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Abstract—We study the expressive power of logical interpreta-
tions on the class ofscattered trees, namely those with countably
many infinite branches. Scattered trees can be thought of as the
tree analogue of scattered linear orders. Every scattered tree
has an ordinal rank that reflects the structure of its infinite
branches. We prove, roughly, that trees and orders of large
rank cannot be interpreted in scattered trees of small rank.We
consider a quite general notion of interpretation: each element
of the interpreted structure is represented by a set of tuples of
subsets of the interpreting tree. Our trees are countable, not
necessarily finitely branching, and may have finitely many unary
predicates as labellings. We also show how to replace injective
set-interpretations in (not necessarily scattered) treesby ‘finitary’
set-interpretations.

Index Terms—Composition method, finite-set interpretations,
infinite scattered trees, monadic second order logic.

I. I NTRODUCTION

Monadic-second order logic (MSO) extends first-order logic
with free variables that range over subsets of the domain, and
allows quantification over them. When interpreted over trees
MSO is expressive enough to capture interesting mathematics
while still being manageable. Indeed, Rabin [20] proved that
the MSO-theory of the full binary treeT2 is decidable, and
many other logical theories have been shown decidable by
a reduction to this theory (see for instance the introductory
sections in [20]). Theinterpretation methodis a broad term
that refers to effective reductions that are expressible logically,
by a collection of formulas.1

We consider interpretations that define, by MSO-formulas,
structuresA inside treesT. Our trees are subtrees of the
countably-branching tree in the signature consisting of an
order symbol (intended to be interpreted as the ancestor
relation between nodes of the tree) and finitely many unary
predicate symbols (intended to be interpreted as labellings
of the nodes of the tree). In particular, nodes may have
infinitely many children. A commonly occurring infinite tree
is (N, <), also writtenω. There are various kinds of inter-
pretations depending on whether elements of the structureA

are represented by nodes or (finite) sets of nodes ofT. The
latter are called(finite) set-interpretationsand the former we

1For instance, we learned in school that rational arithmeticis reducible to
integer arithmetic by coding a rational by pairs of integers. In the terminology
of this paper(Q,+,×,=) is 2-dim point-interpretable in(Z,+,×).

call point-interpretations2 (Definitions 2.6 and 2.7). Moreover,
each element ofA is coded by at least onetuple of sets
(the common size of the tuples is called thedimensionof the
interpretation); and if every element ofA is coded by exactly
one tuple of sets then the interpretation is calledinjective.

Why do interpretations in trees matter?

Interpretations allow one to transfer computational and logi-
cal properties from the interpreting structure to the interpreted
structure.

Suppose thatA is 1-dim point-interpretable inT. Then there
is a uniform way to translate MSO-formulas in the signature
of A to MSO-formulas in the signature ofT (just replace
atoms by their definitions, and relativize quantifiers). So the
MSO-theory ofA is computable in the MSO-theory ofT. This
explains the long term efforts to extend MSO-decidability from
ω andT2 to their expansions by unary predicates [8], [10],
[22], [26].

SupposeA is set-interpretable inT. Then there is a uniform
way to translate FO-formulas in the signature ofA to MSO-
formulas in the signature ofT, and in this case the FO-
theory of A is computable in the MSO-theory ofT. So the
game here is to work out which structuresA, known to
have decidable FO-theory, are set-interpretable in trees with
decidable MSO. Already Büchi noticed, in the language of
automata, that the semigroup(N,+) is finite-set interpretable
in ω. In modern terminology(N,+) is (finite-word) automatic.
Also, the rational group(Q,+) is finite-set interpretable in a
decidable expansion ofω (see [19]).

What is the expressive power of the interpretation method?

The research program that tries to outline the power
of the interpretation method invariably has to prove non-
interpretability results. Traditionally these were results about
non-interpretability in expansions by unary predicates oflinear
orders (known as chains) [13], [18], [21]. However there are
also non-interpretability results in graphs and trees. TheCaucal
hierarchy is a sequenceC0, C1 . . . of sets of graphs such that
Ci is closed under 1-dim point-interpretations. There is a graph
in Ci which is not 1-dim point-interpretable in any graph in
Cj for j < i [6].

2In the literature these are sometimes called MSO-interpretations.



A consequence of a general result in [7] is that ifPf (A) is
1-dim finite-set weak-MSO interpretable in binary-branching
T then alreadyA is 1-dim weak-MSO point-interpretable in
T.3 In the contrapositive this is a non-interpretability result;
and indeed one of the main motivations in [7] is to reduce
set-interpretability to the simpler point-interpretability. More
recently, we learn that the real field(R,+,×) is not set-
interpretable inω [1]. Looking at the proof we see that
it goes through for any expansion ofω. Also, the rational
group (Q,+) is not set-interpretable inω (devoid of unary
predicates) [27]. Much work in automatic structures is about
proving that certain classes of structures are not (finite) set-
interpretable inω or T2 (see [4], [15], [24]).

Overview

It is intuitively obvious that the more complex a tree
the more it can interpret. We add weight to this contention
by considering interpretations in trees with countably many
infinite branches. We call thesescattered treessince they are
exactly the trees that do not embed the full binary tree. This
name mimics the fact that linear orders that do not embed
the rational order are called scattered orders, see [23]. The
measure of complexity associates to every order and treeA an
ordinalrank(A) (Definition 2.5). The rank of a tree reflects the
structure of its infinite branches (similar to Cantor-Bendixson
rank). All finite trees have rank0, the lineω has rank1, while
any tree that embeds the full binary treeT2 has rank∞ (which
is greater than all ordinals, and thus of maximum complexity).
The rank of an order resembles Hausdorff ranks; thus ordinal
ωα has rankα. We prove, intuitively, that the rank of a treeT
limits the possible ranks of orders and trees interpretablein T.
Compare this with the fact that every countable order is point
interpretable in some expansion of the non-scattered treeT2.

We emphasize that our results are of the form ‘A is not
interpretable in any expansion ofT by unary predicates’,
whether or not the expanded tree is decidable or even finitely
presented. This is in line with previous investigations of the
expressive power of interpretations in expansion of orders
(called chains) [13], [18], [21] and in expansions of trees [7].

Technical contribution and related work

Point interpretations in scattered trees:These are simpler
than set-interpretations and so proofs will not appear here. We
prove that if an order or treeA is 1-dim point-interpretable in
a treeT thenrank(A) ≤ rank(T). An immediate consequence
is that neitherQ norT2 is point-interpretable in any scattered
tree. This is an analogue of the result that neitherQ nor T2

is point-interpretable in any scattered chain [21][Lemma 2.2].

3The structureP(A) expands(2A,⊂) by the relations ofA on singleton
sets. SoP(Q) is (2Q,⊂, <) where forX, Y ∈ 2Q, X < Y if and only
if X = {x}, Y = {y} and the rationalx is less than the rationaly. The
structurePf (A) is the substructure ofP(A) consisting of finite subsets ofA.
By weak-MSO interpretation we mean an interpretation in which additionally
bound variables vary over finite sets.

Finite-set interpretations in expansions ofω: We prove that
no scattered order or scattered tree of non-finite rank is finite-
set interpretable in any expansion by unary predicates ofω
(Section III). This generalizes an early breakthrough in the
area of automatic structures that no scattered order or scattered
tree of non-finite rank is finite-set interpretable inω (devoid
of any unary predicate) [9].

Finite-set interpretations in scattered trees:We prove that
there is an ordinal functionG such that no ordinal of rank
≥ G(α) is finite-set interpretable in any scattered tree of rank
≤ α. We may takeG(n) = ωn for 0 ≤ n < ω andG(α) =
ωα+1 for α ≥ ω (Theorem 4.1).

Injective set-interpretations in scattered trees:We prove
that no ordinal of rank≥ G(α) is injectively set-interpretable
in any scattered tree of rank≤ α (Corollary 5.3). So nei-
ther P(Q) nor P(T2) are injectively set-interpretable in any
scattered tree (Corollary 5.4). Compare this with the fact that
P(Q) and P(T2) are injectively set-interpretable inT2. We
conjecture that neitherP(Q) nor P(T2) are set-interpretable
in any scattered tree.

Finitary-set interpretations in arbitrary trees:The previ-
ous result about injective set-interpretations follows from a
theorem that is of independent interest. Even though set-
interpretations allow one to interpret uncountable structures
A, we do not study these. Instead consider the following
general question: ifA is countable and set-interpretable in
(not necessarily scattered) treeT is A finite-set interpretable
in T? We do not solve this difficult problem. We establish
a result of the same principle: ifA is countable and injec-
tively set-interpretable in treeT then there is an injective set
interpretation ofA in T for which the domain consists of
tuples of finite sets and unlabelled-trees with finitely many
infinite branches. Thus we manage to replace injective set-
interpretations by these injective ‘finitary’-set interpretations.
Similar ideas also give: ifA is countable and injectively set-
interpretable in a scattered treeT of finite rank then A is
finite-set interpretable inT. We do not know if this holds for
rank(T) = ω.

Hierachy strictness:For x a type of interpretation define
Ix
α as the set of structures that arex-interpretable in labelled

trees of rank≤ α. Clearly if α < β thenIx
α ⊆ Ix

β . We have
proven that these sets can be separated by ordinals; moreover,
the bounds are tight. In summary, the hierarchies of injective
set-interpretations, finite-set interpretations, and1-dim point
interpretations are strict: ifα < β thenIx

α ( Ix
β .

A note about technicalities.As far as the objects of study
are concerned, the reader should have passing familiarity with
linear orders and ordinal arithmetic (see [23]) and logical
interpretations (see [14]). The central proof tool is Shelah’s
composition theorem (see [11] for a readable account). Ideas
from the proof in Section III are used in Section IV. Section V
can be read independently.

II. D EFINITIONS AND PRELIMINARIES

The structures in this paper have finite relational signatures
∆, typically of the form∆l := {≺, P1, . . . , Pl} where≺ is



a binary predicate symbol and eachPi is a unary predicate
symbol. In trees≺ represents the ancestor relation and in
orders≺ represents element comparison. The tupleP rep-
resents a labelling of the domain by elements of{0, 1}l.
In the next sections we define labelled linear orders (called
chains) and labelled trees. Informally, the trees in this paper
are subtrees of the countably-branching infinite tree of height
ω, with unordered siblings, and expanded by finitely many
unary predicates. The operations on these objects (sums) allow
us to define the scattered orders and trees. Countable means
finite or countably infinite. If unspecified structures in this
paper are countable. We reserve< for the ordering on ordinals.
We write ω for the smallest infinite ordinal. The domain of
a structure namedA is written A. The expansion ofA by
predicatesV is written (A, V ). If B ⊂ A then write(B, V )
for the substructure of(A, V ) on domainB.

A. Labelled Orders

An l-chainis a labelled linear orderL = (L,≺, P1, · · · , Pl).
If l = 0 we talk about a linear order, or just order.

Definition 2.1 (Sums ofl-chains): Given order(Ind,≺ind)
and for everyi ∈ Ind an l-chainLi = (Li,≺i, Pi1, · · · , Pil)
the sum

∑
Ind Li is defined as thel-chain with domain⋃

i∈Ind{i} × Li, ordering≺ defined by(i, a) ≺ (i′, a′) if and
only if i ≺ind i

′ or (i = i′ anda ≺i a
′), and thekth unary

predicate defined by
⋃

i∈Ind{i} × Pik.
Write ω for the order type of the positive integers with the

usual order,ω⋆ for that of the negative integers, andn for the
order type of the firstn positive integers.

Definition 2.2 (scattered orders and ranks):Define sets of
ordersBα andLα by transfinite induction.

• B0 := {1}.
• Lα consists of

∑
Ind Li where Ind is finite andLi ∈ Bα.

• Bα consists of
∑

Ind Li where Ind has order typeω or
ω⋆ and for all i ∈ Ind, Li ∈

⋃
β<α Lβ .

An orderL is scatteredif it is in Lα for someα and the
minimal suchα is called therank of L, written rank(L). The
rank of a non-scattered order, written∞, is defined to be
greater than all countable ordinals.4 The rank of a chain is
defined as the rank of its underlying linear order.

The rank of a countable scattered order is countable and the
rank of the ordinal written in Cantor-normal form

∑
i≤m ωαi

is α1. In particularωα is the least ordinal of rankα. The
following pigeonhole principle for linear orders is used so
often that we isolate it here.

Lemma 2.3 (partition property for orders):If the domain
of an orderL is partitioned into finitely many pieces, then
the order on at least one of the pieces has the same rank as
that ofL. If L has order typeωα then at least one of the pieces
has order typeωα.

B. Labelled Trees

An l-labelled tree (orl-tree) is a structure

T = (T,≺, P1, . . . , Pl)

4Non-scattered orders can also be given an ordinal rank (see [23]) though
we do not need this notion.

. . .
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Fig. 1. Anω-sum (left), andω-glueing.

where eachPi ⊆ T and

• T is non-empty, partially ordered by≺ with unique
minimal element (theroot r);

• every{y ∈ T | y � x} is a finite linear order.

Terminology.If l = 0 the tree isunlabelled. A node v is
a child of a nodeu if u ≺ v and there is noz with u ≺
z ≺ v. If every node has finitely many children the tree is
finitely branching; otherwise it iscountably-branching. If b is
the smallest integer with the property that every node has at
most b children then the tree isb-ary branching. If for non-
emptyT ′ ⊂ T the substructureT ↾ T ′ is also a tree (ie. has a
unique minimal element) thenT′ is a subtree ofT. A typical
example of a subtree isthe subtree ofT rooted atx ∈ T ,
written T�x and defined by the domain{u ∈ T | u � x}.
Another example is given by adownward-closed setI ⊂ T
(ie. t ≺ i ∈ I =⇒ t ∈ I). A subsetX is a branch if
it is linearly-ordered by≺ and maximal with respect to set
inclusion. Branches are subtrees and may be finite or infinite.

Definition 2.4 (tree sum):Given an unlabelled
tree (Ind,≺ind) and for every i ∈ Ind an l-tree
Ti = (Ti,≺i, Pi1, · · · , Pil) with root ri, the sum

∑
Ind Ti

is the l-tree with domain
⋃

i∈Ind{i} × Ti; ancestor relation
defined by(i, a) ≺ (i′, a′) if and only if (i = i′ anda ≺i a

′)
or (i ≺ind i′ and a = ri); and thekth unary predicatePk

defined by
⋃

i∈Ind{i} × Pik.
Terminology. SupposeT =

∑
Ind Ti. If Ind is finite thenT

is a finite sum ofTis; if (Ind,≺ind) is a linear order of type
ω then

∑
Ind Ti is anω-sum ofTis. If (Ind,≺ind) consists of

a rootr andn ≤ ω children, andTr is a singleton tree, then
T is an (n)-glueing ofTis.

We now define ranks and scattered trees. The idea is that
ω-sums andω-glueings increase the rank while finite sums
and finite glueings do not.

Definition 2.5 (scattered trees and ranks):Define families
of unlabelled treesFα andSα by transfinite induction.

• F0 consists of the unique tree with a single element.
• Gα consists of finite sums ofTis with Ti ∈ Fα.
• Fα consists ofω-sums andω-glueings ofTis whereTi ∈⋃

β<αGβ .

A tree T is scatteredif it is in Gα for someα and the
minimal suchα is called therank of T. The rank of a non-
scattered tree, written∞, is defined to be greater than all
ordinals. The rank of a labelled tree is defined as the rank of
the unlabelled tree formed by removing the labels.

Thus the finite trees all have rank0; the trees of rank1 are
ω-sums orω-glueings of finite trees, and finite sums of these.



An embeddingof unlabelled treeT in unlabelled treeT′ is an
injective functionf : T → T ′ such thatx ≺ y =⇒ f(x) ≺
f(y). The following lore clarifies the status of scattered trees:
treeT is scattered if and only if the complete infinite binary
tree does not embed inT if and only if T has countably many
infinite branches.

C. MSO and Interpretations

Monadic second order (MSO) logic consists ofMSO-
variablesX,Y, Z, . . . that are interpreted as subsets of the
domain, and allows quantification over these variables. The
non-logical symbols are those from signature∆ and the
binary predicate symbol⊆ (representing set containment).
Atomic formulas are those using symbols from∆ as well
as those such asX ⊆ Y . Formulas are built from atomic
formulas by applying Boolean connectives and universal and
existential quantification of variables. We use abbreviations
such asX = Y,X ⊂ Y andX ∩ Y = ∅. For convenience
we may use FO-variablesx, y, z · · · since ‘X is a singleton’
is definable in MSO.

A ∆-structureA consists of a domainA and for eachk-ary
predicate symbolR from ∆ a k-ary predicateRA ⊆ Ak. We
may drop the superscript inRA when we are only dealing
with one structure. Anexpansionof ∆-structureA by l many
predicates is a structure(A, PA

1 , · · · , P
A

l ) in the signature∆∪
{P1, · · · , Pl} wherePi are new unary predicate symbols. A∆-
formula is an MSO-formula in the signature∆. WriteP(A) for
the set of all subsets ofA. If ϕ(X1, . . . , Xm) is a∆-formula
andA is a∆-structure then define

ϕA := {(S1, . . . , Sm) ∈ P(A)m | A |= ϕ(S1, . . . , Sm)}.

What types of interpretations do we consider?

The most well studied interpretations in this field are point-
interpretations — the interpreting formulas are MSO (bound
variables vary over sets) but their free variables are, effectively,
first order variables. We also consider a more general notion
called (finite-)set interpretations— here the interpreting for-
mulas have free monadic variables that vary over (finite) sets;
bound variables vary over arbitrary subsets. So in (finite-)set
interpretations elements are coded by (finite) sets. Moreover
interpretations may be multi-dim (elements are coded by tuples
of finite sets) and not necessarily injective (each element can
be coded by more than one tuple).

Definition 2.6 (set interpretation):A (d-dim) set interpre-
tation Γ (in the signature∆) consists of∆-formulas

∂Γ(X1), EQΓ(X1, X2), ϕ
1
Γ(X1, . . . , Xr1), · · · , ϕ

k
Γ(X1, . . . , Xrk)

wherek is an integer,Xi is a d-tuple of MSO-variables and
in each formula all the variables named are distinct. LetT

be a∆-structure. If EQΓT is a congruence on the structure
(∂ΓT, ϕ

1
ΓT, · · · , ϕ

k
ΓT) then define

ΓT := (∂ΓT, ϕ
1
ΓT, · · · , ϕ

k
ΓT)/EQΓT

,

and say thatΓT, and any structure isomorphic to it, is
set-interpretable inT via Γ. If EQΓ(X,Y ) is the formula

∧
i≤dXi = Yi then Γ is an injective set-interpretation and

ΓT is injectively set-interpretable inT via Γ. If d = 1 then
we might stress thatΓ is a 1-dim set interpretation.

We consider two particular types of interpretations depend-
ing, loosely speaking, on whether the free variables are taken
to vary over elements ofT or finite subsets ofT.

Definition 2.7 (point- and finite-set interpretations):Let Γ
be a set interpretation. If in Definition 2.6 one replaces∂ΓT
everywhere it occurs by∂ΓT restricted tod-tuples of finite
sets (resp. singletons) then we say thatΓT is (d-dim) finite-
set interpretable(resp.point-interpretable) in T.

Remark 2.8:Note that because finiteness is not definable
in our trees,A may be finite-set interpretable in treeT while
not being set interpretable inT.

Example 2.9:For everyn < ω there is ann-dim injective
point-interpretation ofωn in ω. For instance,δΓ(X1, · · · , Xn)
states that eachXi is a singleton{xi}; and<Γ (X,Y ) states
that the leasti ≤ n such thatxi 6= yi satisfies thatxi <
yi. Also, ωn is injectively finite-set interpretable inω. For
instance, takeδΓ(X) to be all sets of sizen and orderX < Y
if the smallest integer in the symmetric difference ofX andY
is inX . The ordinalωω is the least ordinal that is not finite-set
interpretable inω [9]. A corollary of Theorem 3.1 is thatωω

is the least ordinal that is not finite-set interpretable in any
expansion ofω by unary predicates.

Definition 2.10 (interpretation with parameters):Let Γ be
an interpretation in the signature∆ such that every formula
in Γ contains an additionalm-tuple of free variables. Then
Γ is called aninterpretation withm parameters. Let S be
an m-tuple of subsets of a treeT. Then Γ(T, S), and any
structure isomorphic to it, is said to beinterpretable inT with
m parameters viaΓ. A family {Bi} is interpretable inT with
m parameters viaΓ if for every memberBi there exists an
m-tupleS such thatBi is isomorphic toΓ(T, S).

Example 2.11: [20] The rational orderQ is injectively 1-
dim point-interpretable with one parameter in the full binary
tree T2 := ({0, 1}∗,≺pref). The parameter may be taken
as R := {0, 1}∗1 and allows one to distinguish left and
right children and so define the lexicographic ordering on
{0, 1}∗. Consequently, since every countable order embeds
in the rational order, there is a1-dim point-interpretationΓ
such that the family of countable linear orders is injectively
interpretable inT2 with two parameters; one parameter isR
and the other picks out the domain of the countable linear
order.

The next proposition follows from the standard interpreta-
tion of the full countably-branching treeTω in T2 [20].

Proposition 2.12:Every tree of rankα is 1-dim point-
interpretable in a binary tree of rankα.

D. Composition Theorem for Tree-sums and Order-sums

Write ∆l for the signature of order≺ with l unary predicate
P1, · · · , Pl symbols. Thus a∆l-structureA has the form
(A,≺, PA

1 , · · · , P
A
l ). The quantifier rank of a formulaϕ,

denotedqr(ϕ), is the maximum depth of nesting of quantifiers
in ϕ. For r, l ∈ N we denote byFormr

l the set of formulas of



quantifier rank≤ r and with free variables amongX1, . . . , Xl

in signature{≺}. For∆l-structuresA,B write A ≡r
l B if for

everyϕ ∈ Form
r
l ,

A |= ϕ(PA

1 , · · · , P
A

l ) if and only if B |= ϕ(PB

1 , · · · , PB

l ).

Clearly ≡r
l is an equivalence relation and the setForm

r
l

is infinite. Since the signature∆l is finite and relational the
set Formr

l contains only finitely many semantically distinct
formulas so there are only finitely many≡r

l -classes of∆l-
structures. The following lemma isolates maximally consistent
formulas.

Lemma 2.13 (Hintikka lemma):For r, l ∈ N, there is a
finite setHr

l ⊆ Form
r
l such that:

1) For every∆l-structureA there is auniqueτ ∈ Hr
l with

A |= τ(PA
1 , · · · , P

A

l ).
2) If τ ∈ Hr

l andϕ ∈ Form
r
l , then eitherτ |= ϕ or τ |=

¬ϕ.5

Elements ofHr
l are called(r, l)-Hintikka formulas. For

everyr, l we fix an enumerationτ1(X), . . . , τ|Hr
l
|(X) of Hr

l .
Definition 2.14 (type of a structure):For ∆l-structure A

write Tprl (A) for the uniqueτ(X1, · · · , Xl) ∈ Hr
l such that

A |= τ(PA
1 , · · · , P

A

l ), and call it the(r, l)-typeof A.
ThusTprl (A) effectively determines for which formulasϕ ∈

Form
r
l it holds thatA |= ϕ(PA

1 , · · · , P
A

l ). Since l is often
clear we may drop it and writeTpr(A) andr-type.

We now discuss increasingly informative versions of the
composition theorem for MSO over tree-sums and order-sums,
see [25] or [11], [12] for details. The first, lets call itweak
composition, says that the(r, l)-type of a sum depends on the
(r, l)-types of its summands.

Theorem 2.15 (weak composition for tree- and order-sums):
For every Ind, ifTprl (Ai) = Tprl (A

′
i) for all i ∈ Ind then

Tprl (
∑

Ind Ai) = Tpr
l (
∑

Ind A
′
i).

We use the following consequence of the weak composition
for orders: for everyr, l there is associative binary operation
+ on the setHr

l such that for alll-ordersL1,L2 the formula
Tprl (L1) + Tprl (L2) is identical with the(r, l)-type of their
sumTpr

l (
∑

2
Li).

Definition 2.16 (partition of Ind):Let {Ai}i∈Ind be a fam-
ily of l-structures. TheHr

l -partition (of Ind) induced by
{Ai}i∈Ind is the |Hr

l |-tuple Q where Qk := {i ∈
Ind | Tpr

l (Ai) = τk} and τk is the kth formula in the
enumeration ofHr

l . TheHr
l -expansion of(Ind,≺ind) induced

by {Ai}i∈Ind is the structure(Ind,≺Ind, Q).
With this notation weak composition states that

Tprl (
∑

Ind Ai) is determined by theHr
l -expansion induced by

{Ai}Ind. It turns out thatTprl (
∑

Ind Ai) is already determined
by someq-type of theHr

l -expansion. In the next versionq
does not even depend on Ind:

Theorem 2.17 (composition for tree-sums):For every for-
mulaϕ ∈ Form

r
l there exists a formulaθ(Y1, . . . , Y|Hr

l
|)

6 such

5Furthermore,Hr
l

is computable fromr, l, and there is an algorithm that
given τ andϕ decides betweenτ |= ϕ and τ |= ¬ϕ. We do not use these
facts.

6Moreover,θ is computable fromϕ, although we do not use this fact.

T1 T2 T3

τ1 τ2 τ3

Fig. 2. Illustration of composition: Ther-type of the tree (left) is determined
by theq-type of the chain (right) whereτi := Tpr(Ti). This q-type is called
a projected type.

that for every unlabelled tree(Ind,≺ind) and family{Ti}i∈Ind

of l-trees
∑

Ind

Ti |= ϕ ⇐⇒ (Ind,≺ind) |= θ(Q)

where Q is the Hr
l -partition induced by{Ti}i∈Ind. The

quantifier-rank ofθ depends only onr and l and so is written
q(r, l).

Projected Types:The notions in the remainder of this
section are only used in Section IV. We visualise (Figure2) the
r-type ofTi projected ontoi and introduce notation to capture
this. A projected(r, l)-Hintikka formula is a (q(r, l), |Hr

l |)-
Hintikka formula. Theprojected(r, l)-type of family{Ti}i∈Ind

of l-trees is the (q(r, l), |Hr
l |)-type of theHr

l -expansion of
(Ind,≺ind) induced by{Ti}Ind. Note that the projected type
determines which quantifier-rankr formulas hold in

∑
Ind Ti.

When dealing with scattered trees Ind is oftenω, so the type
of an ω-sum of trees reduces to the type of an expansion of
ω. Given a family{Ti}i<n of l-trees(n ≤ ω) andm-tupleA
write PrTp(A)r[i,j) for the projected(r, l+m)-type of family
{(Tk, A)}k∈[i,j). Under this notation we have

PrTp(A)r[0,n) = PrTp(A)r[0,a) + PrTp(A)r[a,n).

The following proposition says that if elements ofΓ
∑

ω Ti

are all in an ‘interval sum’ ofT thenΓ
∑

ω Ti is interpretable
in this interval.

Proposition 2.18:SupposeT =
∑

ω Ti is an l-tree andΓ
is d-dim set (resp. point-, finite-set) interpretation. If there
exists a < b such thatT |= ∂Γ(W1, · · · ,Wd) implies
Wi ⊆

∑
i∈[a,b) Ti, thenΓT is d-dim set (resp. point-, finite-

set) interpretable in some expansion of
∑

i∈[a,b) Ti.

III. F INITE-SET INTERPRETATIONS IN EXPANSIONS OFω

We write∆l for the signature consisting of≺ andl predicate
symbols.

Theorem 3.1: 1) For everyfinite-set interpretationΓ in
the signature∆l there exists an integerNΓ such that for
every expansionC of ω by l unary predicates, ifΓC is a
scattered order or scattered tree then its rank is at most
NΓ.

2) In particular, no scattered order or scattered tree of non-
finite rank is finite-set interpretable in any expansion of
ω by unary predicates.

The second item immediately follows from the first. More-
over, the bound is tight since every ordinal of finite rank is
finite-set (even many-dim point-) interpretable inω. It was



shown in [9] that no ordinal of non-finite rank is finite-set
interpretable inω. That proof, which does not go through for
expansions ofω, inspired Theorem 3.1.

From [3, Proposition3.1] we can conclude that a countable
structure that is set-interpretable with parameters in an expan-
sion C of ω is already finite-set interpretable with parameters
in C. Thus no countable scattered order or tree of non-finite
rank isset interpretable in any expansion ofω.

The proof of Theorem 3.1 uses the followingrank properties
on a class of structuresC closed under isomorphism and under
substructure:

1) Isomorphic structures inC have the same rank.
2) If A ∈ C has rankα andA is partitioned intoP1, P2,

then at least one ofA ↾ P1 andA ↾ P2 has rankα.
3) There is a1-dim point-interpretationΓ with point param-

eters such that for everyA of finite rankk (infinite rank)
there is a family ofk− 1 (infinitely many) structures of
distinct ranks interpretable with parameters inA via Γ.

Ranks on the classC of linear orders (Definition 2.2) satisfy
these properties. For the third property use the fact that ifL

has rankα then for everyβ < α there exist an open interval
of L of rank β. Infact the domain formula∂Γ(x, p1, p2) may
be defined asp1 ≺ x ≺ p2 where thepis are parameters.
Similarly the classC of forests (ie. sets of trees) is closed
under substructure (unlike the class of trees) and we may
define a ranking on forests (agreeing with the ranking on trees)
satisfying these three properties as follows: the rank of a setS
of trees is the supremum of ranks of the trees inS. Theorem
3.1 is immediate from rank property 3) and the following.

Proposition 3.2:For everyset interpretationΓ in the signa-
ture∆l with m parameters there exists an integerNΓ such that
if Γ interprets a family of scattered structures (orders or trees)
{Ci}i∈I with m-manyfinite-set parameters in some expansion
C of ω then the number of distinct ranks amongst the ranks
of {Ci}i∈I is at mostNΓ.

Proof: To help readability we prove the proposition for
1-dim interpretations andm = 1 (one parameter). However
the same proof goes through ford-dim interpretations andm
parameters — replace variables and parameters ranging over
subsets ofω by those ranging overd-tuples of subsets ofω.
We sometimes mentionm and d in the proof below to help
the reader generalize.

Let q be an upper bound on the quantifier-rank of the
formulas in the interpretationΓ. Define NΓ greater than
the number of(q, l + m + 2d)-Hintikka formulas, namely
|Hq

l+m+2d|. Take a family {Cn}n∈I of scattered orders of
distinct ranks that is interpreted withm-many parameters in an
expansion(ω, p) viaΓ. By assumption them-many parameters
are restricted to be finite subsets ofω.

Notation. For the rest of this proof we use lowercase
pi, wi, . . . to refer to subsets ofω, and uppercaseLi, Di, . . .
to refer to sets of subsets ofω. For z ⊂ ω write z[a, b) for
z ∩ [a, b).

For everyn ∈ I: fix a finite parameterwn ⊂ ω so that
Γ(ω, p, wn) ∼= Cn; write Dn for the domain{x | (ω, p, wn) |=
∂Γ(x)}; write =n for the relation {(x, y) | (ω, p, wn) |=

EQΓ(x, y)}; write ≺n for the ordering{(x, y) | (ω, p, wn) |=
x ≺Γ y}; and write�n for ≺n ∪ =n.

For z ⊆ ω and t ∈ ω write Ln(z, t) for the set ofx ∈
Dn such thatx[0, t) = z[0, t). That is,Ln(z, t) consists of
elements in the domainDn that agree withz on the initial
interval [0, t). NoteLn(z, 0) = Dn for all z.

Claim 1. For every indexn ∈ I there iszn ⊆ ω such that
for every t ∈ ω the rank of(Ln(zn, t),≺n)/=n

equals the
rank of Cn.

Proof of Claim 1. Fix n and supposezn has already been
defined on the interval[0, k) and for all t ≤ k the rank of
(Ln(zn, t),≺n)/=n

equals the rank ofCn. Partition the sets
in Ln(zn, k) into two classesV0, V1 depending on whether or
not k is in the set. By rank property 2) above at least one
of (Vi,≺n)/=n

has the same rank asCn; say the class is
represented byǫ ∈ {0, 1}. Put integerk in zn if and only if
ǫ = 1. •

For every n ∈ I fix zn by Claim 1. Suppose, for a
contradiction, there were more thanNΓ distinct ranks amongst
the Cis. By Claim 1, and rank property 1) above, for everyt
there are more thanNΓ structures up to isomorphism amongst
(Ln(zn, t),≺n)/=n

(n ∈ I). Pick finite Jt ⊂ I of size
greater thanNΓ indexing non-isomorphic structures (that is,
j 6= k ∈ Jt implies (Lj(zj , t),≺j)/=j

is not isomorphic
to (Lk(zk, t),≺k)/=k

). The following claim shows that the
choice ofNΓ ensures that this is impossible.

Claim 2. There exists integert and distinct indicesn, k ∈
Jt such that(Ln(zn, t),≺n)/=n

and (Lk(zk, t),≺k)/=k are
isomorphic.

Proof of Claim 2. Write (ω, v)[0, t) for the structure(ω, v)
restricted to domain[0, t). By choice ofNΓ, for everyt there
exist distinctn, k ∈ Jt such thatTpq(ω, p, wn, zn, zn)[0, t) =
Tpq(ω, p, wk, zk, zk)[0, t). Fix an integert that is greater than
all the integers in all thewis for i ∈ Jt; and taken, k as in
the previous sentence. Sown, wk ⊂ [0, t). For x, y ⊂ [t, ω),

Tpq(ω, p, wn, zn[0, t) ∪ x, zn[0, t) ∪ y) =

Tpq(ω, p, wn, zn, zn)[0, t) + Tpq(ω, p, ∅, x, y)[t, ω) =

Tpq(ω, p, wk, zk, zk)[0, t) + Tpq(ω, p, ∅, x, y)[t, ω) =

Tpq(ω, p, wk, zk[0, t) ∪ x, zk[0, t) ∪ y).

Immediately then
1) (zn[0, t) ∪ x) ∈ Ln(zn, t) iff (zk[0, t) ∪ x) ∈ Lk(zk, t)
2) (zn[0, t) ∪ x) ≺n (zn[0, t) ∪ y) iff (zk[0, t) ∪ x) ≺k

(zk[0, t) ∪ y), and
3) (zn[0, t) ∪ x) =n (zn[0, t) ∪ y) iff (zk[0, t) ∪ x) =k

(zk[0, t) ∪ y).

These properties ensure that the mapzn[0, t)∪x
φ
7→ zk[0, t)∪x

(wherex ranges over subsets of[t, ω)) induces an isomorphism
Φ : (Ln(zn, t),≺n)/=n

→ (Lk(zk, t),≺k)/=k
. IndeedΦ is a

well-defined function by item 3); it is onto by item 1); and
order-preserving by item 2).•

IV. F INITE-SET INTERPRETATIONS INSCATTERED TREES

Theorem 4.1:There is an ordinal functionG such that
no ordinal of rank≥ G(α) is finite-set interpretable in any



labelled tree of rank≤ α. We may takeG(n) = ωn for
0 ≤ n < ω andG(α) = ωα+1 for α ≥ ω.

A. Natural Sum and Product on Ordinals

The proof has some similarities with that of Proposition
3.2 but requires additional machinery, including the use of
the natural-sum⊕ (also called Hessenberg-sum) and natural-
product⊗ (also called Hausdorff-product) on ordinals. These
operations were introduced in [5] and can be thought of as
addition and multiplication of polynomials inω. The natural-
sum is a commutative, associative binary operation⊕ on
ordinals. Supposeα =

∑
i<m ωαi and β =

∑
j<n ω

βj are
in Cantor-normal-form. Thenα ⊕ β is defined as the sum
(as in Definition 2.1) of allωαi and ωβj arranged in non-
increasing order. Similarly the natural-product is a commu-
tative, associative binary operation⊗ on ordinals. Define
α ⊗ β as the natural sum of allωαi⊕βj . We implicitly use
easy properties of natural ordinal arithmetic: for instance,
the natural sum or natural product of countable ordinals is
countable; ifα, β < ωγ then α ⊕ β < ωγ ; if α, β < ωωγ

then α ⊗ β < ωωγ

. Here is a central property of⊗. A
function f : (α1 × · · · × αk) → γ is coordinate-wise non-
decreasingif for all (δ1, · · · , δk) in the domain off and all
n ≤ k and all ordinalsδ with δn ≤ δ < αn, it holds that
f(δ1, · · · , δk) ≤ f(δ1, · · · , δn−1, δ, δn+1, . . . , δk).

Lemma 4.2: [5] If f : (α1 × · · · × αk) → γ is onto and
coordinate-wise non-decreasing thenγ ≤ α1 ⊗ · · · ⊗ αk.

B. Proof of Theorem 4.1

We illustrate the proof for dimension1 to get a function
G1 and remark at the end how to deal with dimensiond. It is
enough to find a functionG1 such that ifωδ is 1-dim finite set
interpretable in a tree of rankα thenδ < G(α) (this is because
ωrank(β) ≤ β and the ordinals that are finite-set interpretable
in expansions ofT are closed downwards). To this end, sayωδ

is finite-set interpretable in thel-treeT of rankα via Γ. Write
D for the domain of the interpretation;≺ for ≺ΓT, and=Γ for
EQΓT. Since(D,≺)/=Γ

is isomorphic toωδ, say via bijection
f , for every ordinalx < ωδ pick a unique element inD from
the equivalence classf−1(x) and call it thecodeof x. Let r
be the largest quantifier-rank appearing in formulas ofΓ. For
the remainder writePrTp(A)[i,j) instead ofPrTp(A)r[i,j).

A note on the structure of the proof. We induct onα to
bound δ. For the base caseG1(0) := 1 (since no infinite
structure is interpretable in a finite one). For the remainder
supposeα > 0. We consider two cases: the first is thatT is
an ω-sum ofTis of lower rank (these we call Case1 trees);
and the second is thatT is a finite sum of Case1 trees (called
Case2 trees). The case thatT is anω-glueing is reduced to
these cases by Proposition 2.12.

Notation. For the rest of this proof we use lowercase
pi, wi, . . . to refer to subsets ofT , and uppercaseL,R, . . .
to refer to sets of subsets ofT .

Case 1. SayT is anω-sum ofTis of lower rank. For interval
[a, b) write T [a, b) for the set∪i∈[a,b)Ti.

The aim is to bound everyβ < δ in terms of r, l, d and
G1(α

′) (for α′ < α). So take arbitraryβ < δ and write
w ∈ D for the code ofωβ. By Lemma 2.3 (partition property
for orders) for allt there exists projected(r, l+ 2d)-Hintikka
formulasλw,t andρw,t such that

Dw,t := {x ∈ D | x ≺ w and PrTp(w, x)[0,t) = λw,t

and PrTp(w, x)[t,ω) = ρw,t}

ordered by≺ has order typeωβ . Define setsLw,t as

{y ⊂ T [0, t) | y finite andPrTp(w, y)[0,t) = λw,t}

andRw,t := {z ⊂ T [t, ω) | z finite andPrTp(w, z)[t,ω) =
ρw,t}.

In other words, everyx ∈ Dw,t satisfies thatx∩[0, t) ∈ Lw,t

and x ∩ [t, ω) ∈ Rw,t. Define binary relations≺L,w,t and
=L,w,t on Lw,t by

y ≺L,w,t y
′ if ∃z ∈ Rw,t y ∪ z ≺ y′ ∪ z

y =L,w,t y
′ if ∃z ∈ Rw,t y ∪ z =Γ y

′ ∪ z

and binary relations≺R,w,t and=R,w,t on Rw,t by

y ≺R,w,t y
′ if ∃z ∈ Lw,t y ∪ z ≺ y′ ∪ z

y =R,w,t y
′ if ∃z ∈ Lw,t y ∪ z =Γ y

′ ∪ z

Let #w denote the smallests such thatw ⊂ T [0, s]. We will
show that(‡) for t > #w we can replace∃z by ∀z in the
above definitions.

Lemma A. For t > #w, both (Lw,t,≺L,w,t)/=L,w,t
and

(Rw,t,≺R,w,t)/=L,w,t
are well-orders.

We defer the proof of Lemma A. WriteβL,w,t andβR,w,t

for their respective order types and note(⋆) that each is at
most ωβ . The mapΦ : βL,w,t × βR,w,t → ωβ (induced by
(y, z) 7→ y∪ z) is surjective by definition ofLw,t andRw,t. It
is co-ordinate wise non-decreasing by(‡). Apply Lemma 4.2
to conclude (⋆⋆) that ordinalωβ is at mostβL,w,t ⊗ βR,w,t.

The order(Lw,t,≺L,w,t)/=L
is finite-set interpretable in

T[0, t) (by Proposition 2.18). This tree has some rankα′ < α,
so apply induction and conclude(⋆⋆⋆) thatβL,w,t < ωG1(α

′).
All that is left is to boundβR,w,t. For this we use a pigeonhole
argument.

Lemma B. If w′ codesωβ′

(β′ < δ) then fort > #w,#w′,
if λw,t = λw′,t andρw,t = ρw′,t thenβR,w,t = βR,w′,t.

We defer the proof of Lemma B. Defineγ(α) :=
supα′<αG1(α

′) and pick a sequence of ordinalsγi such that
γ0 := γ(α) and (†) γi+1 > γ0 ⊕ γi.

Let n be the number of projected(r, l + 2d)-Hintikka
formulas and setN := n2 + 1. Suppose, for a contradiction,
that γN ≤ β. Then each ordinalωγi (0 ≤ i ≤ N ) has a
code, saywi ∈ D. For all t > max0≤i≤N #wi there exist two
indicesc < d ≤ N such thatλwc,t = λwd,t andρwc,t = ρwd,t

(by choice ofN ). Then

ωγd ≤ βL,wd,t ⊗ βR,wd,t (by ⋆⋆)

< ωγ0 ⊗ βR,wd,t (by ⋆ ⋆ ⋆)

= ωγ0 ⊗ βR,wc,t (by Lemma B)

≤ ωγ0 ⊗ ωγc (by ⋆)



which equalsωγ0⊕γc , contradicting(†). Thus β < γN and
we have bound the arbitrarily chosenβ in terms ofr, l, d and
G1(α

′) for α′ < α. This achieves theaim. We conclude that
the δ ≤ γN . Of course asr, l andd vary there is no bound on
N . Thus defineG1(α) := supi γi so thatδ < G1(α).

To be concrete, takeγi+1 := (γ0 ⊕ γi) + 1, so supi γi =
γ0 × ω. There are four cases: 1) if1 ≤ α < ω thenγ(α) =
G1(α − 1) = ωα−1 and soG1(α) = ωα; 2) if α = ω then
γ(ω) = supn<ω ω

n = ωω and soG1(ω) = ωω+1; 3) if α > ω
is a successorβ + 1 then γ(α) = G1(β) = ωβ+1 = ωα

and soG1(α) = ωα+1; 4) if α > ω is a limit ordinal then
γ(α) = supα′<α ω

α′+1 = ωα and soG1(α) = ωα+1.
Proof of Lemma A. For t > #w, y, y′ ∈ Lw,t

and z, z′ ∈ Rw,t we claim PrTp(w, y, y′, z)[0,ω) =
PrTp(w, y, y′, z′)[0,ω) and PrTp(w, y, z, z′)[0,ω) =
PrTp(w, y′, z, z′)[0,ω). We prove the first equality (the
second is similar). Recall that+ is the operation summing
types of chains. ThenPrTp(w, y, y′, z)[0,ω) equals

PrTp(w, y, y′, z)[0,t) + PrTp(w, y, y′, z)[t,ω) =

PrTp(w, y, y′, ∅)[0,t) + PrTp(∅, ∅, ∅, z)[t,ω) =

PrTp(w, y, y′, z′)[0,t) + PrTp(∅, ∅, ∅, z′)[t,ω) =

PrTp(w, y, y′, z′)[0,t) + PrTp(w, y, y′, z′)[t,ω) =

PrTp(w, y, y′, z′)[0,ω).

To go from the second line to the third line use that
PrTp(∅, ∅, ∅, z)[t,ω) is determined byPrTp(∅, z)[t,ω) which
is ρw,t by definition of Rw,t. Since z′ ∈ Rw,t then also
PrTp(∅, ∅, ∅, z′)[t,ω) is determined byρw,t.

Thus fort > #w, we can replace∃ by ∀ in the definitions
of ≺L,w,t and=L,w,t, and≺R,w,t and=R,w,t. For example,
if y, y′ ∈ Lw,t andz ∈ Rw,t andy ∪ z =Γ y

′ ∪ z, then for all
z′ ∈ Rw,t it holds thaty ∪ z′ =Γ y

′ ∪ z′. It is now immediate
that both(Lw,t,≺L,w,t)/=L,w,t

and(Rw,t,≺R,w,t)/=L,w,t
are

well-defined well-orders.
Proof of Lemma B. First note Rw,t = Rw′,t since

PrTp(w, z)[t,ω) = PrTp(∅, z)[t,ω) = PrTp(w′, z)[t,ω). Sec-
ond by the reasoning in LemmaA and usingλw,t = λw′,t we
see that ify1, y2 ∈ Rw,t and z ∈ Lw,t with y1 ∪ z � y2 ∪ z
then for allz′ ∈ Lw′,t it holds thaty1 ∪ z′ � y2 ∪ z′.

Case 2. SayT =
∑

i∈Ind Ti is a finite-sum of type1 trees
each of rankα. We proveωδ < ωG1(α). By Lemma 2.3
(partition property for orders) we may assume that for every
i ∈ Ind there is a typeτi such that ifx ∈ D then(Ti, x∩ Ti)
has typeτi. DefineDi := {x ∩ Ti | x ∈ D} and a binary
relation≺i onDi byx ≺i y if ∃z ∈ D x∪(z\Ti) ≺ y∪(z\Ti),
and similarly a binary relation=i. By the same composi-
tional reasoning as above(Di,≺i)/=i

is well-ordered and
≤ ωδ, say of typeηi. By a fact similar to Proposition 2.18
ordinal ηi is finite-set interpretable in (Case1 tree)Ti, thus
ηi < ωG1(α). The function sending(x1, · · · , x|Ind|) 7→ ∪xi
from D1 × · · · ×D|Ind| → D induces a surjective co-ordinate
wise non-decreasing functionη1 × · · · × η|Ind| → ωδ. Thus
ωδ ≤ η1 ⊗ · · · ⊗ η|Ind|. But since eachηi < ωG1(α) and
sinceG1(α) is a power ofω, we see thatωδ < ωG1(α). Thus
rank(ωδ) = δ < G1(α).

Finally, the same proof goes through ford-dim interpreta-
tions (replace variables by tuples of variables and make minor
changes in notation). And the dimensiond has no effect on
Gd; that isGd = G1. Thus defineG := G1 to complete the
proof.

The proof just presented can be adapted to scattered rankα
trees of heightω+1, in particular to completionŝT. We explain
the terminology. A ‘well-founded tree’ is one in which every
set of the form{y | y � x} is a (not necessarily finite) well-
founded set. Theheightof a well-found tree is the supremum
of the order types of these sets. Thus the trees as defined in
Section II-B have height≤ ω. Writing [T] for the infinite
branches ofT define thecompletionof a treeT, written T̂, as
the partial order whose domain isT ∪ [T] and for whichu is
belowv if either u, v ∈ T andu ≺T v, or u ∈ T, v ∈ [T] and
u ∈ v (that is,u is a node on infinite branchv). If T has height
≤ ω then [T] has height≤ ω+ 1. To define scattered trees of
heightω + 1 we replaceω-sums byω + 1-sums

∑
i<ω+1 Ti

whereTω is a tree with exactly one element.
Corollary 4.3: Let G be the function from Theorem 4.1.

No ordinal of rank≥ G(α) is finite-set interpretable in the
completion of any labelled tree of rank≤ α.

Proof Sketch: The composition theorem holds for well-
founded trees, so we can run the proof of Theorem 4.1 with
the following modifications: at the start of Case 1, partition
the domain depending on whether the set hitsTω or not. It
is sufficient to deal with each of these domains. The latter
case is as before. For the former case replace[t, ω) by [t, ω],
and define#s as the smallest integer (excludeω). In Lemma
A for instancePrTp(w, y, y′, z)[ω,ω] = PrTp(w, ∅, ∅, z)[ω,ω],
which is, now, also independent of the setw. This yields the
same functionG.

V. REPLACING SET-INTERPRETATIONS BYSIMPLER

INTERPRETATIONS

If A is finite-set interpretable inT then A is necessarily
countable. A general problem, that we do not solve, states:

Problem 5.1: If A is countable and set-interpretable in (not
necessarily scattered) treeT, is A finite-set interpretable inT?

Here is our contribution.
Theorem 5.2:For every injective set interpretationΓ there

exists injective set interpretationΓf such that (for labelled tree
T that is not necessarily scattered) ifΓT is countable then

1) ΓT is set interpretable inT via Γf , and
2) every set in every tuple in the domain ofΓfT is either

a finite subset ofT or a finite union of infinite branches
of T.

Corollary 5.3: Let G be the function from Theorem 4.1.
No ordinal of rank≥ G(α) is injectively set-interpretable in
any labelled tree of rank≤ α.

Proof: Since a finite subset of̂T is, modulo interpretation,
a union of finite sets and finitely many infinite branches,
Theorem 5.2 states that ifA is countable and injectively
set interpretable inT thenA is finite-set interpretable in the
completionT̂. Apply Corollary 4.3.



Corollary 5.4: Neither P(Q) nor P(T2) is injectively set-
interpretable in any scattered tree.

Conjecture 5.5:NeitherP(Q) norP(T2) is set-interpretable
in any scattered tree.

A. Proof Plan

Given an MSO-formulaϕ the aim is to define an MSO-
formula CODE such that for every treeT for which ϕT is
countable:

• CODE is an injective function with domainϕT,
• the range ofCODE consists of tuples whose sets are either

finite subsets ofT or finite unions of finitely many infinite
branches ofT.

If ϕ is the domain formula of an injective set-interpretation
Γ then define finitary interpretationΓf as follows: its domain
formula expresses thatX is in the range ofCODE, its ith
relation formula, say of arityn, expresses that there existY js
such thatCODE(Y j , Xj) andφiΓ(Y 1, · · · , Y n) (whereφiΓ is
the ith relation formula in the interpretationΓ). Injectivity
ensures thatCODE is an isomorphism betweenΓT andΓfT.

In section V-B we discuss structural properties ofϕT. In
section V-C we provide a first coding that when applied to
finitely-branching treeT codesV (for T |= ϕ(V )) by a subtree
with finitely many (finite and infinite) branches as well as a
labelling of this subtree. In section V-D we sketch how to
replace the labelling of the finitely many infinite branches by a
tuple of finite sets. If the first coding is applied to a countably-
branching treeT we still obtain a subtree with finitely many
infinite branches, but now it may also contain infinitely many
finite branches. In the full version of the paper we show how
to replace the labelled subtree consisting of the finite branches
with a tuple of finite sets.

B. Structural Properties

The definitions and ideas of this section are from [2].
Definition 5.6 (U -trees andD-trees): Let T be anl-tree,V

a k-tuple andr an integer. If there existsW 6= V (tuples of
subsets ofT ) with Tpr(T,W ) = Tpr(T, V ) then call(T, V )
a D-tree wrt. r, k. Otherwise call(T, V ) a U -tree wrt. r, k.

Definition 5.7 (trunk):Define trunkr(T, V ) as the set of
nodesu ∈ T such that the subtree of(T, V ) rooted atu is a
D-tree wrt.r, k.

Lemma 5.8:The set trunkr(T, V ) is MSO-definable in
(T, V ) and downward closed.
We can decompose a tree along a downward closed set:

Definition 5.9 (tree decomposition):Let T be anl-tree and
I ⊂ T a downward closed set. Fori ∈ I defineTi as those
t ∈ T such thati � t and there is noi′ ∈ I with i ≺ i′ � t.
As usual writeTi for the substructure ofT restricted toTi.
We call the family{Ti}i∈I the I-decomposition ofT.
If {Ti}i∈I is theI-decomposition ofT thenT is isomorphic
to

∑
i∈I Ti and theHr

l -partition of I induced by{Ti}i∈I is
definable inT expanded byI.

Lemma 5.10 (interpretability ofHr
l -expansion):For every

r, l there is a1-dim injective point interpretationΓ such that for
every treeT and downward closedI ⊂ T — writing {Ti}i∈I

for the I-decomposition ofT — Γ(T, I) is isomorphic to the
Hr

l -expansion of(I,≺) induced by{Ti}i∈I .
Proposition 5.11 (trunk is finitary):Let ϕ be a formula of

quantifier-rankr and T a labelled tree. IfϕT is countable
then for everyV satisfyingϕ in T — writing {Ti} for the
trunkr(T, V )-decomposition of(T, V ) —

1) All but finitely manyTis areU -trees.
2) The settrunkr(T, V ) is a union of a finite set and a

finite set of infinite branches.

C. First Coding

SupposeT is an l-tree, ϕT is countable andr is the
quantifier-rank ofϕ(X1, · · · , Xm). ForV such thatT |= ϕ(V )
let {Ti} be thetrunk := trunkr(T, V )-decomposition of tree
(T, V ). Write E for finite set ofi ∈ trunk such thatTi is a
D-tree. WriteBUDS for the set of children of the root ofTi

for i ∈ E. We can codem-tupleV by the following data:
1) a pair(F,B) whereF,B partition trunk, F is a finite

set, andB is a finite set of infinite branches,
2) theHr

l+m-partition ofF induced by{Ti}i∈F ,
3) theHr

l+m-partition ofB induced by{Ti}i∈B,
4) the Hr

l+m-partition of BUDS induced by
{(T�s, V )}s∈BUDS.

This coding is injective: we argue that the coding ofV
uniquely determinesV . Considerj ∈ trunk. If Tj is a U -
tree thenV ∩ Tj is determined by the data in 2) and 3); ifTj

is aD-tree then consideri ∈ T�s for some childs ∈ BUDS of
the root ofTj. ThenV ∩ T�s is determined by the data in 4)
since it is aU -tree. MoreoverV ∩{j} is determined by 2) and
3). The coding is MSO-definable: indeed,F,B are definable
from trunk which is definable by Lemma 5.8, partitions are
definable by Lemma 5.10, andE andBUDS are definable since
the set ofD-trees (wrt.r, k) are definable.

The predicates in 1) and 2) are finitary:F is a finite set,
its partition is a tuple of finite sets, andB is a finite set of
infinite branches. Two tasks remain.

Task 1. The predicates in 3) label the subtree on domain
B. In Section V-D we sketch how to code this labelling by a
tuple of finite sets.

Task 2. If T is finitely-branching then each predicate in
4) is a finite set. In the full version we show how, ifT is
countably-branching, to code the possibly infinite setBUDS

and itsHr
l+m-partition by a tuple of finite sets.

D. Dealing with Infinite Labelled Branches (Task1)

Proposition 5.12: [2] For ∆l-formula ϕ(X1, · · · , Xm)
there isψ such that for every l-treeT and every branchIb
of T — writing C = (Ib,≺, Q) for theHr+m

l -expansion ofIb
induced by theIb-decomposition ofT — the following holds
for all W : C |= ψ(W ) if and only if there existsV such that

1) T |= ϕ(V ), and
2) W is the Hr

l+m- partition of Ib induced by theIb-
decomposition of(T, V ).

In particular ifϕT is countable thenψC is countable.
Definition 5.13: For setsX,Y ⊂ T , write X =end Y to

mean that the symmetric difference ofX andY is finite (and



say thatX andY have the sameend). This notion extends to
k-tuples: writeX =endY if Xi =endYi for all i ≤ k.

Proposition 5.14 (definable ends inω): For every ∆s-
formulaψ(X1, · · · , Xn) there exist a constantM :=M(s, n)
and formulasΨ1(X), · · · ,ΨM (X) such that for everys-chain
C overω there existM -many tuplesW 1, · · · ,WM such that
if ϕC is countable then

1) C |= ψ(V ) implies there isi ≤M with W i =endV .
2) the only tuple satisfied byΨi in C is W i.

The first item appears in [16]. The second uses the selection
property forω-chains: a formulaα(X) is a selector for formula
β(X) over a class of structuresC if the following conditions
hold in C: 1) there is at most oneX with α(X); 2) for all X
if α(X) thenβ(X); 3) if there existsY with β(Y ) then there
existsX with α(X). Every MSO-formulaβ has a selector
α, also an MSO-formula, over the class of all expansions
of ω by unary predicates, see [17], [22]. Since a branch of
T is isomorphic toω, from Propositions 5.12 and 5.14, and
Lemma 5.10 we get:

Proposition 5.15 (definable ends along a branch):For ev-
ery ∆l-formula ϕ(X1, · · · , Xm) of quantifier rankr there
exists a constantM and MSO-formulasΦ1, · · · ,ΦM such that
for every l-treeT with ϕT countable, ifIb ⊂ T is an infinite
branch ofT and{Ti}i∈Ib is the Ib-decomposition ofT then
there existM -many tuplesW 1, · · · ,WM over Ib such that

1) T |= ϕ(V ) implies someW j has the same end as the
Hr

l+m-partition of Ib induced by{(Ti, V )}i∈Ib .
2) W i is the unique tuple satisfied byΦi in (T, Ib).

We sketch how to finish Task1. Recall we have to encode,
by a tuple of finite sets, theHr

l+m-partition ofB induced by
{Ti}i∈B (where{Ti} is the trunkr(T, V )-decomposition of
(T, V )). One set stores, for each of the finitely many branches
I in B, an indexn ≤ M such that theHr

l+m-partition of I
induced by{Ti}i∈I has the same end as tuple defined byΦn.
The same set stores from which point ofI onwards the tuples
agree. In fact the index forI can be coded as a label of a
definable nodey of I that is on no other branch ofB (see
formula ǫ below). Also mark the≺-least nodez of I above
y from which point on the tuples agree. Finally we need to
store the restriction of the partition to all nodes belowz. This
data can be stored in a tuple of finite sets, and determines the
Hr

l+m-partition ofB. We now argue that it is MSO-definable.
Formally, apply Proposition 5.15 to the domain formula of

Γ. This givesM andΦ1, · · · ,ΦM . Forn ≤M define formula
µn(V , I) stating thatI is an infinite branch oftrunkr(T, V )
and n is the least integer with the property that the unique
tupleWn overI satisfyingΦn has the same end as theHr

l+m-
partition ofI induced by{Ti}i∈I ; if furthermoreWn and the
mentionedHr

l+m-partition of I agree on{i ∈ I | z � i} then
write νn(V , I, z). Define an auxiliary formulaǫ(X, x) stating
thatX is an infinite branch andx is the≺-minimal element
such thatx is onX and no two elements ofB abovex are
≺-incomparable.

Finally, code theHr
l+m-partition ofB induced by{Ti}i∈B

by |Hr
l+m|-tuple of finite setsH andM -tuple of finite setsG:

1) For everyn ≤ M : z ∈ Gn if and only there existsI, y
such thatµn(V , I) and ǫ(I, y) andz is the≺-minimal
element such thaty � z andνn(V , I, z);

2) H is the restriction of theHr
l+m-partition ofB induced

by {Ti}i∈B to the finite set
∨

n≤M{u | ∃z ∈ Gnu � z}.
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[7] T. Colcombet and C. Löding, “Transforming structures by set interpre-
tations,” Logical Methods in Computer Science, vol. 3, no. 2, 2007.

[8] B. Courcelle, “The monadic second-order logic of graphsix: Machines
and their behaviours,”Theoretical Computer Science, vol. 151, no. 1,
pp. 125–162, 1995.
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