A MARSTRAND THEOREM FOR SUBSETS OF INTEGERS

1. Abstract

A classical result of Marstrand states: if K_1, K_2 are Borel subsets of \mathbb{R} , then

 $\dim_H(K_1 + \lambda K_2) = \min\{1, \dim_H(K_1) + \dim_H(K_2)\}$

for Lebesgue almost every $\lambda \in \mathbb{R}$ (here $\dim_H(X)$ = Hausdorff dimension of X).

In this talk we suggest a counting dimension $\dim_{\mathbb{Z}}$ for subsets of integers and prove that, under suitable conditions on two subsets $E, F \subset \mathbb{Z}$,

 $\dim_{\mathbb{Z}}(E + \lfloor \lambda F \rfloor) = \min\{1, \dim_{\mathbb{Z}}(E) + \dim_{\mathbb{Z}}(F)\}\$

for Lebesgue almost every $\lambda \in \mathbb{R}$. The result has direct consequences when applied to arithmetic sets, such as the integer values of a polynomial with integer coefficients. Joint work with Carlos Gustavo Moreira.