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Consider Sn, the symmetric group on n elements, endowed
with uniform distribution.

πn - a randomly uniformly drawn permutation from Sn

C(π) - number of cycles in π
Ci(π) - number of cycles in π of length i (

∑
iCi = n.)

`1(π) ≥ `2(π) ≥ . . . - cycles length of π in decreasing order.



Permutations Integers Analogy Ewens measure Ewens on the integers Pf. ideas

Some basic facts about permutations:
Cauchy’s formula:

P(Ci(πn) = ai , i = 1,2, . . . ,n) =
n∏

i=1

1
(ai)!iai

.

The length of the cycle containing a given element is
distributed uniformly in {1,2, . . . ,n}:

P(cycle in πn containing 1 has length i) =
1
n
.
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Asymptotic results about permutations:
P(C(πn) = 1) = 1

n .

EC(πn) = 1
1 + 1

2 + . . .+ 1
n = Hn = log n + O(1).

(Goncharov, 1941) VarC(πn) ∼ log n and we have ‘CLT’:

C(πn)− log n√
log n

→ N(0,1).

(Shepp and Lloyd, 1966)(
`1(πn)

n
,
`2(πn)

n
, . . .

)
→ PD(1).
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All these results have integer analogues.
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Let Nx be an integer chosen uniformly at random from
[1, x ] ∩ Z.

Nx may be factored uniquely, up to order, as a product of
primes (Euclid).
We write Nx = p1p2p3 . . . pk , where p1 ≥ p2 ≥ . . ..
Prime factors are analogous to cycles. We set ω(n) as the
number of prime factors of n (without multiplicities).
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Prime Number Theorem
We have

P(Nx is prime) ≈ P(ω(Nx ) = 1) ∼ 1
log x

.

Conjectured by Gauss and Legendre in 1790’s. Proved by
Hadamard and de la Vallée Poussin in 1896.
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Distribution of ω

‘Standard’ computation:

Eω(Nx ) =
∑
p≤x

P(p | Nx ) =
∑
p≤x

(
1
p

+ O(
1
x

)) ∼ log log x .

By PNT:
∑

p≤x
1
p ≈

∫ x
2

1
log t

dt
t ≈ log log x . In fact, was computed

elementarily by Mertens in 1874.

Theorem (Hardy-Ramanujan, 1917)
Let g(x)→∞. Then

P(|ω(Nx )− log log x | < g(x)
√

log log x)→ 1.
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Distribution of ω (cont.)

Original Proof: Landau (1909) used PNT to prove

P(ω(Nx ) = k) ∼ 1
log x

(log log x)k−1

(k − 1)!

for any fixed k . H & R proved a uniform version, at the cost of
losing asymptotics:

P(ω(Nx ) = k)� 1
log x

(log log x + C)k−1

(k − 1)!
.
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Distribution of ω (cont.)

Turán’s proof (1934): Computed the variance

Var(ω(Nx )) ∼ log log x .

Now follows from Chebyshev’s inequality (‘second moment
method’).
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Distribution of ω (cont.)

Theorem (Erdös-Kac, 1940)
As x →∞,

ω(Nx )− log log x√
log log x

→ N(0,1).

Heuristic: ω(Nx ) =
∑

p 1p|Nx . These indicators are
approximately independent (at least for small p), so this is just
CLT.
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Largest primes

Theorem (Dickman, 1930)

The random variable log p1(Nx )
log x has an explicit limiting

distribution. The function

ρ(u) = lim
x→∞

P
(

p1(Nx ) ≤ x1/u
)

is known as Dickman’s ρ function. Continuous.

Satisfies

ρ(u) =
1
u

∫ u

u−1
ρ(y) dy .

Appears often in complexity analysis of integer factorization
algorithms.
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Largest primes (cont.)

Theorem (Billingsley, 1972)
As x →∞, (

log p1(Nx )

log x
,

log p2(Nx )

log x
, . . .

)
→ PD(1).

A word about history: the Poisson-Dirichlet process was
introduced by Kingman only in 1975. Billingsley, as well as
Shepp and Lloyd’s results, arrived before...
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Permutation world Integer world

P(C(πn) = 1) = 1
n P(ω(Nx ) = 1) ∼ 1

log x
EC(πn) ∼ log n Eω(Nx ) ∼ log log x

VarC(πn) ∼ log n Varω(Nx ) ∼ log log x
C(πn)−log n√

log n → N(0,1) ω(Nx )−log log x√
log log x → N(0,1)(

`1(πn)
n , . . .

)
→ PD(1)

(
log p1(Nx )

log x , . . .
)
→ PD(1)

Informally, permutations on n elements behave like integers of
order x , where log x ≈ n.
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Ewens measure with parameter θ > 0: measure on Sn, defined
by

P(πn,θ = π) ∝ θC(π).

Normalizing constant:

1
n!

∑
π∈Sn

θC(π) =

(
n + θ − 1
θ − 1

)
∼ nθ−1

Γ(θ)
.

Originally arose in population genetics (Ewens, 1972).
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Chinese restaurant process

n customers enter a restaurant. Customer 1 sits at the first
table. Inductively, the k th customer decides either to sit
immediately to the right of one of the previous customers or to
sit alone at a new table.

The probability to sit to the right of each customer is

1
θ + k − 1

,

and the probability to open a new table is θ/(θ + k − 1).

Exercise: the measure obtained on permutations on the
customers is Ewens.
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Some asymptotic results:
(Hansen, 1990) EC(πn,θ) ∼ θ log n, VarC(πn,θ) ∼ θ log n and
we have ‘CLT’:

C(πn,θ)− θ log n√
θ log n

→ N(0,1).

(Watterson, 1976)(
`1(πn,θ)

n
,
`2(πn,θ)

n
, . . .

)
→ PD(θ).
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The most natural analogue is

P(Nx ,θ = n) ∝ θω(n).

More generally:
P(Nx ,f = n) ∝ f (n).

where f is multiplicative: f (n×m) = f (n)× f (m) if n,m coprime.
Ubiquitous in number theory.
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Examples

1 f (n) = 1 if n is a sum of two squares, 0 otherwise.
2 f (n) = d(n), number of divisors of n.

Equivalently: pick a random pair (a,b) such that a · b ≤ x .
Let Nx ,f = a · b.

3 f (n) = a(n), the number of abelian groups of order n.
Equivalently: pick a random abelian group G of order ≤ n.
Let Nx ,f = |G|.

4 f (n) = number of roots of P modulo n. (P - polynomial.)
5 f (n) = 1 if P has a root modulo n, 0 otherwise.
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Theorem (Elboim and G., 2019)
Let f be a multiplicative function, which is on average θ on
primes: ∑

p≤x f (p)∑
p≤x 1

= θ + O(log−A x).

Then
ω(Nx ,f )− θ log log x
√
θ log log x

→ N(0,1)

and (
log p1(Nx ,f )

log x
,

log p2(Nx ,f )

log x
, . . .

)
→ PD(θ).

Must require some growth condition on prime powers:
f (pk ) = O(ck ) for c <

√
2.

These results agree with properties of the Ewens measure.
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Common ingredient in all of our proofs: a recent result on sums
of arithmetic functions – required to get normalizing constant.

Theorem (Granville and Koukoulopoulos, 2019)
Let f be a multiplicative function, which is on average θ on
primes: ∑

p≤x f (p)∑
p≤x 1

= θ + O(log−A x).

Suppose further f (pk ) = O(ck ) for c <
√

2. Then

1
x

∑
n≤x

f (n) = Af logθ−1 x + O(logθ−2 x),

where
Af = Γ(θ)−1

∏
p

(
∑

k

α(pk )/pk )(1− 1/p)θ.
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First part via Billingsley’s method

Heuristically, α(p)/p approximates P(p | Nx ,f ) in a certain range
of p and x .

Truncation: replacing (ω(Nx ,f )− θ log log x)/(
√
θ log log x) with

Bx =

∑
p∈Px

(
1p|Nx,f

− α(p)
p

)
√∑

p∈Px

α(p)
p (1− α(p)

p )

where Px = {log log log x ≤ log log p ≤ log log x − log1/3 log x}.
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Can show that P(q1,q2, . . . ,qm | Nx ,f ) is close to
∏m

j=1 α(qj)/qj
for primes in our range.

Comparison of moments: can show that the moments of

Cx =

∑
p∈Px

Bernoulli(α(p)p )− α(p)
p√∑

p∈Px

α(p)
p (1− α(p)

p )

are close to the moments of Bx .

By version of CLT, ECk
x → EN(0,1)k . Hence EBk

x → EN(0,1)k .
Moments of normal determine distribution.
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Second part via Donnelly and Grimmett’s method

Let U1,U2, . . . be i.i.d with distribution beta(1, θ) on [0,1]. Let

Xi = (1− U1) · · · (1− Ui−1)Ui .

Then {Xi}i≥1 has distribution called GEM (Griffiths, Engen, and
McCloskey). Note

∑
Xi = 1. Also known as stick-breaking

process.

Sorting {Xi}i≥1 we obtain {Yi}i≥1 with Y1 ≥ Y2 ≥ . . .. Then
{Yi}i≥1 has Poisson-Dirichlet distribution with parameter θ.



Permutations Integers Analogy Ewens measure Ewens on the integers Pf. ideas

Size-biased permutation of {Yi}i≥1: Given distinct Yi , define Ỹ1

to equal Yj with probability proportional Yj .

Inductively, Ỹi is
equal Yj (if Yj was not chosen already) with probability
proportional to Yj .

Criterion: { Ỹi

1−Ỹ1−Ỹ2−···−Ỹi−1
}i≥1 is distributed like i.i.d beta(1, θ) if

and only if {Ỹi}i≥1 is distributed like GEM with parameter θ if
and only if {Yi}i≥1 is distributed PD(θ).

So, instead of working with
(
log p1(NX ,f )

log x ,
log p2(Nx,f )

log x , . . .
)

, we work
with the size-biased permutation of it. Turns out much more
tractable.
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and only if {Ỹi}i≥1 is distributed like GEM with parameter θ if
and only if {Yi}i≥1 is distributed PD(θ).

So, instead of working with
(
log p1(NX ,f )

log x ,
log p2(Nx,f )

log x , . . .
)

, we work
with the size-biased permutation of it. Turns out much more
tractable.



Permutations Integers Analogy Ewens measure Ewens on the integers Pf. ideas

Thank you for listening.
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