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Abstract. We study the extension of monadic second-order logic of order with cardi-

nality quantifiers “there exists infinitely many sets” and “there exists uncountably many

sets”. On linear orders that require the addition of only countably many points to be

complete, we show using the composition method that the second-order uncountability

quantifier can be reduced to the first-order uncountability quantifier. In particular, this

shows that the extension of monadic second-order logic with this quantifier has the same

expressive power as monadic second-order logic over ordinals and over countable scattered

linear orders. Using a Ramsey-like theorem of Shelah for dense linear orders we show

how to eliminate the uncountability quantifier over the ordering of the rationals. Hence,

ultimately, we give an elimination procedure that works over all countable linear orders.

§1. Introduction. The study of extensions of first-order logic with cardinal-
ity quantifiers goes back to at least Mostowski [11]. For a cardinal κ the quantifier
∃κx asks whether there are at least κ many elements with a given property. For
this reason these cardinality quantifiers, along with their many generalisations
to be found in the literature, e.g. the Magidor-Malitz quantifiers, can rightfully
be called first order. Model theoretic properties and axiomatisability of first-
order logic extended with the first-order uncountability quantifier ∃ℵ1x as well
as the possibility of eliminating ∃ℵ1x have been widely investigated [8]. See also
the book [2], which presents results on decidability and other properties of first-
order logic extended with cardinality quantifiers over various natural classes of
structures.

In this paper we take a look at the expressive power of the extension of monadic
second-order logic of order by the cardinality quantifiers ∃ℵ1X and ∃2ℵ0

X mean-
ing “there exists uncountably many sets X” and “there exists continuum many
sets X”, respectively.

Monadic second-order logic of order (henceforth MLO) plays a very important
role in mathematical logic and computer science. The fundamental connection
between MLO and automata was discovered independently by Büchi, Elgot and
Trakhtenbrot [3, 6, 14, 15] when the logic was proved to be decidable over the
class of finite linear orders. Büchi proved the decidability of MLO on (ω,<) [4]
and later, together with Siefkes, extended this result to the monadic theory of
every ordinal up to ω1, including ω1 itself [5]. Shelah continued the study of
MLO on ordinals and showed that the MLO theory of any ordinal α < ω2 is
decidable [13].

†This research was facilitated by the ESF project AutoMathA.
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For a cardinal κ and a formula ψ let ∃κX ψ express that “there are at least
κ many sets X such that ψ holds”. We will denote by MLO(∃κ) the extension
of MLO by ∃κ. Furthermore we will briefly consider extensions of MLO by
the predicates Inf(X) ≡ “the set X is infinite” and Unc(X) ≡ “the set X
is uncountable”, denoted MLO(Inf) and MLO(Unc), respectively. This is of
course equivalent to allowing the use of the first-order cardinality quantifiers
∃ωx and ∃ℵ1x, respectively, counting elements with a certain property. We
prefer the predicate notation to avoid confusion with the second-order cardinality
quantifiers.

We call a linear order almost complete if its completion contains only countably
many new points. This class includes all ordinals, all countable scattered linear
orders and of course all complete linear orders. As a kind of starting point we
will prove the following.

Theorem 1. For every MLO formula ϕ(X,Y ) there exists an MLO(Unc)
formula ψ(Y ) that is equivalent to ∃ℵ1X ϕ(Y ) over the class of almost complete
linear orders.

The predicate Unc is easily expressible in MLO over chains of certain order
types including, e.g., all ordinals. In the case of the real line little can be said in
the absence of further set theoretic assumptions. Recall that in [7] Gurevich has
shown, assuming the continuum hypothesis, that Unc(X) is expressible in MLO
over a class of linear orders including the real line and relying, in fact, solely on
topological properties of these orderings.

Theorem 1 immediately yields complete elimination of the uncountability
quantifier over countable scattered chains. Next we prove this for chains of
order type of the rationals, which enables the extension to all countable chains.
Our main results are summarised in the next two theorems.

Theorem 2 (Elimination of the uncountability quantifier).
(1) For every MLO(∃ℵ1) formula ϕ(Y ) there exists an MLO formula ψ(Y ) that

is equivalent to ϕ(Y ) over the class of all ordinals.
(2) For every MLO(∃ℵ1) formula ϕ(Y ) there exists an MLO formula ψ(Y ) that

is equivalent to ϕ(Y ) over the class of all countable linear orders.
Furthermore, in all these cases ψ is computable from ϕ.

In addition to the above, the reduction will show that over countable linear
orders the quantifiers ∃ℵ1X and ∃2ℵ0

X are equivalent, i.e. that the continuum
hypothesis holds for MLO-definable families of sets.

Theorem 3. For every MLO(∃ℵ1 ,∃2ℵ0 ) formula ϕ(X,Y ) ∃ℵ1X ϕ(X,Y ) is
equivalent to ∃2ℵ0

X ϕ(X,Y ) over the class of all countable linear orders.

These results generalise those of Kuske and Lohrey [9, 10] dealing solely with
the ordering (ω,<).

Note that all of our results extend to cardinality quantifiers ∃ℵ0X, ∃ℵ1X and
∃2ℵ0

X counting tuples of sets. This follows from the fact that

∃κ(X0, X1)ϕ ≡ ∃κX0 ∃X1 ϕ ∨ ∃κX1 ∃X0 ϕ

for any cardinal κ ≥ ℵ0.
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Organisation. After recapitulating basic definitions and notations in Sec-
tion 2 and handing the infinity quantifier in Section 3, we divide the discus-
sion into several subsections gradually working our way towards establishing the
above stated theorems. In section 2.2 we recall the composition method over
linear orders, the main vehicle of our arguments. In section 4 we introduce the
notion of U-intervals and D-intervals and finite U-U covers underlying all our
proofs and pin down their fundamental properties. Our first result is the partial
reduction of cardinality quantifiers over almost-complete linear orders as stated
in Theorem 1. It is presented in section 5. As corollaries we obtain complete
elimination over the class of ordinals as well as over countable scattered linear
orders. Section 6 sees another partial elimination result effective over all linear
orders showing that the application of cardinality quantifiers can be restricted
to cuts, i.e. to downward-closed subsets, i.e. to points of the completion of any
given linear order. In section 7 we show that ∃ℵ1 and ∃2ℵ0 are equivalent and
MLO-expressible over the ordering of the rationals. In section 8 we show how to
eliminate the cardinality quantifiers over linear orders uniformly decomposable
into sums of linear orders when uniform elimination over the summands and
elimination over the index structure are at hand. Finally, in section 9 the results
of the previous sections are combined to obtain uniform and effective elimination
of cardinality quantifiers over all countable linear orders.

§2. Preliminaries. For a number l ∈ N, l > 0, an l-labelled linear order (or
simply l-chain) is a structure L = (L,<, P1, . . . , Pl), where the Pi’s are unary
predicates and (L,<) is a linear order.

We denote the standard ordering of natural numbers by (ω,<) or (N, <),
the orderings of integers and rational numbers are denoted (Z, <) and (Q, <),
respectively. Recall that (Q, <) is dense, i.e. between any two elements x < y
there is another element z such that x < z < y. A linear order (L,<) is scattered
if a non-trivial linear dense order cannot be embedded into (L,<), or equivalently
if (Q, <) cannot be embedded into it.

A subset I of a linear order (L,<) is convex, if for all x < y < z with x, z ∈ I
also y ∈ I. We use the word intervals referring to to all convex subsets, not just
when they are bounded, or have endpoints in L. For intervals with endpoints
a, b ∈ L, whether open or closed on any side, we will use the standard notation,
such as [a, b) = {x ∈ L | a ≤ x < b}, etc. Moreover, we write L|[a,b) for the order
L∩[a, b), and for X ⊆ L we use analogous notation, i.e. X|[a,b] for X∩[a, b]. This
notation is extended to k-tuples in the natural way, e.g. X|I = (X1|I . . . Xk|I).

A linear order is complete if every one of its subsets has a least upper bound.
In this paper a cut of a linearly ordered set (L,<) is a downward closed set C ⊆ L
such that if C has a least upper bound in L then it is contained in C. A proper
cut is a cut that has no least upper bound in L, i.e. one that has no maximal
element. The completion of the linear order L, denoted L, is defined as the linear
order (C(L),() of cuts of L with the mapping L 3 l 7→ {k ∈ L | k ≤ l} ∈ C(L)
as the canonical embedding.

2.1. Monadic logic of order. We will work with l-chains in the relational
signature {<,P1, . . . , Pl} where < is a binary relation symbol interpreted as a
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total ordering and the Pi’s are unary predicates representing a labelling of the
chain.

Monadic second-order logic of order, MLO for short, extends first-order logic
by allowing quantification over subsets of the domain. MLO uses first-order vari-
ables x, y, . . . interpreted as elements, and set variables X,Y, . . . interpreted as
subsets of the domain. Set variables will always be capitalised to distinguish
them from first-order variables. The atomic formulas are x < y, x ∈ Pi and
x ∈ X, all other formulas are built from the atomic ones by applying boolean
connectives and the universal and existential quantifiers for both kinds of vari-
ables. Concrete formulas will be given in this syntax, taking the usual liberties
and short-hands, such as X ∪ Y,X ∩ Y,X ⊆ Y , guarded quantifiers and relativi-
sations of formulas to a set.

The quantifier rank of a formula ϕ, denoted qr(ϕ), is the maximum depth of
nesting of quantifiers in ϕ. For fixed n and l we denote by Formn,l the set of
formulas of quantifier depth ≤ n and with free variables among X1, . . . , Xl. Let
n, l ∈ N and L1,L2 be l-chains. We say that L1 and L2 are n-equivalent, denoted
L1 ≡n L2, if for every ϕ ∈ Formn,l, L1 |= ϕ iff L2 |= ϕ.

Clearly, ≡n is an equivalence relation. For any n ∈ N and l > 0, the set
Formn,l is infinite. However, it contains only finitely many semantically distinct
formulas, so there are only finitely many ≡n-classes of l-structures. In fact, we
can compute representatives for these classes.

Lemma 4 (Hintikka Lemma). For each n, l ∈ N, we can compute a finite set
Hn,l ⊆ Formn,l such that:

– For every l-chain A there is a unique τ ∈ Hn,l such that T |= τ .
– If τ ∈ Hn,l and ϕ ∈ Formn,l, then either τ |= ϕ or τ |= ¬ϕ. Furthermore,

there is an algorithm that, given such τ and ϕ, decides which of these two
possibilities holds.

Elements of Hn,l are called (n, l)-Hintikka formulas.

Given an l-chain L we denote by Tpn(L) the unique element of Hn,l satisfied
in L and call it the n-type of L. Thus, Tpn(L) determines (effectively) which
formulas of quantifier-depth ≤ n are satisfied in L.

We sometimes speak of the n-type of a tuple of subsets V = V1, . . . , Vm of a
given l-chain L. This is synonymous with the n-type of the (l+m)-chain (L, V )
obtained as an expansion of L with the predicates Pl+1, . . . , Pl+m interpreted
by the sets V1, . . . , Vm given. This type will be denoted by Tpn(L, V ) and often
referred to as an n-type in m variables, whereby the n-type of the (l + m)-
structure (L, V ) is understood. Moreover, when considering substructures, e.g.
L′ ⊆ L, and given sets X ⊆ L, we write Tpn(L′, X) to denote Tpn(L′, X ∩ L′).

2.2. The composition method. The essence of the composition method is
that certain operations on structures, such as disjoint union and ordered sums
of linear orders, can be projected to n-theories, i.e. there are corresponding
operations mapping n-theories of constituent structures to the n-theory of the
resulting structure. In other words, n-theories can be composed. The method
was introduced by Shelah as an adaptation of the Feferman-Vaught Theorem
to MLO [13].
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Definition 5 (Sums of k-chains). Given a linear order (I,<) and a family
of k-chains Li = (Li, <i, P i) for every i ∈ I, the sum

∑
I Li is defined as the

k-chain over the set
⋃
i∈I Li × {i} such that

(l, i) < (l′, i′) ⇐⇒ i < i′ or i = i′ and l <i l
′,

with labels defined by P (l, i) ⇐⇒ P i(l).

We write L0 + L1 for the sum over ({0, 1}, <). For example (Z, <) is iso-
morphic to ω∗ + ω, where ω∗ is the standard ordering of negative integers,
({. . . ,−3,−2,−1}, <).

In its weakest form the composition theorem states that the n-type of a sum
of chains, Tpn

(∑
i∈I Li

)
, is uniquely determined by the chain of n-types of the

summands 〈Tpn(Li) | i ∈ I〉. A stronger statement is cited below as Theorem 24.

Theorem 6 (Composition on linear orders I.).
Let (I,<) be a linear ordering. If (Li | i ∈ I〉 and 〈(L′i | i ∈ I〉 are I-
indexed sequences of chains such that Tpn(Li) = Tpn(Li) for all i ∈ I, then
Tpn(

∑
i∈I Li) = Tpn(

∑
i∈I L′i).

§3. Infinity quantifier. Warming up, we observe that the second-order in-
finity quantifier ∃ℵ0X can be eliminated uniformly over all structures with the
aid of the predicate Inf(X) expressing that X is infinite or, equivalently, using
the first-order infinity quantifier ∃ℵ0x.

Proposition 7. For every MLO(∃ℵ0) formula ϕ(Y ) there exists an MLO(Inf)
formula ψ(Y ) equivalent to ϕ(Y ) over all structures.

Proof. Observe that the following are equivalent:
(1) There are only finitely many X which satisfy ϕ(X,Y )
(2) There is a finite set Z such that any two different sets X1, X2 which both

satisfy ϕ(Xi, Y ) differ on Z, i.e.

∃Z
(
¬Inf(Z) ∧ ∀X1X2

(
(ϕ(X1, Y ) ∧ ϕ(X2, Y ) ∧X1 6= X2) →

∃z ∈ Z (z ∈ X1 ↔ z 6∈ X2)
))
.

Item (2) implies (1) as a collection of sets pairwise differing only on a finite set
Z has cardinality at most 2|Z|. Conversely, if X1, . . . , Xk are all the sets that
satisfy ϕ(Xi, Y ), then choose for every pair of distinct sets Xi, Xj an element zi,j
in the symmetric difference of Xi and Xj and define Z as the set of the chosen
elements. a

As Inf is uniformly MLO-definable over all linear orders we have the following
corollary.

Corollary 8. MLO(∃ℵ0) collapses effectively to MLO over the class of linear
orders.

The converse of Proposition 7 holds as well. In fact, the predicate Inf(X) can
be defined over all structures by the formula ∃κY Y ⊆ X for any ℵ0 ≤ κ ≤ 2ℵ0 .
Therefore, by Proposition 7, any of the quantifiers ∃κY with ℵ0 < κ ≤ 2ℵ0 can
be used to define ∃ℵ0 .
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§4. U-D colouring of intervals. To eliminate a single occurrence of the
uncountability quantifier from a formula ∃ℵ1X ϕ(X,Y ) we will make extensive
use of the following notions for intervals.

Definition 9. Let (L,<,X, Y ) be a labelled chain such that L |= ϕ(X,Y )
and let I be an interval of (L,<).
(1) I is a U-interval for ϕ, X, Y iff L|I |= ∀Z τ(Z, Y )→ Z = X,

where τ(X,Y ) is the n-type of (L|I , X, Y ) with n the quantifier rank of ϕ.
(2) I is a D-interval for ϕ, X, Y iff it is not a U-interval.
(3) I is an unsplittable D-interval for ϕ, X, Y iff it cannot be split into disjoint

D-intervals.

Note that everything here can be formalised in MLO. For example, there is an
MLO formula DINTϕ(X,Y , I) expressing that I is a D-interval for ϕ,X, Y and a
formula UNSPϕ(X,Y , I) such that L |= UNSPϕ(X,Y , I) iff I is an unsplittable
D-interval for ϕ,X, Y .

Whenever ϕ,X, Y are clear from the context we will take the liberty of saying
“I is an U-interval” instead of “I is U-interval for ϕ,X, Y ”. Similarly, for D-
intervals and unsplittable D-intervals.

Lemma 10. If there is an infinite set of pairwise disjoint D-intervals for some
X satisfying ϕ(X,Y ) then there are at least continuum many such X.

Proof. IfX is as in the assumption then the chain (L,<,X, Y ) can be written
as a sum

∑
i∈I(Li, <i, X∩Li, Y |Li

), where I is countably infinite and for all i ∈ I
the interval Li contains a D-interval, hence Li is itself a D-interval for X. This
means that for each i ∈ I as above, there is a subset X ′i ⊆ Li such that

Tpn(Li, <,X ∩ Li, Y |Li) = Tpn(Li, <,X ′i, Y |Li).

We define for every subset H ⊆ I the set

XH =
⋃
{X ′i | i ∈ H} ∪

⋃
{X ∩ Li | i 6∈ H}.

It follows from the above by Theorem 6 that Tpn(L,<,XH , Y ) = Tpn(L,<
,X, Y ) for every H ⊆ I. Each of the continuum many XH therefore satisfies
ϕ(XH , Y ) in L. a

Definition 11 (Finite U-U cover). Let (L,<,X, Y ) be a labelled chain such
that L |= ϕ(X,Y ). Let I be an interval. Intervals I1 . . . Ik constitute a finite
U-U cover of I for ϕ,X, Y if I =

⋃
j Ij and each Ij is either a U-interval or an

unsplittable D-interval for ϕ,X, Y .

Again, we will most often take no mention of either ϕ, X, or Y when these
are understood. As in the following observation.

Lemma 12. If I has no finite U-U cover, then I can be split into two D-
intervals such that one of them has no finite U-U cover.

Proof. Because I has no finite U-U cover, it is necessarily a D-interval, but
not an unsplittable D-interval. It can thus be split into D-intervals I1, I2 with
I1 ∩ I2 = ∅ and I1 ∪ I2 = I. Now if both I1 and I2 had a finite U-U cover, then
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this would yield a finite U-U cover of I. Therefore either I1 or I2 has no finite
U-U cover. a

As a conclusion we obtain the following lemma.

Lemma 13. The following dichotomy holds (for each X):
(1) either I contains infinitely many disjoint D-intervals (for X)
(2) or I has a finite U-U cover (for X).

Proof. Assume that I has a finite U-U cover. Then it has a finite U-U cover
I1, . . . , Ik such that Ii ∩ Ij = ∅ for all 1 ≤ i 6= j ≤ k. As each Ij is either a U-
interval or an unsplittable D-interval it cannot contain two disjoint D-intervals.
This gives an upper bound k + (k − 1) on the size of any collection of pairwise
disjoint D-intervals inside I: at most k D-intervals each contained properly in
separate Ij ’s and at most k − 1 D-intervals intersecting two or more of the Ij ’s.

Conversely, if I0 = I has no finite U-U cover then, by Lemma 12, it can
be split into disjoint D-intervals I1 and J0, with I1 having no finite U-U cover.
Continuing in this manner we can inductively define D-intervals In and Jn for all
n ∈ N such that each In is a D-interval with no finite U-U cover and In∩ Im = ∅
for all n 6= m. a

Next we refine the notion of finite U-U covers as follows.
Definition 14 (Balanced cover).

(1) An unsplittable D-interval I is left-balanced iff I<v = {w ∈ I | w < v} is a
U -interval for every v ∈ I.

(2) Similarly, an unsplittable D-interval I is right-balanced iff for every v ∈ I
the interval I>v = {w ∈ I | w > v} is a U -interval.

(3) An unsplittable D-interval I is balanced iff it is either left-balanced or right-
balanced.

(4) A finite U-U cover I1, . . . , Ik is balanced iff for each 1 ≤ j ≤ k, Ij is either
an U-interval or a balanced unsplittable interval.

Lemma 15. An interval I has a finite U-U cover for X iff I has a balanced
U-U cover for X.

Proof. We show that every non-balanced unsplittable D-interval I for X can
be split1 into two intervals L and R constituting a balanced U-U cover of I for
X. This immediately implies the conclusion of the lemma.

Let I be a non-balanced unsplittable D-interval for X. Because I is not right-
balanced, there is a point v ∈ I such that I>v is a D-interval, consequently, I<v
must be a U-interval, since I cannot be split into two D-intervals. The following
set is therefore not empty.

L = {v ∈ I | I<v is a U-interval forX}
By definition, L is a downward-closed subinterval of I, and it is either a U-interval
or a left-balanced unsplittable D-interval.

Let R = I \ L. Because I is not left-balanced R cannot be empty. Then
one of R or L is a U-interval. We have seen that if L is a D-interval then it
is left-balanced. Similarly, we need to show that if R is a D-interval then it is

1It is important to point out that the split depends on X.
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right-balanced. Notice that I<v is a D-interval for X for every v ∈ R, otherwise
v would be in L. Therefore, since I cannot be split into disjoint D-intervals for
X, I>v is a U-interval for X for every v ∈ R. Which means precisely that R is
right-balanced. a

Lemma 16. There is a function N(k, l, ϕ) such that for every l-chain L =
(L,<, Y ) if {I1, . . . , Ik} is a balanced U-U cover of an interval I of L for each
of X1, . . . , Xn then n ≤ N(k, I, ϕ) or Xi ∩ I = Xj ∩ I for some i 6= j.

Proof. Let K be the number of qr(ϕ)-types in l + 1 variables. Then, if J is
a U-interval for K + 1 sets then two of these must realise the same type on J
and hence have to coincide on J . Assume now that J is left-balanced for 2K+ 1
sets X1, . . . , X2K+1, so for each v ∈ J the interval J<v is a U-interval for each
of these sets Xi. If for each pair Xi, Xj with i 6= j there is a point pi,j ∈ J on
which these two sets differ, then all the 2K + 1 sets differ on the interval J≤p
with p = max{pi,j | i, j ≤ 2K + 1}. Therefore there are at least K + 1 among
them which are pairwise different on J<p, which contradicts the fact that J<p
is an U-interval for all of these. The case of right-balanced intervals is treated
symmetrically.

Classify the sets Xi into 2k classes according to which of the I1, . . . , Ik are left-
or right-balanced for each Xi (considering U-intervals, say, as left-balanced). By
the above, no class can contain more than (2K)k sets pairwise different on I.
Therefore N(k, l, ψ) = (4K)k satisfies the claim. a

Combining Lemmas 13, 15 and 16 we obtain the following criterion.

Proposition 17. Let L = (L,<, Y ) be an l-chain and ϕ(X,Y ) an MLO for-
mula. Then

L |= ¬∃ℵ1X ϕ(X,Y )

if and only if there exists a countable subset U of the completion of L such that
for every X satisfying ϕ(X,Y ) there is a finite balanced U-U cover of L the
end-points of which lie in U .

Since U is a subset of the completion of L, this condition cannot be directly
expressed in MLO over L. In certain special cases, however, we are able to use
this criterion to eliminate the uncountability quantifier ∃ℵ1X.

§5. Almost complete linear orders. After these preparations we are ready
to prove the first item of Theorem 2 concerning the collapse of MLO(∃ℵ1) to
MLO over the class of all ordinals. This will be a corollary of the elimination
step embodied in Theorem 1 and valid uniformly over all almost complete linear
orders. Recall that a linear order L is almost complete if L \ L is countable.

Theorem 1. For every MLO formula ϕ(X,Y ) there exists a MLO(Unc) for-
mula ψ(Y ) that is equivalent to ∃ℵ1X ϕ(X,Y ) over the class of almost complete
linear orders.

Proof. We are going to show that over almost complete linear orders the
condition stated in Proposition 17 can be formulated in MLO(Unc). First, let
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U be as in Proposition 17 and let V = U ∩ L. Note that V ∪ (L \ L) is an over-
approximation of U , which also fulfils the condition stated in Proposition 17.

Let M be a subset of L. Define an equivalence relation ∼M as follows: x ∼M y
if [x, y] ⊆M or [x, y] is disjoint from M . Note that for every M , the equivalence
classes of ∼M are intervals in L. Moreover, the following can be formalised in
MLO(Unc):

(i) The number of ∼M classes is finite.
(ii) Each ∼M class is a U-interval or an unsplittable D-interval.
(iii) Any extremal points of any of the ∼M classes are contained in V .

Observe that item (iii) is equivalent to the assertion that all end-points are in
V ∪ (L \ L). Note also, that if I0, . . . Ik are disjoint intervals that partition L,
then there is M such that the Ii are ∼M -equivalence classes. Indeed if for i < j
the interval Ii precedes Ij then we can take as M the set I0 ∪ I2 ∪ · · · ∪ I2bk/2c.

The conditions of Proposition 17 can be formalised by an MLO formula ex-
pressing that there is a countable set V such that for all X satisfying ϕ(X,Y )
there is a set M such that the ∼M classes constitute a finite U-U cover for X
and all extremal points of ∼M classes fall in V . a

In cases where the uncountability predicate, equivalently, the first-order un-
countability quantifier is MLO-definable the above technique can be used induc-
tively to completely reduce MLO(∃ℵ1) to MLO. Two classes over which this
is feasible are the class of countable scattered linear orders and the class of all
ordinals.

Corollary 18.

(1) For every MLO(∃ℵ1) formula ϕ(Y ) there exists an MLO formula ψ(Y ) that
is equivalent to ϕ(Y ) over the class of countable scattered linear orders.

(2) For every MLO(∃ℵ1) formula ϕ(Y ) there exists an MLO formula ψ(Y ) that
is equivalent to ϕ(Y ) over the class of all ordinals.

(3) (Under CH) For every MLO(∃ℵ1) formula ϕ(Y ) there exists an MLO for-
mula ψ(Y ) that is equivalent to ϕ(Y ) over the reals.

Proof. In all three cases one eliminates successively all uncountability quan-
tifiers from ψ from the inside out by an application of Theorem 1 followed by
the elimination of the predicate Unc(X).

Over countable linear orders the predicate Unc is vacuously always false, hence
the first claim.

Gurevich [7] proved (assuming the continuous hypothesis) that the predicate
“the set X is uncountable” is expressible in MLO over the reals. This proves the
third claim.

It is well-known that “the set X is uncountable” is expressible in MLO over
the class of all ordinals. Recall that a subset X of an ordinal α is uncountable
iff the order type of (X,<) is greater than or equal to ω1 iff there is a subset
Y ⊆ X such that the cofinality of the order-type of (Y,<) is strictly greater than
ω. This is the case precisely if every subset Z ⊆ Y such that the order-type of
(Z,<) is ω is bounded in Y . Formally, “the set X is uncountable” is equivalent
over ordinals to

∃Y ⊆ X ∀Z ⊆ Y ω(Z)→ ∃y ∈ Y ∀z ∈ Z z < y
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where ω(Z) expresses that the order type of (Z,<) is ω, for instance by saying
that Z is infinite and [0, z) ∩ Z is finite for every z ∈ Z. Finiteness can be
expressed e.g. as shown in Proposition 7. a

Observation of the proof reveals that ∃ℵ1 and ∃2ℵ0 are equivalent over count-
able scattered linear orders, but of course not over all ordinals. In [9, 10] Kuske
and Lohrey obtained similar results over (ω,<).

§6. Reduction to counting cuts. In this section we show that the exis-
tence of uncountably many sets satisfying an MLO formula can be reduced to
the existence of uncountably many cuts (downward closed sets) satisfying some
MLO formula effectively obtainable from the prior one. Cuts are of course just
representations of points of the completion of the underlying linear order. Hence
we show that ∃ℵ1 over a linear order L reduces to Unc over its completion L. In
the case of almost complete linear orders it was of course sufficient to consider
Unc over L as we did in Theorem 1. We say that a point of L is an extremal
point of a given finite U-U cover if it is the supremum or the infimum of any of its
constituent intervals. When convenient we may blur the distinction between a
cut C of a linear order L and the corresponding point supC of the completion L.

Definition 19. A cut C is an essential cut for X, equivalently, supC ∈ L is
an essential point for X, if every interval I such that I intersects both C and its
complement (i.e. infI ≤ supC < supI in L) is a D-interval for X.

Lemma 20.

(i) If supC is an essential point for X then it is an extremal point of every
finite U-U cover for X.

(ii) If there is a finite balanced U-U cover for some X then there is also one
whose non-essential extremal points belong to L.

Proof.

(i) Assume indirectly that there is an interval I of some balanced U-U cover
for X and points v, w ∈ I such that v ∈ C and w 6∈ C. Then (v, w) must
be a U-interval for X because either {x ∈ I | x < w} or {x ∈ I | v < x} is
a U-interval and (v, w) is contained in both.

(ii) Consider wlog. a finite balanced U-U cover consisting of disjoint intervals
bounded by consecutive elements σ1 < σ2 < . . . < σt of the completion L.
If some σj does not fall in L and neither is it an essential cut-point for X
then there are points v < σj < w in L such that (v, w) is a U-interval for X.
Wlog. σj−1 < v < w < σj+1. Hence the points σ1 < . . . < σj−1 < v < w <
σj+1 < . . . < σt give rise to a new balanced U-U cover for X with fewer
non-essential cut-points in L \ L. Continuing this way in a finite number
of iterations we arrive at a finite balanced U-U cover for X consisting of
disjoint intervals the extremal points of which are either essential cut-points
for X or fall inside L.

a
Combining Proposition 17 and Lemma 20 (ii) we obtain the following gener-

alisation of Theorem 1.
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Proposition 21. To every MLO formula ϕ(X,Y ) one can effectively asso-
ciate an MLO(∃ℵ1) formula ψ(Y ) equivalent to ∃ℵ1X ϕ(X,Y ) over all linear
orders and such that in ψ the uncountability quantifier only occurs in the re-
stricted form ∃ℵ1C (cut(C) ∧ ϑ).

Proof. Proposition 17 tells us that ¬∃ℵ1X ϕ(X,Y ) is equivalent to the ex-
istence of a countable subset U ∈ L containing all extremal points of some finite
U-U cover for each X satisfying ϕ(X,Y ). According to Lemma 20 (ii) if there is
one such countable set U ∈ L then there is also one containing only those points
of L\L, which are essential for some set X satisfying ϕ(X,Y ). Thus we see that
¬∃ℵ1X ϕ(X,Y ) holds over any chain if and only if

– there is a countable set U ⊆ L such that every X satisfying ϕ(X,Y ) has a
finite balanced U-U cover with non-essential cut-points in U ,

– and there are altogether only countably many cuts essential for some set X
satisfying ϕ(X,Y ).

Note that a set U ⊆ L is countable iff ¬∃ℵ1C
(
cut(C) ∧ ∃x ∈ U ∀y(y ∈ C ↔

y ≤ x)
)
. It is also straightforward to give an MLO formula ECUTϕ(C,X, Y )

expressing that C is an essential cut for X. The second condition can be thus
formalised as ¬∃ℵ1C

(
cut(C)∧∃X ϕ(X,Y )∧ECUTϕ(C,X, Y )

)
. In both of these

formulas the quantifier ∃ℵ1 is only used in the restricted form ∃ℵ1C cut(C) ∧ ϑ,
which proves the lemma. a

§7. Rationals (counting Dedekind cuts). In this section we show how
the uncountability quantifier can be eliminated from monadic second-order logic
of order over the rationals. It will also be apparent that over the rationals ∃ℵ1Xϕ

and ∃2ℵ0
Xϕ are equivalent for any MLO formula ϕ. Recall that a proper cut is

a cut having no supremum in the underlying linear order. A cut is non-trivial if
neither itself nor its complement is empty.

Lemma 22. Let ψ(C, Y1, . . . , YM ) be an MLO formula and V1, . . . , VM ⊆ Q.
Then there are uncountably many — and in fact continuum many — Dedekind
cuts C of Q satisfying (Q, <) |= ψ(C, V ) if and only if there is a subset D ⊆ Q
such that (D,<) is dense and for every non-trivial proper cut C of (D,<) the
Dedekind cut C ′ = {q ∈ Q | ∃p ∈ C : q < p} of rationals satisfies ψ(C ′, V ).

Proof. Only the necessity of the above condition requires consideration. To
that end assume that there are uncountably many cuts satisfying ψ and say that
two rationals q and q′ are close, q � q′, if [min(q, q′),max(q, q′)] contains only
countably many cuts satisfying ψ; and far otherwise. This defines an equivalence
relation each equivalence class of which constitutes an interval of the rationals.
These intervals are naturally linearly ordered and form a dense ordering. Indeed,
by assumption there are at least two classes and by definition no two classes can
form adjacent intervals, for otherwise their union would have to be part of a
single class. In other words between any two points far apart there must be a
third, which is far form both of these.

Assign to every pair [q]� < [q′]� of �-classes as its colour the n-theory of the
interval L[q,q′) =

⋃
{[p]� | [q]� ≤ [p]� < [q′]�}, where n is the quantifier rank
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of ψ.

ν([q]�, [q′]�) = Tpn(L[q,q′), <, Y1 ∩ L[q,q′), . . . , YM ∩ L[q,q′))

By composition, ν defines an additive binary colouring on Q/�. At this point we
invoke a Ramsey-like theorem for dense linear orders due to Shelah [13, Theorem
1.3] asserting that there is an open interval I of Q/� and a subset O ⊂ I, which
is dense in I and is ν-homogeneous. In other words there exists an n-theory
τ such that ν([q]�, [q′]�) = τ for all [q]� < [q′]� in O. Let D be an arbitrary
complete set of representatives of the �-classes in I. In particular (D,<) is
dense, countable and without endpoints. Let D0 = {q ∈ D | [q]� ∈ O} and let
I =

⋃
I.

Consider now a non-trivial proper cut C of D and let C ′ = {q ∈ Q | ∃p ∈
C : q < p} as in the statement of this lemma. Because D0 is dense in D there
exist Z-chains . . . < p−2 < p−1 < p0 < p1 < . . . in D0 ∩ C and . . . < q−2 <
q−1 < q0 < q1 < . . . in D0 \ C such that C = {d ∈ D | ∃z pz ≤ d < pz+1} and,
similarly, D \ C = {d ∈ D | ∃z qz ≤ d < qz+1}. In particular, there is no d ∈ D
such that pz < d < qz for all z ∈ Z, which also means that there is in fact no
q ∈ Q such that pz < q < qz for all z ∈ Z. Therefore we have I ∩ C ′ = {q ∈ Q |
∃z pz ≤ q < pz+1} and I \C = {q ∈ Q | ∃z qz ≤ q < qz+1}. By composition and
homogeneity of O, the n-theories Tpn(I∩C ′, <, Y1∩I∩C ′, . . . , YM ∩I∩C ′) and
Tpn(I \C ′, <, Y1 ∩ I \C ′, . . . , YM ∩ I \C ′) are obtained as the Z-fold product of
τ with itself and as such are independent of the choice of C. By the composition
theorem again it follows that either every C ′ as above satisfies ψ(C ′, Y1, . . . , YM )
or none does. The latter possibility can be immediately ruled out on the grounds
that any two points of D are by definition far apart meaning that there must be
uncountably many Dedekind cuts between them satisfying ψ of which at most
countably many do not induce, equivalently, are not induced by a proper cut
of D. a

The condition in the above statement is clearly MLO expressible. Combined
with Proposition 21 this yields full and effective elimination of ∃ℵ1 over (Q, <).

Proposition 23 (Elimination of ∃ℵ1 over the rationals). For every MLO-formula
ϕ(X,Y ) one can compute an MLO-formula ψ(Y ) equivalent to both ∃ℵ1X ϕ(X,Y )
and ∃2ℵ0

X ϕ(X,Y ) over the standard ordering of the rationals.

Proof. The proof is by induction on the structure of the formula. To elim-
inate an inner-most occurrence of the uncountability quantifier one applies first
Proposition 21 followed by a number of applications of Lemma 22. a

§8. Sums of linear orderings. In the following we will make use of a more
informative statement on composition of types on sums of linear orderings as
formulated by Shelah.

Theorem 24 (Composition on linear orders II. [13]). For every MLO-formula
ϕ(X) in the signature of l-chains having m free variables and quantifier rank n,
and given the enumeration τ1(X), . . . , τk(X) of Hn,l+m, there exists an MLO-
formula θ(Q1, . . . , Qk) computable from the above and such that for every linear
ordering I = (I,<I) and family {Li | i ∈ I} of l-chains and subsets V1, . . . , Vm
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of
∑
i∈I Li, ∑

i∈I
Li |= ϕ(V ) ⇐⇒ I |= θ(Q1, . . . , Qk)

where the predicates Q form a partition of I induced by V as follows: for each
1 ≤ r ≤ k,

Qr = QI;Vr = {i ∈ I | Tpn(Li, V ) = τr}.

Using this theorem we can formulate some general conditions allowing to re-
duce the problem of eliminating the uncountability quantifier ∃ℵ1 over sums of
linear orderings to eliminating ∃ℵ1 over the index structure as well as eliminat-
ing it uniformly over the summands. This, of course, assuming that the sum is
already given.

Corollary 25. Let ϕ(X,Y ) be an MLO formula of quantifier rank N , and
let L =

∑
i∈I Li be an ordered sum of chains, and V subsets of L. Let the

enumeration of the N -types be given by τ1(X,Y ), . . . , τK(X,Y ) and let θ(T ) be
the formula delivered by Theorem 24. Then there are uncountably many U ⊆ L
satisfying L |= ϕ(U, V ) iff
(a) there is one such U having infinitely many disjoint D-intervals; or
(b) there is one such U and an index i ∈ I so that Li |= ∃ℵ1Z τr(Z, V |Li

) where
τr is the N -type of (U |Li , V |Li) on Li; or

(c) The set of those partitions P of I that are induced by V and some U satisfying
ψ(U, V ) is uncountable. This can be expressed by an MLO(∃ℵ1)-formula over
the index structure:

(I,<) |= ∃ℵ1P : Part(P ) ∧
K∧
r=1

Pr ⊆ Qr ∧ θ(P )

where Part(P ) states that P partition I and for each r = 1 . . .K the set
Qr = {i ∈ I | Li |= ∃X ′ τr(X ′, V |Li

)}.

Proof. Each of the three conditions is sufficient to yield uncountably many
sets U satisfying ϕ. For (a) this was proved in Lemma 10 by the weaker form of
the composition theorem. Similarly, for (b) this also follows directly already from
the weaker composition theorem. Finally, for condition (c) this follows from the
fact that, for every one of the uncountably many tuples P accounted for, there
is a distinct set U inducing the type-predicates P and fulfilling ϕ(U, V ).

Conversely, if condition (c) fails then there are only countably many colourings
of I with type predicates P induced by some U satisfying ϕ(U, V ). By failure
of (a) for each of these type predicates we have for all but finitely many indices
i that i ∈ Pr implies that τr uniquely defines U ∩ Li from V |Li

. Finally, if
condition (b) fails too, then on each of the finitely many remaining intervals Li
there are also only countably many choices for U ∩ Li.

To see that the formalisation of condition (c) provided above is sound note that
by Theorem 24 every U satisfying ϕ(U, V ) induces (together with V ) a partition
P satisfying the given formula. Conversely, each tuple P satisfying it fulfils all
the following: It forms a partition, it is induced by some set U together with
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V as ensured by
∧K
r=1 Pr ⊆ Qr, and every U inducing it must satisfy ϕ(U, V )

thanks to θ(P ). a

Furthermore, if ∃ℵ1 is equivalent to ∃2ℵ0 both over the index structure and
on each of the summands then, by the proof of the previous Lemma, these two
quantifiers are also equivalent over the sum.

A crucial point as to the applicability of the above claim is that it assumes
a given factorisation of a linear ordering as a sum. We introduce the notion of
definable splitting to facilitate the use of the above technique on classes of linear
orderings over which an appropriate factorisation is uniformly definable.

Definition 26 (Splitting). Let L = (L,<, . . . ) be a chain and θ(x, y) a for-
mula with x and y first-order variables.

(1) We call θ a splitting of L if {(a, b) ∈ L2 | L |= θ(a, b)} is an equivalence
relation whose every class is an interval.

(2) For a splitting θ of L let ∼Lθ denote the equivalence relation defined by θ
in L, let IL/θ be the set of ∼Lθ -classes and IndL/θ := (IL/θ, <) the natural
ordering of IL/θ according to representatives. Call IndL/θ the indexing order
of L and SL/θ = {L|I | I ∈ IL/θ} the summand structures of L w.r.t. θ.

(3) Let C be a class of labelled chains. We call θ a splitting of C iff θ splits
every L ∈ C. Let IndC/θ := {IndL/θ | L ∈ C} and SC/θ :=

⋃
L∈C SL/θ. Call

IndC/θ and SC/θ the class of indexing chains of C and the class of summand
structures of C w.r.t. θ, respectively.

Theorem 27. Let C be a class of labelled chains and θ a splitting of C. If

(1) MLO + ∃ℵ1 collapses effectively to MLO over the class of indexing chains of
C w.r.t. θ, and

(2) MLO+∃ℵ1 collapses effectively to MLO over the class of summand structures
of C w.r.t. θ,

then MLO + ∃ℵ1 collapses effectively to MLO over C.

Proof. Consider a formula ϕ(X,Y ) of MLO. We give a formula α ∨ β ∨
γ expressing in MLO the disjunction of the three conditions of Corollary 25
equivalent to ∃ℵ1Xϕ(X,Y ) uniformly over each L ∈ C with the factorisation as
defined by θ. Let τ1, . . . , τK be en enumeration of Tp(N, 1 +M) where N is the
quantifier rank of ϕ and M = |Y |.

Condition (a) can be expressed in MLO uniformly over all chains of a given
signature. For instance by requiring the existence of an X satisfying ϕ(X,Y )
and an infinite set D such that every interval containing at least two points of
D is a D-interval for X:

α = ∃X ∃D Inf(D) ∧ ∀ interval I (∃d 6= d′ ∈ D ∩ I)→ DINTϕ(X,Y , I).

The use of Inf(D) above is, of course, just a shorthand, it can be eliminated as
in Proposition 7.

Condition (b) can be easily expressed in MLO relying on the elimination pro-
cedure for SC/θ. By the latter, one obtains for each N -type τr(X,Y ) an MLO
formula νr(Y ) equivalent to ∃ℵ1Z τr(Z, Y ) over SC/θ. Using these, condition (b)
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can be written as

β = ∃X ϕ(X,Y ) ∧ ∃I ∃x CLASSθ(x, I) ∧
∨
r

(τ Ir (X,Y ) ∧ νIr (Y ))

where CLASSθ(x, I) = ∀y(y ∈ I ↔ θ(x, y)) defines I as the equivalence class of
x with respect to θ; and where for a formula ψ, we denote by ψI the relativisation
of ψ to I.

Finally, to express condition (c) of Corollary 25 one needs to
– choose a set I of representatives of all the equivalence classes defined by θ,
– relativise to I the MLO formula ρ(Q) equivalent to ∃ℵ1P . . . of condition

(c) over IndC/θ as delivered by the elimination procedure for this class,
– and substitute into ρI the sets Q defined as

Ω(Q) =
K∧
r=1

∀x(x ∈ Qr ↔ ∃X ′, L : CLASSθ(x, L) ∧X ′ ⊆ L ∧ τLr (X ′, Y )).

With the customary shorthand “∃! y” meaning “there is a unique y such that”
this formula takes the form

γ = ∃I (∀x ∃! y ∈ I : θ(x, y)) ∧ ∃Q1, . . . , QK Ω(Q) ∧ ρI(Q).

a

§9. All countable linear orders. At last we are in a position to conclude
that the quantifiers ∃ℵ1 and ∃2ℵ0 are equivalent and can be effectively eliminated
from MLO(∃ℵ1 ,∃2ℵ0 ) uniformly over all countable chains. Indeed, it is well
known that every countable linear order arises as a dense sum of scattered linear
orders, i.e. in the form

∑
q∈D Lq where each Lq is a countable scattered linear

order and D is either a singleton or is isomorphic to the standard ordering of
the rationals with or without additional left and/or right extremal elements.

Let θ(x, y) be the MLO-formula expressing that for no subset A of L[x,y] is
(A,<) a dense ordering, i.e. that L[x,y] is a scattered linear order. Over any
countable chain θ defines an equivalence relation partitioning it into intervals
coinciding with the summands Lq as above. Thus, θ is a splitting of the class of
all countable linear orders.

Taking advantage of Theorem 27 and using the previously proven collapse re-
sults over the class of countable scattered linear orders (Corollary 18) and over
the rationals (Proposition 23), — which trivially extends to the rationals with
either one or both endpoints added — we obtain uniform effective elimination
of ∃ℵ1 over the class of all countable chains. This completes the proof of Theo-
rem 2(2) and Theorem 3 follows similarly.

§10. Further results. Observe that combining Theorems 2 and 27 further
elimination results can be obtained for a hierarchy of classes of linear orders.
Starting from the classes of ordinals (and their reverses) and the class of count-
able linear orders, effective elimination of ∃ℵ1 can be derived for e.g. ordinal
sums of countable linear orders, or for countable sums of ordinals and reverse
ordinals, and so on for any finite number of iterations of summation. However,
this transformation of formulas is not uniform over the union of these classes.
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The same technique employed here can be adapted to obtain similar results
over trees. The more complex structure of trees does pose, however, some inter-
esting additional challenges. In [1] we have reported on a preliminary treatment
of the tree case.

A simple (labelled) tree is a structure endowed with a partial order < and any
number of unary predicates such that the graph of < consists of all transitive
edges of a directed tree in the graph theoretic sense with its root as minimal
element and such that the distance of every node from the root is finite and
every node of the tree has finite out-degree. In [1] we have shown the following
theorem generalising an earlier result of Niwinski [12].

Theorem 28. Over the class of simple trees every MLO(∃ℵ0 ,∃ℵ1 ,∃2ℵ0 ) for-
mula is effectively equivalent to an MLO formula. Moreover, ∃ℵ1X ϕ(X,Y ) and
∃2ℵ0

X ϕ(X,Y ) are equivalent for every MLO formula ϕ with parameters Y over
every simple tree.
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[3] Julius R. Büchi, Weak second-order arithmetic and finite automata, Zeitschrift für
mathematische Logik und Grundlagen der Mathematik, vol. 6 (1960), pp. 66–92.

[4] , On decision method in restricted second order arithmetic, Proceedings of the
international congress on logic, methodology and philosophy of science, 1962, pp. 1–11.
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