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Circle Packings
Is there a canonical way of drawing a planar graph?

Definition
A circle packing (CP) is a collection of circles in the plane with disjoint
interiors.

Definition
Given a circle packing, its tangency graph is the graph obtained by using
the circles as vertices and connecting tangent circles by an edge.
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Circle Packing: An Example

Note
A circle packing induces a drawing of its tangency graph in straight lines
by mapping the vertices to the centers of their correspding circles.
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The Circle Packing Theorem (CPT)

Theorem (Koebe-Andreev-Thurston, 1936)
(Existence) Every finite planar graph is the tangency graph of a
circle packing.
(Uniqueness) If the graph is a triangulation (outer face included)
then the circle packing representing it is unique up to Möbius
transformations and reflections.

Corollary (Fáry-Wagner Theorem, 1936)
Every finite planar graph can be drawn in the plane in straight lines.
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Some History: Riemann Mapping Approximation
Theorem (Rodin-Sullivan 87’, conjectured by Thurston 85’)
Let Ω be a bounded simply-connected domain. Then circle packings can
be used to approximate a Riemann map from Ω to the unit disk.

(image from Stephenson’s book "Introduction to Circle Packing")
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Some History: Riemann Mapping Approximation

Ring Lemma
(Rodin-Sullivan 87’)
For each d ∈ N, there exists
r = r(d) > 0 such that if a
unit circle is surrounded by d
circles forming a cycle
externally tangent to it then
their radii are larger than r .

u
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Infinite Graphs can also be circle packed!
All graphs in this talk are assumed to be:

connected.
locally finite.
Infinite triangulations are assumed to have no outer face.

Question
Given an infinite planar triangulation, can it be circle packed? If so, is the
circle packing unique?

Claim
Every infinite planar triangulation can be circle packed.

Sketch of Proof
Take a sequence of finite subgraphs exhausting the graph and circle pack
them using the CPT. Then use a compactness argument.
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Uniqueness?

(image from Asaf Nachmias’ Saint-Flour lecture notes)
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The He-Schramm Theorem: Some Definitions

Definition
For a circle-packed infinite triangulation (CPIT), define its carrier Ω ⊆ R2

to be the union of its induced drawing’s (triangular) faces.

Definition
A graph is called 1-ended if the deletion of any finite set of vertices leaves
the graph with exactly one infinite component.

Examples
Z2 (the square lattice) is 1-ended.
Z is not 1-ended.
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The He-Schramm Theorem
Theorem (He-Schramm, 95’)
Let G be a 1-ended infinite triangulation. Then exactly one of the two
following holds:

1 G can be circle-packed with R2 as carrier.
2 G can be circle-packed with the open unit disk D as carrier.

Furthermore, if G has bounded degrees then
1 iff G is recurrent.
2 iff G is transient.
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The He-Schramm Theorem
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Removing the 1-Ended Assumption

Without 1-endedness of the graph, the resulting carrier might have holes.

Definition
A domain Ω ⊆ R2 is called parabolic if for
every x ∈ Ω and an open U ⊆ Ω, Brownian
motion started at x and killed upon hitting
∂Ω hits U with probability 1. Otherwise, it
is called hyperbolic.

Theorem (Gurel-Gurevich, Nachmias, Souto 2017’)
Let G be a (planar) infinite triangulation with bounded degrees, then:
G is recurrent ⇐⇒ some CP of G has parabolic carrier

⇐⇒ any CP of G has parabolic carrier.
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Parabolicity <-> Recurrence
Equivalent Condition for Parabolicity
A domain Ω ⊆ R2 is parabolic iff for every K ⊆ Ω compact and ε > 0
there exists a Lipschitz function 0 ≤ φ ≤ 1 compactly supported in Ω with
φ |K≡ 1 such that

∫∫
Ω ‖∇φ‖

2 dA < ε.

Equivalent Condition for Recurrence
Let G = (V ,E ) be a graph and fix some ρ ∈ V . Then G is recurrent iff for
every ε > 0 there exists a finitely supported function f : V → R with
f (ρ) = 1 and

∑
uv∈E (f (v)− f (u))2 < ε.

Matan Seidel Random Walks on Circle Packings 11/12/19



The Bounded Degree Assumption
Without bounded degrees, the He-Schramm theorem might fail:
The circles added to the hexagonal lattice create a rightward drift and thus
transience. However, the carrier remains the entire plane (i.e. parabolic).

(image from Asaf Nachmias’ Saint-Flour lecture notes)
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Weighted Random Walk

Idea: Use weighted random walk
Random walker chooses an edge with prob. proportional to its weight.
Edge weights introduced by Duffin (1968) and Dubejko (1995).

Properties of the Weighted Random Walk
The sequence of centers visited by the random walker is a martingale!
(Dubejko, 1995).
Weights bounded from above by a (universal) constant.
Under bounded degree assumptions, weights also bounded from below
by a constant.

Theorem (Gurel-Gurevich, S. 2019)
The weighted random walk on a CPIT with parabolic carrier is recurrent.
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The Weights: Definition

A circle-packed triangulation induces
a circle packing of the dual graph by
considering the incircles of the
triangular faces.

Definition
The weight of an edge e ∈ E is the
length ratio |e

†|
|e| .

Theorem (Dubejko, 95’)
The sequence of centers of circles
traversed in the weighted random
walk is a martingale.

u v

w1

w2

e†
e
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The Weights: Proof of Martingale Property

Proof
To show:

∑n
i=1 cvui

−→ei = 0.
Indeed, Let R be a 90◦
rotation, then:

R
( n∑

i=1
cvui
−→ei

)
=

n∑
i=1

∣∣∣−→fi ∣∣∣∣∣−→ei
∣∣R (−→ei

)
=

n∑
i=1

−→
fi = 0.
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Special case of converse: bounded carrier

Proposition
The weighted random walk (Xn)n∈N on a circle-packed infinite
triangulation with a bounded carrier is transient.

Proof
Fix two vertices ρ, ρ′ ∈ V .
(Xn)n∈N is a bounded martingale, so
Xn

a.s−→ X for some RV X .
Suppose recurrence, then:

1 a.s. we have Xn = ρ infinitely
often => X a.s= ρ.

2 a.s. we have Xn = ρ′ infinitely
often => X a.s= ρ′.

in contradiction.
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Sketch of the Proof

Theorem (Gurel-Gurevich, S. 2019)
The weighted random walk on a circle-packed infinite triangulation
{Cv}v∈V with parabolic carrier Ω is recurrent.

Sketch of Proof
Goal: find f : V → R finitely supported,
f (ρ) = 1 with small energy
ε (f ) =

∑
xy∈E cxy (f (y)− f (x))2.

Take f = φ |V for φ : Ω→ [0, 1] of
parabolicity:

φ |K≡ 1 => f (ρ) = 1
φ comp. supp. => f finitely supported.∫∫

Ω ‖∇φ‖
2 dA is small.
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Sketch of the Proof
How to bound the discrete sum?

1 Discrete sum ≤ some 2D integral on polygons.
I (fund. theorem, averaging, Cauchy-Schwarz, euclidean geometry)

2 For good-angled polygons: bound with continuous Dirichlet energy
I (Harmonic analysis)

3 For bad-angled polygons: "fix" graph to bound in another way.
I (Martingales, Markov chains, Coupling, Electric networks)
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Two Transforms on a Markov Chain

Definition
A network is a pair (V , c), where c : V × V → [0,∞) are weights such
that:

(Symmetric) cx ,y = cy ,x for all x , y ∈ V
(Normalizable) π (x) :=

∑
y∈V cx ,y <∞ for all x ∈ V

(Connected) The graph obtained by connecting x , y by an edge iff
cx ,y > 0 is connected.

Definition
A Markov chain on state space V is said to be represented by the
network (V , c) if its transition matrix P satisfies: Px ,y = cx,y

π(x) .
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Two Transforms on a Markov Chain
Definition
Let (Xn)n∈N be a Markov chain on state space V :

1 Let W $ V finite, set V ′ := V \W . The chain censored to V ′ is the
process obtained by deleting appearances of W from (X1,X2, ...) .

2 The repetition-deleted chain is the process obtained by deleting
adjacent appearances of the same state from (X1,X2, ...) .
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Two Transforms on a Markov Chain
Proposition
Let (V , c) be a network and let (Xn) be a MC represented by (V , c).
Then:

1 For W = {w} and V ′ := V \W , the chain censored to V ′ is
represented by (V ′, c ′) where: c ′x ,y = cx ,y + cx,w cw,y

π(w)−cw,w
.

2 The repetition-deleted chain is represented by (V , c ′) where:

c ′x ,y =
{

cx ,y , x 6= y
0, x = y
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Coupling Lemma
Lemma
Let {Cv}v∈V be a CPIT and let Cx ,Cy ,Cz be mutually tangent such that
W := V ∩ int (conv ({x , y , z})) is finite.
Let (Xn)n∈N be a weighted random walk on {Cv}v∈V .
Then the chain obtained by censoring (Xn) to V ′ := V \W and then
deleting repetitions is represented by the weights of {Cv}v∈V ′ .
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Why is the lemma useful?
Idea: Insert circles to "push" bad polygons

Circle insertion gives control over the bad edges’ weights.
insert until all bad edges’ weights are summable (with small sum).
Use bound cx ,y (f (y)− f (x))2 ≤ cx ,y .
Lemma => original network recurrent iff new network recurrent
(same eff. resistance to inf).
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Proof of Coupling Lemma

Notation
Chain What is it? Weights

(Xn) weighted RW on {Cv}v∈V c

(Yn) censored & rep-deleted (Xn) c ′

(Zn) weighted RW on {Cv}v∈V ′ c ′′

Proof

To show:
c ′ = c ′′.

Note: for all
uv /∈ {xy , xz , yz}
we have:
c ′uv = cuv = c ′′uv .
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Proof of Coupling Lemma
Proof
Set Z0 ≡ x . Since (Zn) is a martingale:
0 = E [Z1 − Z0] =

∑n
i=1

c′′
x,ui

π′′(x) (ui − x) + c′′
x,y

π′′(x) (y − x) + c′′
x,z

π′′(x) (z − x)

So we get:∑n
i=1 cx ,ui (ui − x) + c ′′x ,y (y − x) + c ′′x ,z (z − x) = 0.
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Proof of Coupling Lemma
Proof
Set X0 ≡ x and set stopping time τ = inf {t > 0 | Xt /∈W ∪ {x}}.
Since (Xn) is a martingale:
0 = E [Xτ − X0] = E [Y1 − Y0] =∑n

i=1
c′

x,ui
π′(x) (ui − x) + c′

x,y
π′(x) (y − x) + c′

x,z
π′(x) (z − x) .

So we get:∑n
i=1 cx ,ui (ui − x) + c ′x ,y (y − x) + c ′x ,z (z − x) = 0.
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Proof of Coupling Lemma
Proof
Substracting the two equations gives:(
c ′x ,y − c ′′x ,y

)
(y − x) +

(
c ′x ,z − c ′′x ,z

)
(z − x) = 0.

y − x and z − x are edges of a triangle => linearly independent!

Thus: c ′x ,y − c ′′x ,y = c ′x ,z − c ′′x ,z = 0.
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Thanks!
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