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Lecture 3

Lecture date: Mar 7, 2011 Scribe: Aya Vituri

In this lecture we prove the law of iterated logarithm; First we prove the following lemma:

(i) (LCLT - local CLT) If k = o
(
n3/4
)
and n+ k is even, then P (Sn = k) ∼

n→∞

√
2
πne
− k

2

2n .

(ii) For all n, k ≥ 0, P (Sn ≥ k) ≤ e−
k2

2n (not tight, by a polynomial factor).

Then by using the Borel-Cantelli lemma we show that lim sup
n→∞

Sn√
2n log logn

= 1 a.s.,

and by symmetry, lim inf
n→∞

Sn√
2n log logn

= −1 a.s.

We discuss Higher dimensional RW and general 1D RW;

We prove the Hewitt-Savage 0-1 law: If A ∈ ε (for a RW) then P (A) ∈ {0, 1},

and its following application: For a RW in R, exactly one of the following has probability 1:

(i) Sn = 0 for all n (trivial RW)

(ii) Sn →∞

(iii) Sn → −∞

(iv) lim supSn =∞ and lim inf Sn = −∞

1 Law of the iterated logarithm

For SRW, we know by CLT that Sn ≈ N (0, n).

Is it true that P (Sn = k) ≈ 1√
2πn

e−
k2

2n (density at k of N (0, n))?

For parity reasons, this is false; P (Sn = k) = 0 if k + n is odd.

Is it true that P (Sn = k) ≈ 2√
2πn

e−
k2

2n when k + n is even (and n is large)?

Yes, this is true.
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Lemma. (i) (LCLT - local CLT) If k = o
(
n3/4
)
and n+ k is even, then

P (Sn = k) ∼
n→∞

√
2
πne
− k

2

2n .

Remark: This estimate is uniform for k = o
(
n3/4
)
.

(ii) For all n, k ≥ 0, P (Sn ≥ k) ≤ e−
k2

2n (not tight, by a polynomial factor).

Proof. (i)

P (Sn = k) =

(
n
n+k
2

)
2−n =

n! 2−n(
n+k
2

)
!
(
n−k
2

)
!

Stirling

∼
n→∞

k=o(n)

√
2πn√

2π n+k2

√
2π n−k2

·
(
n
e

)n
2−n(

n+k
2e

)n+k
2
(
n−k
2e

)n−k
2

=

=

√√√√ 2

πn
(

1− k2

n2

) · nn

(n+ k)
n+k
2 (n− k)

n−k
2

nn

(n+ k)
n+k
2 (n− k)

n−k
2

= exp

(
n log n− n+ k

2
log (n+ k)− n− k

2
log (n− k)

)

n log n− n+ k

2
log (n+ k)− n− k

2
log (n− k) , (?)

Since log (n+ k) = log (n) + log
(
1 + k

n

)
,

and since log (1 + x) = x− x2

2 + x3

3 −O
(
x4
)

x→0

,

(?) = −n+ k

2
log

(
1 +

k

n

)
− n− k

2
log

(
1− k

n

)
=

= −n+ k

2

(
k

n
− k2

2n2
+

k3

3n3
+O

(
k4

n4

))
+
n− k

2

(
k

n
+

k2

2n2
+

k3

3n3
+O

(
k4

n4

))
=

=
k2

4n
+
k2

4n
− k2

2n
− k2

2n
+O

(
k4

n3

)
= − k

2

2n
+O

(
k4

n3

) (
n→∞

k = o
(
n3/4
) )

Plugging back into (?):

3-2



P (Sn = k) ∼
√√√√ 2

πn
(

1− k2

n2

) e− k22n+O(
k4

n3

)
∼
√

2

πn
e−

k2

2n

(
n→∞

k = o
(
n3/4
) )

(ii) We will use that for any X,

P (X ≥ t) =
assuming θ>0

P
(
eθX ≥ eθt

)
≤

Markov

E eθX

eθt

Taking X = Sn, t = k and by comparing Taylor coe�cients,

E eθX1 =

(
1

2
eθ +

1

2
e−θ
)
≤ eθ

2/2

P (Sn ≥ k) ≤
θ>0

E eθSn

eθk
=

(
1
2e
θ + 1

2e
−θ)n

eθk
≤ eθ

2 n
2

eθk
=

take θ= k
n

e−
k2

2n �

Lemma. For k >
√
n, k = o

(
n3/4
)
we have P (Sn ≥ k) ≥ c

√
n
k e
−k2/2n for some c > 0.

Remark: If | k |≤
√
n, then P (Sn ≥ k) ≥ c for some c > 0 by the CLT.

Proof.

P (Sn ≥ k) ≥ P
(
k ≤ Sn ≤ k +

n

k

)
≥
(i)

√
c

n

∑
k≤j≤bk+n

k c
e−

j2/2n

For these j we have

e−
j2/2n ≥ e−(k+nk )

2
/2n ≥ e−

k2

2n
−1− n

2k2 ≥
k≥
√
n

c′e−
k2/2n

Thus,

P (Sn ≥ k) ≥ c′′√
n
e−

k2/2n · n
k

�

Reminder: De�ne Mn = max
0≤j≤n

Sj . Then P (Mn ≥ k) = P (Sn = k) + 2P (Sn > k).

Sn is typically of order
√
n. By (ii) and Borel-Cantelli, a.s. Sn ≤

√
2n log n (1 + ε) eventually.
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Lemma. (Borel-Cantelli)

If {An}is a sequence of events, then:

1) If
∑
P (An) <∞, then a.s. only �nitely many occur.

2) If
∑
P (An) =∞ and An are independent, then a.s. in�nitely many of them occur.

Application: De�ne An =
{
Sn ≥ (1 + ε)

√
2n log n

}
. By (ii), P (An) ≤ 1

n1+ε .

So
∑
P (An) <∞, and therefore a.s. Sn ≤ (1 + ε)

√
2n log n eventually.

Theorem. (LIL)

lim sup
n→∞

Sn√
2n log logn

= 1 a.s.

Remark: By symmetry, lim inf
n→∞

Sn√
2n log logn

= −1 a.s.

Notation: u (n) =
√

2n log logn

Proof. Remark: For ease of readability, we will not worry about integrality of indices in
the proof. One may round the indices appropriately everywhere and the argument will still
go through.

For γ > 0, a > 1, k ∈ N

P

(
max

0≤j≤ak
Sj ≥ (1 + γ)u

(
ak
))
≤ 2P

(
Sak ≥ (1 + γ)u

(
ak
))
≤

≤
(ii)

2e
−

(1+γ)2u(ak)
2

2ak = 2e−(1+γ)
2 log log(ak) =

2

(k log a)(1+γ)
2

These probability estimates are summable in k. Thus by B-C,

P

(
max

0≤j≤ak
Sj ≤ (1 + γ)u

(
ak
)

from some k on

)
= 1

Now, for large n, write ak−1 ≤ n ≤ ak. Then

Sn
u (n)

=
Sn

u (ak)
·
u
(
ak
)

ak
· a

k

n
· n

u (n)
≤ a (1 + γ)

3-4



since Sn
u(ak)

≤ 1 + γ , a
k

n ≤ a, and
u(ak)
ak
· n
u(n) ≤ 1 because u(t)

t is eventually decreasing.

We deduce that

P

(
max

0≤j≤ak
Sj ≤ (1 + γ)u

(
ak
)

from some k on

)
= 1

P

(
lim sup

n

Sn
u (n)

≤ a (1 + γ)

)
= 1

Since γ > 0 and a > 1 are arbitrary, we have

P

(
lim sup

n

Sn
u (n)

≤ 1

)
For the lower bound, �x 0 < γ < 1, a > 1.

Denote Ak =
{
Sak − Sak−1 ≥ (1− γ)u

(
ak − ak−1

)}
.

We need to show that
∑
P (Ak) =∞.

Denote: n = ak − ak−1.

For large k,

P (Ak) ≥
lemma

c

√
n

(1− γ)u (n)
e−

(1−γ)2u2(n)
2n =

c

1− γ
· 1√

2 log log n
· 1

(log n)(1−γ)
2

Noting log n ≈ k. So this expression is not summable in k.

Therefore, by B-C,

P (infinitely many of Ak occur) = 1

By the upper bound,

P

(
lim inf

n

Sn
u (n)

≥ −1

)
= 1

So we have, for large k,
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\textrm{is\:\ permutable}

Sak

u (ak)
≥ (1− γ)

u
(
ak − ak−1

)
u (ak)

+
Sak

u (ak)
≥

≥ (1− γ)
u
(
ak − ak−1

)
u (ak)

−
(1 + ε)u

(
ak−1

)
u (ak)

→
k→∞

(1− γ)

√
1− 1

a
− 1 + ε√

a

Thus

P

(
lim sup

n

Sn
u (n)

≥ (1− γ)

√
1− 1

a
− 1 + ε√

a

)
= 1

and we take γ → 0 and a→∞ to obtain the lower bound. �

2 Higher dimensional RW and general 1D RW

In 1D and in 2D SRW is recurrent. In 3D (and more D) it is transient.

For a general RW in Rd (Sn = X1 + · · ·+Xn, I.I.D., X1 ∈ Rd), what can we say about
P (Sn = 0 infinitely often)? It turns out that this probability is 0 or 1.

Say that an event A is permutable if the occurrence of A is una�ected by applying a �-

nite permutation (a function π : N→ N 1− 1
onto

s.t. π (n) = n for all n ≥ n0) to the

increments of Sn.

More formally, if the increments take values in a state space S, let our probability space Ω
be SN, with the product probability over increments.

An event A ∈ F (σ-�eld) is permutable if A = {ω ∈ Ω|π (ω) ∈ A} for all �nite permutations
π.

The collection of all permutable events forms σ-�eld ε, the exchangable σ-�eld.

Theorem. (Hewitt-Savage 0-1 law)

If A ∈ ε (for a RW) then P (A) ∈ {0, 1}.

More Examples:

1. For any B, {Sn ∈ B infinitely often} ∈ ε.
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2. For any Cn,

{
lim sup
n→∞

Sn
Cn
≥ 1

}
∈ ε.

3. Any tail event is permutable (tail σ-�eld ⊆ε).

A tail event is an event which, for any n, is a function only of Xn, Xn+1, · · · .

Proof. Fix A ∈ ε. We will show that P (A) = P (A)2 (in other words, A, is independent
of itself).

Take a sequence of events An s.t. An is a function only of X1, · · · , Xn and:

(1)
P (An4A)→ 0

( Xor: B4C = (B ∪ C) \ (B ∩ C) )

Let π = πn be the permutation which exchanges 1, · · · , n with n+ 1, · · · , 2n.

Write A
′
n = π (An). Notice that An and A

′
n are independent.

Since π preserves probability (since X1, · · · are I.I.D.),

(2)

P (An4A) = P (π (An4A)) =
A is permutable

P
(
A
′
n4A

)
Noticing that | P (B) − P (C) |≤ P (B4C), then (1) and (2) imply that P (An) → P (A)
and

(3)

P
(
A
′
n

)
→ P (A)

However, we also obtain that

P
(
An4A

′
n

)
≤ P (An4A) + P

(
A
′
n4A

)
→ 0

from which

0 ≤ P (An)− P
(
An ∩A

′
n

)
≤ P

(
An ∪A

′
n

)
− P

(
An ∩A

′
n

)
= P

(
An4A

′
n

)
→ 0

But P (An)→ P (A), and by independence P (An)P
(
A
′
n

)
→
(3)
P (A)2. Thus,
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P (A) = P (A)2

as we wanted. �

Application: For a RW in R, exactly one of the following has probability 1:

(i) Sn = 0 for all n (trivial RW)

(ii) Sn →∞

(iii) Sn → −∞

(iv) lim supSn =∞ and lim inf Sn = −∞

Proof. By the 0-1 law, lim sup
n→∞

Sn is a constant c ∈ [−∞, ∞] (since it is a permutable RV).

Notice that by considering the �rst increment X1, c = c−X1.

Thus, either X1 ≡ 0 (this is case (i)), or c ∈ {−∞, ∞}.

Similarly, lim inf Sn ∈ {−∞, ∞}. �

Exercise: If X1 ∈ R is non-degenerate (not always 0: P (X1 = 0) < 1), then we are in
case (iv) if either:

1. X1 is symmetric.

2. E (X1) = 0 and E
(
X2

1

)
<∞. (It is actually true that E (X1) = 0 su�ces, as we will

see next time.)
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