Random Walks and Brownian Motion

Instructor: Ron Peled
Tel Aviv University Spring 2011

Lecture 3

Lecture date: Mar 7, 2011
Scribe: Aya Vituri

In this lecture we prove the law of iterated logarithm; First we prove the following lemma:
(i) (LCLT - local CLT) If $k=o\left(n^{3 / 4}\right)$ and $n+k$ is even, then $P\left(S_{n}=k\right) \underset{n \rightarrow \infty}{\sim} \sqrt{\frac{2}{\pi n}} e^{-\frac{k^{2}}{2 n}}$.
(ii) For all $n, k \geq 0, P\left(S_{n} \geq k\right) \leq e^{-\frac{k^{2}}{2 n}}$ (not tight, by a polynomial factor).

Then by using the Borel-Cantelli lemma we show that $\limsup _{n \rightarrow \infty} \frac{S_{n}}{\sqrt{2 n \log \log n}}=1$ a.s.,
and by symmetry, $\liminf _{n \rightarrow \infty} \frac{S_{n}}{\sqrt{2 n \log \log n}}=-1$ a.s.
We discuss Higher dimensional RW and general 1D RW;
We prove the Hewitt-Savage 0-1 law: If $A \in \varepsilon$ (for a RW) then $P(A) \in\{0,1\}$,
and its following application: For a RW in \mathbb{R}, exactly one of the following has probability 1 :
(i) $S_{n}=0$ for all n (trivial RW)
(ii) $S_{n} \rightarrow \infty$
(iii) $S_{n} \rightarrow-\infty$
(iv) $\limsup S_{n}=\infty$ and $\liminf S_{n}=-\infty$

1 Law of the iterated logarithm

For SRW, we know by CLT that $S_{n} \approx N(0, n)$.
Is it true that $P\left(S_{n}=k\right) \approx \frac{1}{\sqrt{2 \pi n}} e^{-\frac{k^{2}}{2 n}}$ (density at k of $\left.N(0, n)\right)$?
For parity reasons, this is false; $P\left(S_{n}=k\right)=0$ if $k+n$ is odd.
Is it true that $P\left(S_{n}=k\right) \approx \frac{2}{\sqrt{2 \pi n}} e^{-\frac{k^{2}}{2 n}}$ when $k+n$ is even (and n is large)?
Yes, this is true.

Lemma. (i) (LCLT - local CLT) If $k=o\left(n^{3 / 4}\right)$ and $n+k$ is even, then $P\left(S_{n}=k\right) \underset{n \rightarrow \infty}{\sim} \sqrt{\frac{2}{\pi n}} e^{-\frac{k^{2}}{2 n}}$.

Remark: This estimate is uniform for $k=o\left(n^{3 / 4}\right)$.
(ii) For all $n, k \geq 0, P\left(S_{n} \geq k\right) \leq e^{-\frac{k^{2}}{2 n}}$ (not tight, by a polynomial factor).

Proof. (i)

$$
\begin{aligned}
& \text { Stirling } \\
& P\left(S_{n}=k\right)=\binom{n}{\frac{n+k}{2}} 2^{-n}=\frac{n!2^{-n}}{\left(\frac{n+k}{2}\right)!\left(\frac{n-k}{2}\right)!} \underset{\substack{n \rightarrow \infty \\
k=o(n)}}{\sim} \frac{\sqrt{2 \pi n}}{\sqrt{2 \pi \frac{n+k}{2}} \sqrt{2 \pi \frac{n-k}{2}}} \cdot \frac{\left(\frac{n}{e}\right)^{n} 2^{-n}}{\left(\frac{n+k}{2 e}\right)^{\frac{n+k}{2}}\left(\frac{n-k}{2 e}\right)^{\frac{n-k}{2}}}= \\
& =\sqrt{\frac{2}{\pi n\left(1-\frac{k^{2}}{n^{2}}\right)}} \cdot \frac{n^{n}}{(n+k)^{\frac{n+k}{2}}(n-k)^{\frac{n-k}{2}}} \\
& \frac{n^{n}}{(n+k)^{\frac{n+k}{2}}(n-k)^{\frac{n-k}{2}}}=\exp \left(n \log n-\frac{n+k}{2} \log (n+k)-\frac{n-k}{2} \log (n-k)\right) \\
& n \log n-\frac{n+k}{2} \log (n+k)-\frac{n-k}{2} \log (n-k) \triangleq(\star)
\end{aligned}
$$

Since $\log (n+k)=\log (n)+\log \left(1+\frac{k}{n}\right)$,
and since $\log (1+x)=x-\frac{x^{2}}{2}+\frac{x^{3}}{3}-O\left(x^{4}\right)$,

$$
\begin{gathered}
(\star)=-\frac{n+k}{2} \log \left(1+\frac{k}{n}\right)-\frac{n-k}{2} \log \left(1-\frac{k}{n}\right)= \\
=-\frac{n+k}{2}\left(\frac{k}{n}-\frac{k^{2}}{2 n^{2}}+\frac{k^{3}}{3 n^{3}}+O\left(\frac{k^{4}}{n^{4}}\right)\right)+\frac{n-k}{2}\left(\frac{k}{n}+\frac{k^{2}}{2 n^{2}}+\frac{k^{3}}{3 n^{3}}+O\left(\frac{k^{4}}{n^{4}}\right)\right)= \\
=\frac{k^{2}}{4 n}+\frac{k^{2}}{4 n}-\frac{k^{2}}{2 n}-\frac{k^{2}}{2 n}+O\left(\frac{k^{4}}{n^{3}}\right)=-\frac{k^{2}}{2 n}+O\left(\frac{k^{4}}{n^{3}}\right) \quad\binom{n \rightarrow \infty}{k=o\left(n^{3 / 4}\right)}
\end{gathered}
$$

Plugging back into (\star):

$$
P\left(S_{n}=k\right) \sim \sqrt{\frac{2}{\pi n\left(1-\frac{k^{2}}{n^{2}}\right)}} e^{-\frac{k^{2}}{2 n}+O\left(\frac{k^{4}}{n^{3}}\right)} \sim \sqrt{\frac{2}{\pi n}} e^{-\frac{k^{2}}{2 n}} \quad\binom{n \rightarrow \infty}{k=o\left(n^{3 / 4}\right)}
$$

(ii) We will use that for any X,

$$
P(X \geq t) \underset{\text { assuming } \theta>0}{=} P\left(e^{\theta X} \geq e^{\theta t}\right) \underset{\text { Markov }}{\leq} \frac{E e^{\theta X}}{e^{\theta t}}
$$

Taking $X=S_{n}, t=k$ and by comparing Taylor coefficients,

$$
\begin{gathered}
E e^{\theta X_{1}}=\left(\frac{1}{2} e^{\theta}+\frac{1}{2} e^{-\theta}\right) \leq e^{\theta^{2} / 2} \\
P\left(S_{n} \geq k\right) \underset{\theta>0}{\leq} \frac{E e^{\theta S_{n}}}{e^{\theta k}}=\frac{\left(\frac{1}{2} e^{\theta}+\frac{1}{2} e^{-\theta}\right)^{n}}{e^{\theta k}} \leq \frac{e^{\theta^{2} \frac{n}{2}}}{e^{\theta k}} \underset{\operatorname{take} \theta=\frac{k}{n}}{=} e^{-\frac{k^{2}}{2 n}}
\end{gathered}
$$

Lemma. For $k>\sqrt{n}, k=o\left(n^{3 / 4}\right)$ we have $P\left(S_{n} \geq k\right) \geq c \frac{\sqrt{n}}{k} e^{-k^{2} / 2 n}$ for some $c>0$.
Remark: If $|k| \leq \sqrt{n}$, then $P\left(S_{n} \geq k\right) \geq c$ for some $c>0$ by the CLT.

Proof.

$$
P\left(S_{n} \geq k\right) \geq P\left(k \leq S_{n} \leq k+\frac{n}{k}\right) \geq \sqrt{\frac{c}{n}} \sum_{k \leq j \leq\left\lfloor k+\frac{n}{k}\right\rfloor} e^{-j^{2} / 2 n}
$$

For these j we have

$$
e^{-j^{2} / 2 n} \geq e^{-\left(k+\frac{n}{k}\right)^{2} / 2 n} \geq e^{-\frac{k^{2}}{2 n}-1-\frac{n}{2 k^{2}}} \underset{k \geq \sqrt{n}}{\geq} c^{\prime} e^{-k^{2} / 2 n}
$$

Thus,

$$
P\left(S_{n} \geq k\right) \geq \frac{c^{\prime \prime}}{\sqrt{n}} e^{-k^{2} / 2 n} \cdot \frac{n}{k}
$$

Reminder: Define $M_{n}=\max _{0 \leq j \leq n} S_{j}$. Then $P\left(M_{n} \geq k\right)=P\left(S_{n}=k\right)+2 P\left(S_{n}>k\right)$.
S_{n} is typically of order \sqrt{n}. By (ii) and Borel-Cantelli, a.s. $S_{n} \leq \sqrt{2 n \log n}(1+\epsilon)$ eventually.

Lemma. (Borel-Cantelli)
If $\left\{A_{n}\right\}$ is a sequence of events, then:

1) If $\sum P\left(A_{n}\right)<\infty$, then a.s. only finitely many occur.
2) If $\sum P\left(A_{n}\right)=\infty$ and A_{n} are independent, then a.s. infinitely many of them occur.

Application: Define $A_{n}=\left\{S_{n} \geq(1+\epsilon) \sqrt{2 n \log n}\right\}$. By (ii), $P\left(A_{n}\right) \leq \frac{1}{n^{1+\epsilon}}$.
So $\sum P\left(A_{n}\right)<\infty$, and therefore a.s. $S_{n} \leq(1+\epsilon) \sqrt{2 n \log n}$ eventually.

Theorem. (LIL)
$\limsup _{n \rightarrow \infty} \frac{S_{n}}{\sqrt{2 n \log \log n}}=1$ a.s.
Remark: By symmetry, $\liminf _{n \rightarrow \infty} \frac{S_{n}}{\sqrt{2 n \log \log n}}=-1$ a.s.
Notation: $u(n)=\sqrt{2 n \log \log n}$

Proof. Remark: For ease of readability, we will not worry about integrality of indices in the proof. One may round the indices appropriately everywhere and the argument will still go through.

For $\gamma>0, a>1, k \in \mathbb{N}$

$$
\begin{gathered}
P\left(\max _{0 \leq j \leq a^{k}} S_{j} \geq(1+\gamma) u\left(a^{k}\right)\right) \leq 2 P\left(S_{a^{k}} \geq(1+\gamma) u\left(a^{k}\right)\right) \leq \\
\quad \leq 2 e^{-\frac{(1+\gamma)^{2} u\left(a^{k}\right)^{2}}{2 a^{k}}}=2 e^{-(1+\gamma)^{2} \log \log \left(a^{k}\right)}=\frac{2}{(k \log a)^{(1+\gamma)^{2}}}
\end{gathered}
$$

These probability estimates are summable in k. Thus by B-C,

$$
P\left(\max _{0 \leq j \leq a^{k}} S_{j} \leq(1+\gamma) u\left(a^{k}\right) \text { from some } k \text { on }\right)=1
$$

Now, for large n, write $a^{k-1} \leq n \leq a^{k}$. Then

$$
\frac{S_{n}}{u(n)}=\frac{S_{n}}{u\left(a^{k}\right)} \cdot \frac{u\left(a^{k}\right)}{a^{k}} \cdot \frac{a^{k}}{n} \cdot \frac{n}{u(n)} \leq a(1+\gamma)
$$

since $\frac{S_{n}}{u\left(a^{k}\right)} \leq 1+\gamma, \frac{a^{k}}{n} \leq a$, and $\frac{u\left(a^{k}\right)}{a^{k}} \cdot \frac{n}{u(n)} \leq 1$ because $\frac{u(t)}{t}$ is eventually decreasing.
We deduce that

$$
\begin{gathered}
P\left(\max _{0 \leq j \leq a^{k}} S_{j} \leq(1+\gamma) u\left(a^{k}\right) \text { from some } k \text { on }\right)=1 \\
P\left(\limsup _{n} \frac{S_{n}}{u(n)} \leq a(1+\gamma)\right)=1
\end{gathered}
$$

Since $\gamma>0$ and $a>1$ are arbitrary, we have

$$
P\left(\limsup _{n} \frac{S_{n}}{u(n)} \leq 1\right)
$$

For the lower bound, fix $0<\gamma<1, a>1$.
Denote $A_{k}=\left\{S_{a^{k}}-S_{a^{k-1}} \geq(1-\gamma) u\left(a^{k}-a^{k-1}\right)\right\}$.
We need to show that $\sum P\left(A_{k}\right)=\infty$.
Denote: $n=a^{k}-a^{k-1}$.
For large k,

$$
P\left(A_{k}\right) \underset{\text { lemma }}{\geq} c \frac{\sqrt{n}}{(1-\gamma) u(n)} e^{-\frac{(1-\gamma)^{2} u^{2}(n)}{2 n}}=\frac{c}{1-\gamma} \cdot \frac{1}{\sqrt{2 \log \log n}} \cdot \frac{1}{(\log n)^{(1-\gamma)^{2}}}
$$

Noting $\log n \approx k$. So this expression is not summable in k.
Therefore, by B-C,

$$
P\left(\text { infinitely many of } A_{k} \text { occur }\right)=1
$$

By the upper bound,

$$
P\left(\liminf _{n} \frac{S_{n}}{u(n)} \geq-1\right)=1
$$

So we have, for large k,
\backslash textrm $\{$ is $\backslash: \backslash$ permutable $\}$

$$
\begin{gathered}
\frac{S_{a^{k}}}{u\left(a^{k}\right)} \geq(1-\gamma) \frac{u\left(a^{k}-a^{k-1}\right)}{u\left(a^{k}\right)}+\frac{S_{a^{k}}}{u\left(a^{k}\right)} \geq \\
\geq(1-\gamma) \frac{u\left(a^{k}-a^{k-1}\right)}{u\left(a^{k}\right)}-\frac{(1+\epsilon) u\left(a^{k-1}\right)}{u\left(a^{k}\right)} \underset{k \rightarrow \infty}{\rightarrow}(1-\gamma) \sqrt{1-\frac{1}{a}}-\frac{1+\epsilon}{\sqrt{a}}
\end{gathered}
$$

Thus

$$
P\left(\limsup _{n} \frac{S_{n}}{u(n)} \geq(1-\gamma) \sqrt{1-\frac{1}{a}}-\frac{1+\epsilon}{\sqrt{a}}\right)=1
$$

and we take $\gamma \rightarrow 0$ and $a \rightarrow \infty$ to obtain the lower bound.

2 Higher dimensional RW and general 1D RW

In 1D and in 2D SRW is recurrent. In 3D (and more D) it is transient.
For a general RW in $\mathbb{R}^{d}\left(S_{n}=X_{1}+\cdots+X_{n}, \quad\right.$ I.I.D., $\left.\quad X_{1} \in \mathbb{R}^{d}\right)$, what can we say about $P\left(S_{n}=0\right.$ infinitely often $)$? It turns out that this probability is 0 or 1 .

Say that an event A is permutable if the occurrence of A is unaffected by applying a f nite permutation (a function $\pi: \mathbb{N} \rightarrow \mathbb{N} \begin{array}{cc}1-1 \\ \text { onto }\end{array} \quad$ s.t. $\pi(n)=n$ for all $n \geq n_{0}$) to the increments of S_{n}.

More formally, if the increments take values in a state space S, let our probability space Ω be $S^{\mathbb{N}}$, with the product probability over increments.

An event $A \in \mathcal{F}(\sigma$-field $)$ is permutable if $A=\{\omega \in \Omega \mid \pi(\omega) \in A\}$ for all finite permutations π.

The collection of all permutable events forms σ-field ε, the exchangable σ-field.

Theorem. (Hewitt-Savage 0-1 law)
If $A \in \varepsilon($ for a $R W)$ then $P(A) \in\{0,1\}$.
More Examples:

1. For any $B,\left\{S_{n} \in B\right.$ infinitely often $\} \in \varepsilon$.
2. For any $C_{n},\left\{\limsup _{n \rightarrow \infty} \frac{S_{n}}{C_{n}} \geq 1\right\} \in \varepsilon$.
3. Any tail event is permutable (tail σ-field $\subseteq \varepsilon$).

A tail event is an event which, for any n, is a function only of X_{n}, X_{n+1}, \cdots.

Proof. Fix $A \in \varepsilon$. We will show that $P(A)=P(A)^{2}$ (in other words, A, is independent of itself).

Take a sequence of events A_{n} s.t. A_{n} is a function only of X_{1}, \cdots, X_{n} and:

$$
\begin{equation*}
P\left(A_{n} \triangle A\right) \rightarrow 0 \tag{1}
\end{equation*}
$$

(Xor: $B \triangle C=(B \cup C) \backslash(B \cap C))$
Let $\pi=\pi_{n}$ be the permutation which exchanges $1, \cdots, n$ with $n+1, \cdots, 2 n$.
Write $A_{n}^{\prime}=\pi\left(A_{n}\right)$. Notice that A_{n} and A_{n}^{\prime} are independent.
Since π preserves probability (since X_{1}, \cdots are I.I.D.),

$$
\begin{equation*}
P\left(A_{n} \triangle A\right)=P\left(\pi\left(A_{n} \triangle A\right)\right) \underset{A \text { is permutable }}{=} P\left(A_{n}^{\prime} \triangle A\right) \tag{2}
\end{equation*}
$$

Noticing that $|P(B)-P(C)| \leq P(B \triangle C)$, then (1) and (2) imply that $P\left(A_{n}\right) \rightarrow P(A)$ and

$$
\begin{equation*}
P\left(A_{n}^{\prime}\right) \rightarrow P(A) \tag{3}
\end{equation*}
$$

However, we also obtain that

$$
P\left(A_{n} \triangle A_{n}^{\prime}\right) \leq P\left(A_{n} \triangle A\right)+P\left(A_{n}^{\prime} \triangle A\right) \rightarrow 0
$$

from which

$$
0 \leq P\left(A_{n}\right)-P\left(A_{n} \cap A_{n}^{\prime}\right) \leq P\left(A_{n} \cup A_{n}^{\prime}\right)-P\left(A_{n} \cap A_{n}^{\prime}\right)=P\left(A_{n} \triangle A_{n}^{\prime}\right) \rightarrow 0
$$

But $P\left(A_{n}\right) \rightarrow P(A)$, and by independence $P\left(A_{n}\right) P\left(A_{n}^{\prime}\right) \underset{(3)}{\rightarrow} P(A)^{2}$. Thus,

$$
P(A)=P(A)^{2}
$$

as we wanted.

Application: For a $R W$ in \mathbb{R}, exactly one of the following has probability 1:
(i) $S_{n}=0$ for all $n($ trivial $R W$)
(ii) $S_{n} \rightarrow \infty$
(iii) $S_{n} \rightarrow-\infty$
(iv) $\limsup S_{n}=\infty$ and $\liminf S_{n}=-\infty$

Proof. By the 0-1 law, $\limsup _{n \rightarrow \infty} S_{n}$ is a constant $c \in[-\infty, \infty]$ (since it is a permutable RV).
Notice that by considering the first increment $X_{1}, c=c-X_{1}$.
Thus, either $X_{1} \equiv 0$ (this is case (i)), or $c \in\{-\infty, \infty\}$.
Similarly, $\liminf S_{n} \in\{-\infty, \infty\}$.

Exercise: If $X_{1} \in \mathbb{R}$ is non-degenerate (not always 0: $P\left(X_{1}=0\right)<1$), then we are in case (iv) if either:

1. X_{1} is symmetric.
2. $E\left(X_{1}\right)=0$ and $E\left(X_{1}^{2}\right)<\infty$. (It is actually true that $E\left(X_{1}\right)=0$ suffices, as we will see next time.)
