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Background

An empirical fact

JN =


0 1 0 · · · 0
0 0 1 0 · · · 0
...

. . . . . . . . .
...

0 · · · · · · 0 1
0 · · · · · · · · · 0

 ,PN(z) = det(zI − JN) = zN , roots=0.

ĴN := UNJNU∗N where UN is random unitary matrix, Haar-distributed. Of
course, Spec(ĴN )=Spec(JN ).
Goes back to Trefethen et als - pseudo-spectrum.
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Background

A probability measure on C is characterized by its logarithmic potential

Lµ(z) =

∫
log |z − x |µ(dx).

Further, µn → µ weakly if and only if Lµn (z)→ Lµ(z), for Lebesgue
almost every z ∈ C.
For the empirical measure LN = N−1∑N

i=1 δλA
i

of eigenvalues of a
matrix A, we have

LLN (z) =
1
2

log det(z − A)(z − A)∗.

Thus, spectrum computations involves the determinant of a family of
Hermitian matrices built from A!
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Noise Stability

Śniady’s theorem

Assume AN
∗→ a.

Define AN(t) = AN + tN−1/2GN .

Theorem (Śniady ’02)

limt→0 limN→∞ LAN (t)
N = νa . (Brown measure - given by log-potential of

a)
In particular, some sequence of noise regularizes empirical measure to
the Brown measure.

Builds on regularization ideas of Haagerup.

Main ingredient of proof compares the singular values ΣA(t) = (σA
1 , . . . , σ

A
N) of

AN + tN−1/2GN to the singular values Σ0(t) = (σ1, . . . , σN) of tN−1/2GN ; by
coupling the SDEs for the evolution of Σ0,ΣA, for f coordinate-wise
increasing,

N−1tr(f (ΣA(t)) ≥ N−1tr(f (Σ0(t))).

This gives required control of the determinant; Second part of theorem
follows by diagonalization argument.
How can we take t = tN → 0?
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Theorem (Śniady ’02)

limt→0 limN→∞ LAN (t)
N = νa . (Brown measure - given by log-potential of

a)
In particular, some sequence of noise regularizes empirical measure to
the Brown measure.

Builds on regularization ideas of Haagerup.

Main ingredient of proof compares the singular values ΣA(t) = (σA
1 , . . . , σ

A
N) of

AN + tN−1/2GN to the singular values Σ0(t) = (σ1, . . . , σN) of tN−1/2GN ;

by
coupling the SDEs for the evolution of Σ0,ΣA, for f coordinate-wise
increasing,

N−1tr(f (ΣA(t)) ≥ N−1tr(f (Σ0(t))).

This gives required control of the determinant; Second part of theorem
follows by diagonalization argument.
How can we take t = tN → 0?

Ofer Zeitouni Small Perturbations 4 / 29



Noise Stability

Śniady’s theorem

Assume AN
∗→ a. Define AN(t) = AN + tN−1/2GN .

Theorem (Śniady ’02)
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Noise Stability

Regularization by noise

Consider the nilpotent N-by-N matrix

JN =


0 1 0 · · · 0
0 0 1 0 · · · 0
...

. . . . . . . . .
...

0 · · · · · · 0 1
0 · · · · · · · · · 0



Eigenvalues λi = 0, empirical measure n−1∑ δλi = δ0.
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Noise Stability

Regularization by noise II

Set γ > 1/2.

Theorem (Guionnet-Wood-Z. ’14)

Set AN = JN + N−γGN , empirical measure of eigenvalues LA
N . Then LA

N
converges weakly to the uniform measure on the unit circle in the
complex plane.

Thus, LJN
N = δ0 but for a vanishing perturbation, LA

N has different limit.
Earlier version - Davies-Hager ’09
(Generalization to i.i.d. GN : Wood ’15.)
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Noise Stability

What is going on?

JδN =


0 1 0 · · · 0
0 0 1 0 · · · 0
· · · · · · · · · · · · · · ·
0 · · · · · · 0 1
δN · · · · · · · · · 0



Characteristic polynomial:

PN(z) = det(zI − JδN) = zN ± δN .

Roots: {δ1/N
N e2πi/N}N

i=1.

If δN = 0 then LJδN
N

N = δ0.

If δN → 0 polynomially slowly then LJδN
N

N converges to uniform on circle.
Why is this particular perturbation picked up?
General criterion - Guionnet, Wood, Z.
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Noise Stability

Noise Stability-Maximal Nilpotent

a ∈ A is regular if for ψ smooth, compactly supported,

lim
ε→0

∫
C

∆ψ(z)

(∫ ε

0
log x dνz

a (x)

)
dz = 0

(νz
a - spectral measure of |a− z|).

Theorem (Guionnet-Wood-Z. ’14)

Assume: AN
∗→ a, regular. LA

N → νa weakly. γ > 1/2. Then,
LAN +N−γGN

N → νa weakly, in probability.

The proof uses the regularity (of the limit) to truncate the singularity of
the log... and depends crucially on convergence to νa. But it is not
useful in maximally nilpotent example, since LA

N = δ0 6→ νa = δS1 !.
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useful in maximally nilpotent example, since LA

N = δ0 6→ νa = δS1 !.

Ofer Zeitouni Small Perturbations 8 / 29



Noise Stability

Noise Stability-Maximal Nilpotent
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Noise Stability

Noise Stability-Maximal Nilpotent

Theorem (Guionnet-Wood-Z. ’14)

Assume: AN
∗→ a, regular,

‖EN‖ → 0 polynomially. LAN +EN
N → νa

weakly. Then LAN +N−γGN
N → νa weakly, in probability.

So it is enough to find a perturbation with correct limiting behavior!
Nilpotent example uses a- unitary element (which is regular), EN is
(N,1) element.
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Noise Stability

Noise Stability-Nilpotent matrices
Maybe this always works?

Jb - maximally nilpotent of dimension b.

Jb,N =


Jb

Jb
. . .

Jb


Theorem (Guionnet-Wood-Z ’14)

If b = a log N and γ is large enough, then the spectral radius of Jb,N + N−γGN
is uniformly strictly smaller than 1. In particular,

LJa log N,N +N−γGN
N 6→ δS1

even though Ja log N,N converges in ∗ moments to random unitary!

−0.1 −0.05 0 0.05 0.1

−0.05

0

0.05
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Noise Stability

Noise Stability-Block Nilpotent

A generalization: Bi = Bi (N) - Jordan blocks, dimension ai (N) log N,
eigenvalue ci (N).

AN =


B1

B2

. . .
B`(N)

 .
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Noise Stability

Noise Stability-Block Nilpotent IV

Simulations inconclusive!

−2.5 −2 −1.5 −1 −0.5 0 0.5 1 1.5 2 2.5
−2

−1

0

1

<z

γ = 1.0

−2.5 −2 −1.5 −1 −0.5 0 0.5 1 1.5 2 2.5
−2

−1

0

1

<z

γ = 0.8

Analyzed by Feldheim-Paquette-Z. (2015).
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Noise Stability

More general models?

−2 −1 0 1 2
−2

−1

0

1

2
γ = 0.75
γ = 1.75
γ = 4.00

−2 −1 0 1 2
−2

−1

0

1

2

Figure: The eigenvalues of JN + J2
N + N−γGN , with N = 4000 and various γ.

On left, actual matrix. On the right, UN(JN + J2
N)U∗N .
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Figure: The eigenvalues of DN + JN + N−γGN , with N = 4000 and various γ.
Top: DN(i , i) = −1 + 2i/N. Bottom: DN i.i.d. uniform on [−2,2]. On left, actual
matrix. On the right, UN(DN + JN)U∗N .
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Noise Stability

More general models

Theorem (Basak, Paquette, Z. ’17)

TN = DN + JN , MN = TN + N−γGN , γ > 1/2.
di iid uniform on [−1,1].

Then LN → µ, µ explicit: log-potential of µ at z is (E log |z − d1|) ∨ 0).
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Noise Stability

More general models

Theorem (Basak, Paquette, Z. ’17)

TN =
∑k

i=0 aiJ i
N (Toeplitz, finite symbol, upper triangular). Then,

LN → Law of
k∑

i=0

aiU i

where U is uniform on unit circle.

Extends to twisted Toeplitz TN(i , j) = ai (j/N), i = 1, . . . , k , ai continuous:

LN →
∫ 1

0
Law of

k∑
i=0

ai (t)U i

Confirms simulations and predictions (based on pseudo-spectrum) of
Trefethen et als. Some two-diagonal Toeplitz cases studied by Sjöstrand and
Vogel (2016)
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Noise Stability

BPZ
Recall TN = MN + N−γGN , γ > 1/2, GN complex Gaussian

Write zI −MN = UΣNV ∗, ΣN - diagonal, singular values, arranged
non-decreasing, and then

Σ = ΣN =

(
SN

BN

)
, N−γGN =

(
X1 X2
X3 X4

)
.

where SN has dimension N∗ × N∗.
Define N∗ as

sup{i ≥ 1 : Σii (z) ≤ ε−1
N N−γ(N − i)1/2}, εN = N−η

Theorem (Basak-Paquette-Z. ’17 - Deterministic equivalence)

If N∗ = o(N/ log N) then

1
N

log |detTN | −
1
N

log |detBN | → 0.

So only need to understand small singular values of MN .
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Banded Toeplitz

Non triangular Toeplitz, non Gaussian noise
• E

∑
GN(i , j)2 = O(N2)

• There is β = β(α, γ) so that for any MN deterministic with ‖MN‖ = O(N−α),
P(smin(MN + N−γGN) < N−β) = o(1)

Theorem (Basak, Paquette, Z. ’18)

TN =
∑k2

i=−k1
aiJ i

N (Toeplitz, finite symbol, J−1
N := JT

N .) Then,

LTN +N−γGN
N → Law of

k2∑
i=−k1

aiU i

where U is uniform on unit circle.

Proof based on a two step approximation (related to GWZ14) - first find local
(noisy) perturbation that gives required limit, then show that global noise does
not destroy it.
Related (different methods, Gaussian noise - Grushin problem) - Sjöstrand
and Vogel ‘19.
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Banded Toeplitz

Proof ingredients

Theorem (Replacement principle - after GWZ)

AN - deterministic, bounded operator norm. ∆N and GN - independent
random matrices. Assume

(a) GN and ∆N are independent. ‖∆N‖ < N−γ0 whp and GN noise matrix as
before.

(b) For Lebesgue a.e. z ∈ BC(0,R0), the empirical distribution of the
singular values of AN − zIN converges weakly to the law induced by
|X − z|, where X ∼ µ and suppµ ⊂ BC(0,R0/2).

(c) For Lebesgue a.e. every z ∈ BC(0,R0),

LLA+∆
N

(z)→ Lµ(z), as N →∞, in probability. (1)

Then, for any γ > 1
2 , for Lebesgue a.e. every z ∈ BC(0,R0),

L
LA+N−γG

N
(z)→ Lµ(z), as N →∞, in probability. (2)
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Banded Toeplitz

Proof ingredient II

Theorem

Let TN be any N × N banded Toeplitz matrix with a symbol a. Then, there
exists a random matrix ∆N with

P(‖∆N‖ ≥ N−γ0 ) = o(1), (3)

for some γ0 > 0, so that LT +∆
N converges weakly, in probability, to µa.

This works for Toeplitz with banded symbol, but not for twisted Toeplitz! Main
issue - Toeplitz determinant of un-perturbed matrix requires work, e.g.
Widom’s theorem.
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Banded Toeplitz

Grushin’s problem

An alternative, developed by Sjöstrand and Vogel: the Grushin problem.

A = AN matrix, singular values t1 ≤ t2 . . . ≤ tN . G = GN perturbation, δ = δN
small. Want eigenvalues of A + δG.
Let {ei} be eigenvectors of A∗A, {fi} of AA∗, with

A∗fi = tiei , Aei = ti fi

Let {δi} be standard basis. Fix M > 0 integer (may depend on N) - these will
be eventually the small singular values, ie all singular values of A except for
smallest M are above a strictly positive threshold α.

R+ =
M∑

i=1

δi ◦ e∗i , R− =
M∑

i=1

fi ◦ δ∗i ,

P =

(
A R−

R+ 0

)
: CN × CM −→ CN × CM bijection!
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An alternative, developed by Sjöstrand and Vogel: the Grushin problem.
A = AN matrix, singular values t1 ≤ t2 . . . ≤ tN . G = GN perturbation, δ = δN
small. Want eigenvalues of A + δG.
Let {ei} be eigenvectors of A∗A, {fi} of AA∗, with

A∗fi = tiei , Aei = ti fi

Let {δi} be standard basis. Fix M > 0 integer (may depend on N) - these will
be eventually the small singular values, ie all singular values of A except for
smallest M are above a strictly positive threshold α.

R+ =
M∑

i=1

δi ◦ e∗i , R− =
M∑

i=1

fi ◦ δ∗i ,

P =

(
A R−

R+ 0

)
: CN × CM −→ CN × CM bijection!

Ofer Zeitouni Small Perturbations 21 / 29



Banded Toeplitz

Grushin’s problem
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be eventually the small singular values, ie all singular values of A except for
smallest M are above a strictly positive threshold α.

R+ =
M∑

i=1

δi ◦ e∗i , R− =
M∑

i=1

fi ◦ δ∗i ,

P =

(
A R−

R+ 0

)
: CN × CM −→ CN × CM bijection!
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Banded Toeplitz

Grushin’s problem

P =

(
A R−

R+ 0

)
: CN × CM −→ CN × CM bijection!

We have

P−1 = E =

(
E E+

E− E−+

)
with

E =
N∑

M+1

1
ti

ei ◦ fi , E+ =
M∑
1

ei ◦ δ∗i ,

E− =
M∑
1

δi ◦ f ∗i , E−+ = −
M∑
1

tjδj ◦ δ∗j ,

and the norm estimates

‖E(z)‖ ≤ 1
α
, ‖E±‖ = 1, ‖E−+‖ ≤ α, | detP|2 =

N∏
M+1

t2
i .
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Banded Toeplitz

Noisy Grushin problem

Aδ = A + δG, 0 ≤ δ � 1.

Pδ =

(
Aδ R−
R+ 0

)
: CN × CM −→ CN × CM

Applying E = P−1 from the right:

PδE = IN+M +

(
δGE δGE+

0 0

)
Suppose that δ‖G‖α−1 ≤ 1/2, then

Eδ = (Pδ)−1 = E +
∞∑

n=1

(−δ)n
(

E(GE)n (EG)nE+

E−(GE)n E−(GE)n−1GE+

)
=

(
Eδ Eδ

+

Eδ
− Eδ

−+

)
,

‖Eδ‖ = ‖E(1 + δGE)−1‖ ≤ 2α−1, ‖Eδ
+‖ ≤ 2, ‖Eδ

−‖ ≤ 2, ‖Eδ
−+ − E−+‖ ≤ α.

The Schur complement formula applied to Pδ and Eδ shows that

log | det Aδ| = log | detPδ|+ log | det Eδ
−+|.
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Banded Toeplitz

Noisy Grushin -ct’d

Eδ = (Pδ)−1 =

(
Eδ Eδ+
Eδ− Eδ−+

)
, log | det Aδ| = log | detPδ| + log | det Eδ−+|

∣∣log | detPδ| − log | detP0|
∣∣ =

∣∣∣∣∣<
∫ δ

0
Tr(Eτ

d
dτ
Pτ )dτ

∣∣∣∣∣
=

∣∣∣∣∣<
∫ δ

0
Tr
(

Eτ Eτ
+

Eτ
− Eτ

−+

)
·
(

G 0
0 0

)
dτ

∣∣∣∣∣ ≤ 2α−1δN‖G‖.

So,
∣∣∣∣ 1
N

log | detPδ| − 1
N

log | detP|
∣∣∣∣ ≤ 2α−1δ‖G‖.

But ‖Eδ
−+‖ ≤ 2α, thus,

log | det Aδ| ≤ log | detP|+ M| log 2α|+ 2α−1δN‖G‖.
Complementary lower bound requires just a bit more work.
Since detP is like erasing the small singular values of A, this gives a version
of the deterministic equivalence lemma for general noise (Vogel-Z. ’20)
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Banded Toeplitz

Outliers

JN + N−γGN JN + J2
N + N−γGN

−1 −0.5 0 0.5 1
−1

−0.5

0

0.5

1

−2 −1 0 1 2
−2

−1

0

1

2
γ = 0.75
γ = 1.75
γ = 4.00

Outliers are random. What is structure of outliers?
• JN + N−γGN : outliers are zeros of a limiting Gaussian field, all inside disc.
• JN + J2

N + N−γGN : Write zI + JN + J2
N = (λ1(z)− JN))(λ2(z)− JN):

No outliers in {z : |λi (z)| > 1, i = 1,2}
In {z : |λ1(z)| > 1 > |λ2(z)|}, outliers are roots of a Gaussian field, limit
of terms involving a single Gaussian in expansion of char. pol.

In {z : 1 > |λ1(z)| > |λ2(z)|}, outliers are roots of limit of terms involving
a product of two Gaussians in expansion of char. pol.
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Banded Toeplitz

Outliers

• Toeplitz, finite symbol a(λ) =
∑k2

i=−k1
aiλ

i , set

z +

k2∑
i=−k1

aiλ
i = λ−k2

k1+k2∏
i=1

(λi(z)− λ), |λi | ≥ |λi+1|

Let d0 = d0(z) be such that |λd0 | > 1 > |λd0+1|, and set
d = d(z) = k1 − d0. Let Dk = {z ∈ C : d(z) = k}.
Let T (a) denote the (infinite, band) Toeplitz operator of symbol a(λ),
with spectrum D∞(a) (=a(S1) ∪ D0).
Let LN be the empirical measure of eigenvalues of TN + N−γGN .

Theorem (Basak-Z. ’19 - No eigenvalues outside limiting support)
Fix ε > 0. Then,

P(LN(D∞(a)ε)= 0)→N→∞ 1.

This does not mean there are no outliers, as a(S1) ( D∞(a).
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Fix ε > 0. Then,

P(LN(D∞(a)ε)= 0)→N→∞ 1.

This does not mean there are no outliers, as a(S1) ( D∞(a).
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Banded Toeplitz

Outliers
z +

∑k2
i=−k1

aiλ
i = λ−k2

∏k1+k2
i=1 (λi (z)− λ), |λi | ≥ |λi+1|,

|λd0 | > 1 > |λd0+1|, d = d(z) = k1 − d0, Dk = {z ∈ C : d(z) = k}.

For k 6= 0, let AN,k = {z ∈ Dk : z is an eigenvalue of TN + N−γGN}.

Theorem (Basak-Z ‘19 - Outlier fields)
For each k 6= 0, there exists a random set Nk , finite on compact
subsets of Dk , so that AN,k converges in distribution on compact
subsets of Dk to Nk .

The random sets Nk are constructed as follows. There are random
fields ξ(L)

k , polynomials in the λi(z), whose coefficients are specific
minors of EN of size |k |+ k2 (which minors appear admits a
combinatorial description).
The zero set of ξ(L)

k is denoted N (L)
k , and admits a distributional limit

Nk as L→∞.
Improves on counting estimates of Sjöstrand and Vogel (‘19).
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Banded Toeplitz

Outliers

In the particular case of TN = JN with Gaussian complex noise:

No outliers in compact subsets of {z : |z| > 1}.
The outliers inside {z : |z| < 1} have, asymptotically, the same
law as zeros of the hyperbolic Gaussian analytic function, i.e.∑∞

i=0 aiz i with ai i.i.d. standard complex Gaussian.
In particular, the outliers inside the unit disc form a determinental
process, and the first intensity is

2
π(1− |z|2)2 1|z|<1

Computation of intensity first performed by Sjostrand and Vogel (2018).
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Banded Toeplitz

Concluding remarks

• General twisted Toeplitz symbol :
Expect mixture as in upper triangular case.Main obstacle: compute
determinant of twisted Toeplitz with non-zero winding number.
• Toeplitz with infinite symbol - depends on rate of decay? Grushin
problem based recent breakthrough of Sjöstrand-Vogel
• Eigenvectors - work in progress with Basak and Vogel.
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• Eigenvectors - work in progress with Basak and Vogel.

Ofer Zeitouni Small Perturbations 29 / 29



Banded Toeplitz

Concluding remarks

• General twisted Toeplitz symbol :
Expect mixture as in upper triangular case.Main obstacle: compute
determinant of twisted Toeplitz with non-zero winding number.
• Toeplitz with infinite symbol - depends on rate of decay?

Grushin
problem based recent breakthrough of Sjöstrand-Vogel
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