new drift term

Kelly '16: Assume Stratonovich lift of semimartingales $(Z^n, \mathbb{Z}^n) \to (Z, \mathbb{Z})$ in rough path topology, where for some $\Gamma \in \mathbb{R}^{d \times d}$

$$\mathbb{Z}_{s,t} = \int_s^t \int_s^{r_1} dZ_{r_2} \otimes \circ dZ_{r_1} + (t-s)\Gamma.$$

Let $f \in C^1(\mathbb{R}, \mathbb{R}^d)$, then the solutions to

$$Y_t^n = Y_0^n + \int_0^t f(Y_s^n) \circ dZ_s^n$$

converge weakly in the rough path topology to the solution to

$$Y_t = Y_0 + \int_0^t f(Y_s) \circ dZ_s + \int_0^t \Gamma f(Y_s) \cdot f'(Y_s) ds,$$

where $\Gamma f(Y_s) \cdot f'(Y_s) = \sum_{i,j=1}^{d} \Gamma^{i,j} f'_i(Y_s) f_j(Y_s)$.

イロン イボン イヨン イヨン 三日

Random walks in random environment

Random walks in random environment on \mathbb{Z}^d

• Environment $\omega \in \Omega$: for every $x \in \mathbb{Z}^d$

$$\omega_x(y) \ge 0, \quad \sum_{y:|x-y|=1} \omega_x(y) = 1.$$

 For fixed ω, let (X_n)_{n≥0} be a Markov chain on Z^d starting at the origin, with the quenched law:

$$P_{\omega}(X_{n+1}=y|X_n=x)=\omega_x(y), ext{ for every } |x-y|=1, \ n\geq 0.$$

• For a probability P on Ω the **annealed** law \mathbb{P} on the random walk is

$$\mathbb{P}(\cdot) = \int_{\Omega} P_{\omega}(\cdot) \mathrm{d}P(\omega).$$

Ballistic RWRE: the measure P on Ω satisfies

- $(\omega_x)_{x \in \mathbb{Z}^d}$ is i.i.d. and uniformly elliptic $(\mathbb{P}(\kappa \le \omega \le 1 \kappa) = 1 \text{ for some } \kappa > 0)$ and
- Sznitman's T' ballisticity condition holds

(ballisticity means $\frac{X_n}{n} \rightarrow v \neq 0$ P-a.s).

Random conductance model:

- environment coming from random (ergodic and elliptic) weights (conductances) on (sometimes long range) edges of \mathbb{Z}^d .
- reversibility, no ballisticity: v = 0.

Regeneration structure, strong LLN, functional CLT

Sznitman-Zerner '99:

• Regeneration structure. \mathbb{P} - a.s. \exists times $0 =: \tau_0 < \tau_1 < \tau_2 < ... < \infty$ so that τ_k have all moments and

$$\left(\{X_{\tau_k,\tau_k+m}\}_{0\leq m\leq \tau_{k+1}-\tau_k}, \tau_{k+1}-\tau_k\right)_{k\geq 1}$$
 are i.i.d..

• Strong LLN.
$$\frac{X_n}{n} \to \frac{\mathbb{E}[X_{\tau_1,\tau_2}]}{\mathbb{E}[\tau_2-\tau_1]} =: v \mathbb{P}\text{-a.s.}$$

Sznitman '00: Let

$$X^{n}(t) := \frac{1}{n} (\bar{X}_{\lfloor n^{2}t \rfloor} + (n^{2}t - \lfloor n^{2}t \rfloor) (\bar{X}_{\lfloor n^{2}t \rfloor + 1} - \bar{X}_{\lfloor n^{2}t \rfloor}), \quad \bar{X}_{n} := X_{n} - nv$$

be the centering & rescaling.

• Functional CLT. Under \mathbb{P}

 $X^{n}(\cdot) \Rightarrow B$, a Brownian motion, in $C([0, T], \mathbb{R}^{d})$.

Covariance:
$$\Sigma_{i,j}^2 = rac{\mathbb{E}[ar{X}_{ au_1, au_2}^iar{X}_{ au_1, au_2}^j]}{\mathbb{E}[au_2- au_1]}$$

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > <

- Environment non-homogeneous.
- Averaging effect: on large scales walk's fluctuations are approaching a (Gaussian) limit.
- However, generally covariance is different than in homogenous case.

イロン イ団 とく ヨン イヨン

Ballistic RWRE as rough paths

Ballistic RWRE: convergence & area anomaly

 $(X_t^n, \mathbb{X}_{s,t}^n)$ - centred & rescaled linearly interpolated lift.

Theorem (Lopusanschi - O '18)

Ballistic RWRE, $d \ge 2$. Under \mathbb{P} :

$$(X^n,\mathbb{X}^n) \Rightarrow (B,\mathbb{B}^{Str}+\Gamma\cdot)$$

in the $\alpha\text{-H\"older}$ rough path topology, for every $\alpha < 1/2.$

- B Brownian motion, \mathbb{B}^{Str} its iterated integral w.r.t. Stratonovich integration
- Γ is a deterministic $d \times d$ matrix with the explicit form

$$\mathbb{T} = rac{\mathbb{E}[\operatorname{Antisym}(\mathbb{X}^1_{ au_1, au_2})]}{\mathbb{E}[au_2- au_1]},$$

where $Antisym(A)^{i,j} = \frac{1}{2}(A^{i,j} - A^{j,i}).$

Ballistic RWRE: remarks

- The solution to an SDE approximated by \bar{X} converges to a solution of an SDE with an explicit correction in terms of Γ .
- Our proof is general to any process on \mathbb{R}^d having a regeneration structure and enough moments, where moments translates to regularity.
- Example for ∄ arbitrary large moments: Random walks in Dirichlet environments with a large trap parameter.
- Area anomaly has a geometric interpretation: Γ is the expected signed stochastic area of \bar{X} , the re-centered walk, on a regeneration interval, normalized by its expected size:

$$\mathbf{T} = rac{\mathbb{E}[\operatorname{Antisym}(\mathbb{X}^1_{\tau_1,\tau_2})]}{\mathbb{E}[\tau_2 - \tau_1]}.$$

イロト 不得 トイヨト イヨト

Ballistic RWRE: the measure P on Ω satisfies

- $(\omega_x)_{x\in\mathbb{Z}^d}$ is i.i.d. and uniformly elliptic and
- Sznitman's T' ballisticity condition holds.

Random conductance model:

- environment coming from random (ergodic and elliptic) weights (conductances) on (sometimes long range) edges of Z^d.
- reversibility, no ballisticity: v = 0.

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > <

Random walk in random conductances

• Random conductances (discrete time): $\Omega = \{ \omega_{x,y} = \omega_{y,x} : x, y \in \mathbb{Z}^d, |x - y| = 1 \}; \text{ for fixed } \omega$

$$P^{\omega}(X_{n+1}=y|X_n=x)=\frac{\omega_{x,y}}{\sum_{z}\omega_{x,z}}.$$

- Functional CLT: $X^n(t) = n^{-1}X_{n^2t}$. Assume conductances i.i.d with values in $[c, C] \subset (0, \infty)$ (uniform ellipticity). Under \mathbb{P} : X^n converges weakly in $D([0, T], \mathbb{R}^d)$ to a Brownian motion with a covariance matrix $\Sigma = \Sigma(\text{law}(\omega))$ [Künnemann '83].
- Again, homogenization: on large scales walk feels the environment in an "averaged" sense, covariance is different than in homogenous case.

Random walk in random conductances - two routes

- Annealed (or in probability) results: additive functionals of MCs: Kozlov 79, Papanicolaou-Varadhan 81, Kipnis-Varadhan 86, De Masi, Ferrari, Goldstein and Wick 89 (very partial list).
- Quenched results for the continuous time process with variable speed using cocycle spaces: Sidoravicius-Snitzman 04, Berger-Biskup 07, Mathieu-Piatnitski 07 (very partial list).
- Variety of conditions. Extends to stationary ergodic conductances, with some regularity conditions on the conductances. Typically some positive and negative moment condition for $\mu = \sum_{y} \omega(0, y)$ the total rates at the origin and regularity of the jumps (e.g. second moment).

イロン イヨン イヨン イヨン 三日

Random conductances and rough paths

Strategy 1. Additive functionals of Markov processes as rough paths

Kipnis-Varadhan theory in rough path topology

Theorem (Deuschel - O - Perkowski '19)

X Markov with generator \mathcal{L} , μ stationary and ergodic for $\mathcal{L}, \mathcal{L}^*$. $F : E \to \mathbb{R}^d$ bounded and measurable with $\int F d\mu = 0$ and $Z_t^n = n^{-1} \int_0^{n^2 t} F(X_s) ds$. Assume \mathcal{H}^{-1} condition. Then

$$(Z^n,\mathbb{Z}^n) o \left(B,\mathbb{B}^{Str} + \lim_{\lambda \to 0} \mathbb{E}[\Phi_\lambda \otimes \mathcal{L}_A \Phi_\lambda]\right)$$

in (p-variation) rough path topology (for all p > 2), where B is a Brownian motion with covariance

$$\langle B,B\rangle_t=2t\lim_{\lambda\to 0}\mathbb{E}[\Phi_\lambda\otimes(-\mathcal{L}_S)\Phi_\lambda].$$

Note: correction vanishes if $\mathcal{L} = \mathcal{L}^*$.

 \mathcal{H}^{-1} condition. For $(\lambda - \mathcal{L})\Phi_{\lambda} = F$: $\lambda \int |\Phi_{\lambda}|^2 d\mu + \int (\Phi_{\lambda} - \Phi_{\lambda'}) \otimes (-\mathcal{L})(\Phi_{\lambda} - \Phi_{\lambda'})d\mu \to 0$.

Application to random conductances

э

イロン イ団 とく ヨン イヨン

Theorem (Deuschel - O - Perkowski '19)

Assume i.i.d and uniformly elliptic conductances. For the Itô lift (X^n, \mathbb{X}^n) , under \mathbb{P} we have a rough path convergence

$$(X^n,\mathbb{X}^n) \to \left(B,\int_0^{\cdot} B_s \otimes dB_s + \frac{1}{2}\langle B,B\rangle_{\cdot} + \cdot \Gamma\right),$$

where $\Gamma = -diag (\mathbb{E}[\omega(0, e_i)], i = 1, ..., d).$

- Started from Itô, so would not expect Stratonovich integrals.
- For linear interpolations we get converges to Stratonovich (without anomaly!).

Strategy 2. Cocycle space and the corrector process

イロン イ団 とく ヨン イヨン

Classical quenched FCLT

• \exists Hilbert space H of cocycle functions on $\Omega \times \mathbb{Z}^d$ with $H = H_{sol} \oplus H_{pot}$, $H \ni \Pi = \Psi + \chi$ for the position field $\Pi(\omega, x) = x$ and

$$X_t = \Pi(\omega, X_t) = \Psi(\omega, X_t) + \chi(\omega, X_t)$$

is a decomposition to a martingale plus a "corrector".

- Analytical tools → corrector is sublinear → vanishes in limit (e.g. Sidoravicius and Sznitman '04).
- Quenched CLT for X then follows from martingale CLT for $\Psi(\omega, X_t)$.

$$\begin{split} \|\Psi\|_{H}^{2} &= \mathbb{E}[\sum_{x} \omega(0, x)(\Psi(\omega, x))^{\otimes 2}].\\ \Psi \text{ is a cocycle if } \Psi(\omega, x) - \Psi(\omega, y) &= \Psi(\tau_{y}\omega, x - y).\\ H_{\text{pot}} \text{ is a closure of gradient functions } \Phi(\omega, x) &= \varphi(\tau_{x}\omega) - \varphi(\omega) \text{ so that } \varphi \text{ is local.} \quad \text{ is } \quad \text{ or } n \in \mathbb{C} \end{split}$$

- With Johaness Bäumler, Noam Berger, and Martin Slowik.
- Anealed result for general conditions.
- Remark: corrector χ(ω, X_t) vanishes BUT its iterated integral converges to a the non-zero linear function t ||χ||²_H.
- Compared to area anomaly we got using rough path Kipnis-Varadhan.

 $\Pi \in H$, stationary ergodic, jump a.s. positive and has 1^+ moments $\oplus \to A \cong A \oplus A \oplus A \oplus A \oplus A$

Quenched - in progress

- Classical quenched invariance principle: Sidoravicius-Snitzman 04, Berger-Biskup 07, Mathieu-Piatnitski 07.
- \mathbb{Z}^d , $d \ge 3$, i.i.d nearest neighbor conductances in $\{0\} \cup [a, b]$
- Recent work by Paul Dario on moments of the corrector in space $\mathbb{E}|\chi(\omega, x)|^{\rho} < C_{\rho}.$
- Quenched Heat kernel bounds: Mathieu-Remy 04, Barlow 04.
- We deduce quenched moments of the corrector on the process uniformly in time
- $E_0^{\omega}[|\chi(\omega, X_t)|^p] < c_p(\omega)$ for all p > 0.
- Bounded jumps which enables transferring the estimates to the martingale part: $|\Delta \Psi(\omega, X_{\cdot})| + |\Delta \chi(\omega, X_{\cdot})| = 1$
- (after some work) get a quenched result.

イロン イヨン イヨン 一日

Summary

- Program: invariance principle for rough walks in random environment.
 - Approximation of SDEs. Universality.
 - Richer understanding of path structure in RWRE models.
- Ballistic RWRE (non-reversible case).
 - Identification of area anomaly in terms of a stochastic area in regeneration interval.
- Kipnis-Varadhan theory in rough path topology.
 - No area anomaly if the process is reversible.
 - Application to random conductances: canonical limit for linear interpolations, correction for Itô rough path.
 - Method extends to many other models, not necessary reversible, e.g. periodic diffusions.
- Cocycle space for random conductances.
 - Area anomaly in Itô case, identified by the H norm of the corrector.
 - Holds quenched whenever the corrector has enough moments (2 + ϵ should be enough).

Summary

- Program: invariance principle for rough walks in random environment.
 - Approximation of SDEs. Universality.
 - Richer understanding of path structure in RWRE models.
- Ballistic RWRE (non-reversible case).
 - Identification of area anomaly in terms of a stochastic area in regeneration interval.
- Kipnis-Varadhan theory in rough path topology.
 - No area anomaly if the process is reversible.
 - Application to random conductances: canonical limit for linear interpolations, correction for Itô rough path.
 - Method extends to many other models, not necessary reversible, e.g. periodic diffusions.
- Cocycle space for random conductances.
 - Area anomaly in Itô case, identified by the H norm of the corrector.
 - Holds quenched whenever the corrector has enough moments (2 + ϵ should be enough).

Thank you for your attention!

イロン イ団 とく ヨン イヨン