Random Walks and Brownian Motion Instructor: Ron Peled
Tel Aviv University Spring 2011

Lecture 3
Lecture date: Mar 7, 2011 Scribe: Aya Viturs

In this lecture we prove the law of iterated logarithm; First we prove the following lemma:

12

(i) (LCLT - local CLT) If k =0 (n3/4) and n + k is even, then P (S, =k) ~ 27 om,

n—oo V TN
2
(ii) For all n, k > 0, P (S, > k) < e (not tight, by a polynomial factor).

Then by using the Borel-Cantelli lemma we show that lim sup
n—oo

Sn _
V2nloglogn ~— 1 a-8.,

and by symmetry, lim inf =—1 a.s.
n—oo

We discuss Higher dimensional RW and general 1D RW;

We prove the Hewitt-Savage 0-1 law: If A € € (for a RW) then P (A) € {0, 1},

and its following application: For a RW in R, exactly one of the following has probability 1:
i) Sp, = 0 for all n (trivial RW)

(

(i1) S, — o0
(iii) S, — —o00
(

iv) limsup S, = oo and liminf S,, = —oco

1 Law of the iterated logarithm

For SRW, we know by CLT that S, = N (0,n).

2
Is it true that P (S, = k) = J;rfne_gfn(density at k of N(0,n))?

For parity reasons, this is false; P (S, = k) =0 if k + n is odd.

2
Is it true that P (S, = k) = %67% when k + n is even (and n is large)?

2mn

Yes, this is true.
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Lemma. (i) (LCLT - local CLT) If k = o (n3/4) and n + k is even, then

_k2
P (Sn = k) n:OO %e 2n

Remark: This estimate is uniform for k= o (n3/4),

2
(11) For allm, k >0, P(S, > k) < e (not tight, by a polynomial factor).

Proof. (i)
Stirling
b (L) o e
n=F) =\ ntk T (ntky| (n=ky] oo k k& (k)P ok PEE
P (55)! ("F7) k=o(n) \/QW%\/QWHT (") 7 (%)
nn
m(1-5) m+rF -k
nn

k —k
oiE % = exp (nlogn =2 g (k) — 2= log (n - k))
(n+ k)T (n—k)T 2 2

k —k
nlogn—n; 10g(n+k)—n2 log (n — k) £ (%)
Since log (n + k) = log (n) + log (1 + £) |

and since log (1 + x) :x—%2+%3—0(x4),

x—0

n+k k n—k k
(%) =— 5 log<1+n) 5 log<1n)—

_771-1—]6 ﬁiﬁ+ﬁ+0 kj +7”L—k‘ ﬁjLﬁijingO kj —
- 2 n  2n?  3n3 n 2 n  2n?  3n3 n4 N

Plugging back into (*):
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_ﬁ_,_oﬁ 2 K2 n — o0
gyl V€™ (k:o(n3/4)>
n

(ii)) We will use that for any X,

E eﬁX
P(X >1) = P (eaX > eet) <
assuming >0 Markov eft
Taking X = 5,, t = k and by comparing Taylor coefficients,
1 1 2
EeeXl = <2€9 + 2€_e> S 69 /2
E e95n lea + l€*9 n 92% 2
o>0 € € € take 6:%

Lemma. Fork > /n, k=o (n3/4) we have P (S, > k) > cTne_kQ/Q" for some ¢ > 0.

Remark: If | k |< \/n, then P (S, > k) > ¢ for some ¢ > 0 by the CLT.

Proof.

For these j we have
—i?/a —(k+ﬂ)2/2 . . 1~k )2
e ">e kJIEM > e 2n %2 > cCe "

Thus,

/!
¢ €7k2/2n . 2

P(Snzhz -

Reminder: Define M,, = max S;. Then P (M, > k) = P (S, = k) + 2P (S, > k).

0<j<n

Sy, is typically of order y/n. By (ii) and Borel-Cantelli, a.s. S, < v/2nlogn (1 + €) eventually.
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Lemma.  (Borel-Cantelli)

If {A,}is a sequence of events, then:

1) If > P (A,) < oo, then a.s. only finitely many occur.

2) If " P(A,) = and A, are independent, then a.s. infinitely many of them occur.
Application: Define A, = {S, > (1 +¢)+/2nlogn}. By (i), P (4,) < .

So >> P (A;) < oo, and therefore a.s. S,, < (1 + €) /2nlogn eventually.

Theorem. (LIL)

limsup\/% =1 a.s.
00 n log logn

Sh —
v2nloglogn

Notation: u(n) = +/2nloglogn

Remark: By symmetry, lim inf —1 as.
n—oo

Proof. Remark: For ease of readability, we will not worry about integrality of indices in
the proof. One may round the indices appropriately everywhere and the argument will still
go through.

Fory>0,a>1,keN

P< max Sj > (1+'y)u<ak)) < 2P (Sak- > (1—|—’y)u<ak)) <

0<j<ak

(14 )2u ak 2
< 26_72#() _ 26—(1+’y)210g10g(ak) _ 2

(i) (klog a)(1+v)2

These probability estimates are summable in k. Thus by B-C,

P < max S; < (1+7)u (ak> from somekon> =1
0<j<a*

Now, for large n, write a*~! < n < aF. Then
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u(a®)

Sn — - —7~ < 1 because
a u(n)

: aF u(t)
since w(ah) <l+7v,% <aq, and

t

is eventually decreasing.

We deduce that

P < max S; < (14+7v)u (ak) from some kon> =1

0<j<ak

P (limsupus(:;) <a(l+ 7)) =1

Since v > 0 and a > 1 are arbitrary, we have

P (hmsup Sn < 1)
n o u(n)

For the lower bound, fix 0 <y <1, a > 1.
Denote Ay = {Sgx — Spe1 > (1 =) u (aF —aF1)}.
We need to show that > P (Ag) = oo.

k k—1

Denote: n = a” — a" .

For large k,

_ =22 (n) c 1 1

i
P A > C———X——¢€ 2n e . .
Ao = T 1= V2loglogn (logn)i—"

Noting logn ~ k. So this expression is not summable in k.

Therefore, by B-C,

P (infinitely many of Ay, occur) =1

By the upper bound,

P(liminf Sn z—1> =1

So we have, for large k,
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\textrm{is\:\ permutable}

S

IS
=
\E

|
2

Thus
Sh 1 1+4e€
Pl >(1- 1——-= =1
<1mnsuPu(n) z(1-7) a +a >
and we take v — 0 and a — oo to obtain the lower bound. O

2 Higher dimensional RW and general 1D RW

In 1D and in 2D SRW is recurrent. In 3D (and more D) it is transient.

For a general RW in R? (S, = X1 +---+ X,, LLD., X;€R%), what can we say about

P (S,, = 0 infinitely often)? It turns out that this probability is 0 or 1.

Say that an event A is permutable if the occurrence of A is unaffected by applying a fi-
—1

. ‘ . 1
nite permutation (a function 7 : N — N onto s.t. m(n) = n forall n > ng) to the

increments of .S,,.

More formally, if the increments take values in a state space .9, let our probability space €2
be SN with the product probability over increments.

An event A € F (o-field) is permutable if A = {w € Q|7 (w) € A} for all finite permutations
.

The collection of all permutable events forms o-field €, the exchangable o-field.

Theorem. (Hewitt-Savage 0-1 law)
If A€e (for a RW) then P (A) € {0, 1}.

More Examples:

1. For any B, {S,, € B infinitely often} € e.
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2. For any C, {limsupg: > 1} €Ee.

n—oo

3. Any tail event is permutable (tail o-field Ce).

A tail event is an event which, for any n, is a function only of X,,, X;,41, - .

Proof. Fix A € e. We will show that P (A) = P (A)? (in other words, A, is independent
of itself).

Take a sequence of events A, s.t. A, is a function only of Xy, ---, X,, and:

(1)
P(A,AA) >0

( Xor: BAC =(BUC)\(BN(C))
Let m = m, be the permutation which exchanges 1, --- , n withn+1, --- | 2n.
Write A, = 7 (A,,). Notice that A, and A,, are independent.

Since 7 preserves probability (since X, --- are L.I.D.),

(2)
P(A,AA) = P(n(A,AA) = P (A;AA)

A is permutable

Noticing that | P (B) — P (C) |< P(BAC), then (1) and (2) imply that P (A,) — P (A)
and

(3)
P (A’ ) 5 P(A)

However, we also obtain that
P (4,04,) < P (4,04) + P (A,A4) =0
from which
0< P(A,)—P (AnmA'n> <P (AnUA'n) ~P (AnmA;) =P (AnAA'n> =0

But P (A,) — P(A), and by independence P (A,,) P (A;) (g; P (A)%. Thus,
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as we wanted. O

Application: For a RW in R, exactly one of the following has probability 1:
(i) Sy, =0 for all n (trivial RW)

(11) Sy, — o0

(iii) Sp — —o0

(i) limsup S,, = 0o and liminf S,, = —c0

Proof. By the 0-1 law, lim supsS,, is a constant ¢ € [—o0, oo] (since it is a permutable RV).
n—oo

Notice that by considering the first increment X;, c = ¢ — Xj.
Thus, either X; = 0 (this is case (i)), or ¢ € {—o0, co}.

Similarly, liminf S,, € {—o0, co}. O

Exercise: If X; € R is non-degenerate (not always 0: P (X; =0) < 1), then we are in
case (iv) if either:

1. X is symmetric.

2. E(X1)=0and E (X}) < co. (It is actually true that E (X;) = 0 suffices, as we will
see next time.)
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