oooo	oooooooo	oo	ooo	ooo	PT. Ideas

The anatomy of integers and Ewens permutations

Ofir Gorodetsky Joint work with Dor Elboim

Horowitz Seminar, TAU March 16, 2020

Permutations ●000	Integers 00000000	Analogy	Ewens measure	Ewens on the integers	Pf. ideas

Consider S_n , the symmetric group on *n* elements, endowed with uniform distribution.

- π_n a randomly uniformly drawn permutation from S_n
- $C(\pi)$ number of cycles in π
- $C_i(\pi)$ number of cycles in π of length i ($\sum iC_i = n$.)
- $\ell_1(\pi) \ge \ell_2(\pi) \ge \ldots$ cycles length of π in decreasing order.

Permutations o●oo	Integers 00000000	Analogy	Ewens measure	Ewens on the integers	Pf. ideas

Some basic facts about permutations:

• Cauchy's formula:

$$\mathbb{P}(C_i(\pi_n) = a_i, i = 1, 2, ..., n) = \prod_{i=1}^n \frac{1}{(a_i)! i^{a_i}}$$

 The length of the cycle containing a given element is distributed uniformly in {1, 2, ..., n}:

 $\mathbb{P}(\text{cycle in } \pi_n \text{ containing 1 has length } i) = \frac{1}{n}.$

Permutations 00●0	Integers 00000000	Analogy 00	Ewens measure	Ewens on the integers	Pf. ideas

Asymptotic results about permutations:

•
$$\mathbb{P}(C(\pi_n) = 1) = \frac{1}{n}$$

- $\mathbb{E}C(\pi_n) = \frac{1}{1} + \frac{1}{2} + \ldots + \frac{1}{n} = H_n = \log n + O(1).$
- (Goncharov, 1941) $\operatorname{Var} C(\pi_n) \sim \log n$ and we have 'CLT':

$$\frac{C(\pi_n) - \log n}{\sqrt{\log n}} \to N(0, 1).$$

• (Shepp and Lloyd, 1966)

$$\left(\frac{\ell_1(\pi_n)}{n}, \frac{\ell_2(\pi_n)}{n}, \ldots\right) \to \operatorname{PD}(1).$$

Permutations	Integers 00000000	Analogy 00	Ewens measure	Ewens on the integers	Pf. ideas

All these results have *integer* analogues.

Permutations	Integers ●ooooooo	Analogy 00	Ewens measure	Ewens on the integers	Pf. ideas

Let N_x be an integer chosen uniformly at random from $[1, x] \cap \mathbb{Z}$.

- *N_x* may be factored uniquely, up to order, as a product of primes (Euclid).
 We write *N_x* = *p*₁*p*₂*p*₃...*p_k*, where *p*₁ ≥ *p*₂ ≥
- Prime factors are analogous to cycles. We set ω(n) as the number of prime factors of n (without multiplicities).

Permutations	Integers o●oooooo	Analogy 00	Ewens measure	Ewens on the integers	Pf. ideas

Prime Number Theorem

We have

$$\mathbb{P}(N_x \text{ is prime}) \approx \mathbb{P}(\omega(N_x) = 1) \sim \frac{1}{\log x}.$$

Conjectured by Gauss and Legendre in 1790's. Proved by Hadamard and de la Vallée Poussin in 1896.

Permutations	Integers 0000000	Analogy 00	Ewens measure	Ewens on the integers	Pf. ideas
Distributio	on of ω				

'Standard' computation:

$$\mathbb{E}\omega(N_x) = \sum_{p \leq x} \mathbb{P}(p \mid N_x) = \sum_{p \leq x} (\frac{1}{p} + O(\frac{1}{x})) \sim \log \log x.$$

Permutations	Integers 0000000	Analogy	Ewens measure	Ewens on the integers	Pf. ideas
Distributio	on of ω				

'Standard' computation:

$$\mathbb{E}\omega(N_x) = \sum_{p \leq x} \mathbb{P}(p \mid N_x) = \sum_{p \leq x} (\frac{1}{p} + O(\frac{1}{x})) \sim \log \log x.$$

By PNT: $\sum_{p \le x} \frac{1}{p} \approx \int_2^x \frac{1}{\log t} \frac{dt}{t} \approx \log \log x$. In fact, was computed elementarily by Mertens in 1874.

Permutations	Integers 0000000	Analogy	Ewens measure	Ewens on the integers	Pf. ideas
Distributio	on of ω				

'Standard' computation:

$$\mathbb{E}\omega(N_x) = \sum_{p \leq x} \mathbb{P}(p \mid N_x) = \sum_{p \leq x} (\frac{1}{p} + O(\frac{1}{x})) \sim \log \log x.$$

By PNT: $\sum_{p \le x} \frac{1}{p} \approx \int_2^x \frac{1}{\log t} \frac{dt}{t} \approx \log \log x$. In fact, was computed elementarily by Mertens in 1874.

Theorem (Hardy-Ramanujan, 1917)

Let $g(x) \to \infty$. Then

$$\mathbb{P}(|\omega(N_x) - \log \log x| < g(x)\sqrt{\log \log x}) \to 1.$$

Permutations	Integers 00000000	Analogy oo	Ewens measure	Ewens on the integers	Pf. ideas

Distribution of ω (cont.)

Original Proof: Landau (1909) used PNT to prove

$$\mathbb{P}(\omega(N_x) = k) \sim \frac{1}{\log x} \frac{(\log \log x)^{k-1}}{(k-1)!}$$

for any fixed *k*. H & R proved a uniform version, at the cost of losing asymptotics:

$$\mathbb{P}(\omega(N_x)=k)\ll \frac{1}{\log x}\frac{(\log\log x+C)^{k-1}}{(k-1)!}.$$

Permutations	Integers oooo●ooo	Analogy 00	Ewens measure	Ewens on the integers	Pf. ideas
Distribution	at lagest				

Distribution of ω (cont.)

Turán's proof (1934): Computed the variance

 $\operatorname{Var}(\omega(N_x)) \sim \log \log x.$

Now follows from Chebyshev's inequality ('second moment method').

Permutations	Integers ooooo●oo	Analogy	Ewens measure	Ewens on the integers	Pf. ideas

Distribution of ω (cont.)

Theorem (Erdös-Kac, 1940)

As
$$x \to \infty$$
,
$$\frac{\omega(N_x) - \log \log x}{\sqrt{\log \log x}} \to N(0, 1).$$

Heuristic: $\omega(N_x) = \sum_p \mathbf{1}_{p|N_x}$. These indicators are approximately independent (at least for small *p*), so this is just CLT.

Permutations	Integers oooooo●o	Analogy 00	Ewens measure	Ewens on the integers	Pf. ideas

Largest primes

Theorem (Dickman, 1930)

The random variable $\frac{\log p_1(N_x)}{\log x}$ has an explicit limiting distribution. The function

$$\rho(u) = \lim_{x \to \infty} \mathbb{P}\left(p_1(N_x) \le x^{1/u}\right)$$

is known as Dickman's ρ function. Continuous.

Satisfies

$$\rho(u) = \frac{1}{u} \int_{u-1}^{u} \rho(y) \, dy.$$

Appears often in complexity analysis of integer factorization algorithms.

0000 0000	00000		

Largest primes (cont.)

Theorem (Billingsley, 1972)

As $x \to \infty$,

$$\left(\frac{\log p_1(N_x)}{\log x}, \frac{\log p_2(N_x)}{\log x}, \ldots\right) \to PD(1).$$

A word about history: the Poisson-Dirichlet process was introduced by Kingman only in 1975. Billingsley, as well as Shepp and Lloyd's results, arrived before...

Permutations	Integers 00000000	Analogy ●○	Ewens measure	Ewens on the integers	Pf. ideas

Permutation world	Integer world	
$\mathbb{P}(C(\pi_n)=1)=\frac{1}{n}$	$\mathbb{P}(\omega(N_x) = 1) \sim \frac{1}{\log x}$	
$\mathbb{E} m{\mathcal{C}}(\pi_n) \sim \log n$	$\mathbb{E}\omega(N_x) \sim \log\log x$	
$\operatorname{Var} \mathcal{C}(\pi_n) \sim \log n$	$\operatorname{Var}\omega(N_x) \sim \log \log x$	
$\frac{C(\pi_n) - \log n}{\sqrt{\log n}} \to N(0, 1)$	$\frac{\omega(N_x) - \log \log x}{\sqrt{\log \log x}} \to N(0, 1)$	
$\left(\frac{\ell_1(\pi_n)}{n},\ldots\right)\to PD(1)$	$\left(\frac{\log p_1(N_x)}{\log x},\ldots\right)\to PD(1)$	

Informally, permutations on *n* elements behave like integers of order *x*, where $\log x \approx n$.

 Permutations
 Integers
 Analogy
 Ewens measure
 Ewens on the isono

 0000
 0000000
 0●
 000
 000

Pf. ideas

Permutations	Integers 00000000	Analogy oo	Ewens measure	Ewens on the integers	Pf. ideas

Ewens measure with parameter $\theta > 0$: measure on S_n , defined by

$$\mathbb{P}(\pi_{\pmb{n}, \theta} = \pi) \propto heta^{\pmb{C}(\pi)}.$$

Normalizing constant:

$$\frac{1}{n!}\sum_{\pi\in S_n}\theta^{C(\pi)} = \binom{n+\theta-1}{\theta-1} \sim \frac{n^{\theta-1}}{\Gamma(\theta)}.$$

Originally arose in population genetics (Ewens, 1972).

Permutations	Integers 00000000	Analogy 00	Ewens measure o●o	Ewens on the integers	Pf. ideas

Chinese restaurant process

n customers enter a restaurant. Customer 1 sits at the first table. Inductively, the kth customer decides either to sit immediately to the right of one of the previous customers or to sit alone at a new table.

The probability to sit to the right of each customer is

$$\frac{1}{\theta+k-1}$$

and the probability to open a new table is $\theta/(\theta + k - 1)$.

Exercise: the measure obtained on permutations on the customers *is Ewens*.

Permutations	Integers 00000000	Analogy	Ewens measure	Ewens on the integers	Pf. ideas

Some asymptotic results:

• (Hansen, 1990) $\mathbb{E}C(\pi_{n,\theta}) \sim \theta \log n$, $\operatorname{Var}C(\pi_{n,\theta}) \sim \theta \log n$ and we have 'CLT':

$$\frac{C(\pi_{n,\theta}) - \theta \log n}{\sqrt{\theta \log n}} \to N(0,1).$$

(Watterson, 1976)

$$\left(\frac{\ell_1(\pi_{n,\theta})}{n}, \frac{\ell_2(\pi_{n,\theta})}{n}, \ldots\right) \to \mathrm{PD}(\theta).$$

Permutations	Integers 00000000	Analogy	Ewens measure	Ewens on the integers	Pf. ideas

The most natural analogue is

$$\mathbb{P}(N_{x, heta}=n)\propto heta^{\omega(n)}$$

More generally:

$$\mathbb{P}(N_{x,f}=n)\propto f(n).$$

where *f* is multiplicative: $f(n \times m) = f(n) \times f(m)$ if *n*, *m* coprime. Ubiquitous in number theory.

Permutations	Integers 00000000	Analogy 00	Ewens measure	Ewens on the integers ○●○	Pf. ideas
Examples					

- f(n) = 1 if *n* is a sum of two squares, 0 otherwise.
- 2 f(n) = d(n), number of divisors of *n*.

Permutations	Integers 00000000	Analogy	Ewens measure	Ewens on the integers	Pf. ideas
Examples					

- f(n) = 1 if *n* is a sum of two squares, 0 otherwise.
- *f*(*n*) = *d*(*n*), number of divisors of *n*.
 Equivalently: pick a random pair (*a*, *b*) such that *a* ⋅ *b* ≤ *x*.
 Let *N*_{x,f} = *a* ⋅ *b*.

Permutations	Integers 00000000	Analogy	Ewens measure	Ewens on the integers	Pf. ideas
Examples					

- f(n) = 1 if *n* is a sum of two squares, 0 otherwise.
- *f*(*n*) = *d*(*n*), number of divisors of *n*.
 Equivalently: pick a random pair (*a*, *b*) such that *a* ⋅ *b* ≤ *x*.
 Let *N*_{x,f} = *a* ⋅ *b*.
- 3 f(n) = a(n), the number of abelian groups of order *n*.

Permutations	Integers 00000000	Analogy 00	Ewens measure	Ewens on the integers	Pf. ideas
Framples					

- f(n) = 1 if *n* is a sum of two squares, 0 otherwise.
- *f*(*n*) = *d*(*n*), number of divisors of *n*.
 Equivalently: pick a random pair (*a*, *b*) such that *a* ⋅ *b* ≤ *x*.
 Let *N*_{x,f} = *a* ⋅ *b*.
- *f*(*n*) = *a*(*n*), the number of abelian groups of order *n*. Equivalently: pick a random abelian group *G* of order ≤ *n*. Let *N*_{x,f} = |*G*|.

Permutations	Integers ೦೦೦೦೦೦೦೦	Analogy 00	Ewens measure	Ewens on the integers ○●○	Pf. ideas
Examples					

- f(n) = 1 if *n* is a sum of two squares, 0 otherwise.
- *f*(*n*) = *d*(*n*), number of divisors of *n*.
 Equivalently: pick a random pair (*a*, *b*) such that *a* ⋅ *b* ≤ *x*.
 Let *N_{x,f}* = *a* ⋅ *b*.
- *f*(*n*) = *a*(*n*), the number of abelian groups of order *n*.
 Equivalently: pick a random abelian group *G* of order ≤ *n*.
 Let N_{x,f} = |G|.
- f(n) = number of roots of P modulo n. (P polynomial.)
- f(n) = 1 if *P* has a root modulo *n*, 0 otherwise.

Permutations	Integers	Analogy	Ewens measure	Ewens on the integers	Pf. ideas
				000	

Theorem (Elboim and G., 2019)

Let f be a multiplicative function, which is on average θ on primes:

$$\frac{\sum_{p\leq x} f(p)}{\sum_{p\leq x} 1} = \theta + O(\log^{-A} x).$$

Then

$$\frac{\omega(N_{x,f}) - \theta \log \log x}{\sqrt{\theta \log \log x}} \to N(0,1)$$

and

$$\left(\frac{\log p_1(N_{x,f})}{\log x}, \frac{\log p_2(N_{x,f})}{\log x}, \ldots\right) \to PD(\theta).$$

These results agree with properties of the Ewens measure.

Permutations	Integers	Analogy	Ewens measure	Ewens on the integers	Pf. ideas
				000	

Theorem (Elboim and G., 2019)

Let f be a multiplicative function, which is on average θ on primes:

$$\frac{\sum_{p\leq x} f(p)}{\sum_{p\leq x} 1} = \theta + O(\log^{-A} x).$$

Then

$$\frac{\omega(N_{x,f}) - \theta \log \log x}{\sqrt{\theta \log \log x}} \to N(0,1)$$

and

$$\left(\frac{\log p_1(N_{x,f})}{\log x}, \frac{\log p_2(N_{x,f})}{\log x}, \ldots\right) \to PD(\theta).$$

Must require some growth condition on prime powers: $f(p^k) = O(c^k)$ for $c < \sqrt{2}$.

These results agree with properties of the Ewens measure.

Permutations Integers Analogy Ewens measure Ewens on the integers Pf. ideas

Common ingredient in all of our proofs: a recent result on sums of arithmetic functions – required to get normalizing constant.

Theorem (Granville and Koukoulopoulos, 2019)

Let f be a multiplicative function, which is on average θ on primes:

$$\frac{\sum_{p\leq x} f(p)}{\sum_{p\leq x} 1} = \theta + O(\log^{-A} x).$$

Suppose further $f(p^k) = O(c^k)$ for $c < \sqrt{2}$. Then

$$\frac{1}{x}\sum_{n\leq x}f(n)=A_f\log^{\theta-1}x+O(\log^{\theta-2}x),$$

where

$$A_f = \Gamma(\theta)^{-1} \prod_p (\sum_k \alpha(p^k)/p^k) (1 - 1/p)^{\theta}.$$

Permutations	Integers 00000000	Analogy 00	Ewens measure	Ewens on the integers	Pf. ideas o●oooo

First part via Billingsley's method

Heuristically, $\alpha(p)/p$ approximates $\mathbb{P}(p \mid N_{x,f})$ in a certain range of *p* and *x*.

Truncation: replacing $(\omega(N_{x,f}) - \theta \log \log x)/(\sqrt{\theta \log \log x})$ with

$$B_{x} = \frac{\sum_{p \in P_{x}} \left(1_{p \mid N_{x,f}} - \frac{\alpha(p)}{p} \right)}{\sqrt{\sum_{p \in P_{x}} \frac{\alpha(p)}{p} (1 - \frac{\alpha(p)}{p})}}$$

where $P_x = \{ \log \log \log x \le \log \log p \le \log \log x - \log^{1/3} \log x \}.$

Permutations Integers Analogy Ewens measure Ewens on the integers Pf. ideas

Can show that $\mathbb{P}(q_1, q_2, ..., q_m \mid N_{x,f})$ is close to $\prod_{j=1}^m \alpha(q_j)/q_j$ for primes in our range.

Comparison of moments: can show that the moments of

$$C_x = \frac{\sum_{p \in P_x} \text{Bernoulli}(\frac{\alpha(p)}{p}) - \frac{\alpha(p)}{p}}{\sqrt{\sum_{p \in P_x} \frac{\alpha(p)}{p}(1 - \frac{\alpha(p)}{p})}}$$

are close to the moments of B_x .

By version of CLT, $\mathbb{E}C_x^k \to \mathbb{E}N(0,1)^k$. Hence $\mathbb{E}B_x^k \to \mathbb{E}N(0,1)^k$. Moments of normal determine distribution.

Permutations	Integers	Analogy	Ewens measure	Ewens on the integers	Pf. ideas
					000000

Second part via Donnelly and Grimmett's method

Let U_1, U_2, \ldots be i.i.d with distribution beta $(1, \theta)$ on [0, 1]. Let

$$X_i = (1 - U_1) \cdots (1 - U_{i-1})U_i.$$

Then $\{X_i\}_{i\geq 1}$ has distribution called **GEM** (Griffiths, Engen, and McCloskey). Note $\sum X_i = 1$. Also known as *stick-breaking process*.

Sorting $\{X_i\}_{i\geq 1}$ we obtain $\{Y_i\}_{i\geq 1}$ with $Y_1 \geq Y_2 \geq ...$ Then $\{Y_i\}_{i\geq 1}$ has **Poisson-Dirichlet** distribution with parameter θ .

Permutations	Integers 00000000	Analogy 00	Ewens measure	Ewens on the integers	Pf. ideas oooo●o

Size-biased permutation of $\{Y_i\}_{i\geq 1}$: Given distinct Y_i , define \tilde{Y}_1 to equal Y_i with probability proportional Y_i .

Permutations Integers Analogy Ewens measure Ewens on the integers Pf. ideas

Size-biased permutation of $\{Y_i\}_{i\geq 1}$: Given distinct Y_i , define \tilde{Y}_1 to equal Y_j with probability proportional Y_j . Inductively, \tilde{Y}_i is equal Y_j (if Y_j was not chosen already) with probability proportional to Y_j .

Criterion: $\{\frac{\tilde{Y}_i}{1-\tilde{Y}_1-\tilde{Y}_2-\cdots-\tilde{Y}_{i-1}}\}_{i\geq 1}$ is distributed like i.i.d beta(1, θ) if and only if $\{\tilde{Y}_i\}_{i\geq 1}$ is distributed like GEM with parameter θ if and only if $\{Y_i\}_{i\geq 1}$ is distributed $PD(\theta)$.

So, instead of working with $\left(\frac{\log p_1(N_{X,f})}{\log x}, \frac{\log p_2(N_{x,f})}{\log x}, \ldots\right)$, we work with the size-biased permutation of it. Turns out much more tractable.

Permutations	Integers 00000000	Analogy 00	Ewens measure	Ewens on the integers	Pf. ideas ooooo●

Thank you for listening.