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Abstract—We study the expressive power of logical interpreta- call point-interpretation$ (Definitions 2.6 and 2.7). Moreover,
tions on the class ofscattered trees, namely those with countably each element oRl is coded by at least ontuple of sets
many infinite branches. Scattered trees can be thought of aheé (the common size of the tuples is called thienensionof the

tree analogue of scattered linear orders. Every scatteredrée . ¢ tation): and if | Lo i ded b il
has an ordinal rank that reflects the structure of its infinite Nterpretation); and if every element @f is coded by exactly

branches. We prove, roughly, that trees and orders of large ONe tuple of sets then the interpretation is callgective
rank cannot be interpreted in scattered trees of small rank.We . . . "
consider a quite general notion of interpretation: each elment Why do interpretations in trees matter-

of the interpreted structure is represented by a set of tuple of Interpretations allow one to transfer computational amit-lo

subsets of the interpreting tree. Our trees are countable, ot  cal properties from the interpreting structure to the ipteted
necessarily finitely branching, and may have finitely many uary

predicates as labellings. We also show how to replace injéeg structure. . . A .
set-interpretations in (not necessarily scattered) treeby ‘finitary’ . Suppose thall is 1-dim point-interpretable 'ﬂj" Then '_[here
set-interpretations. is a uniform way to translate MSO-formulas in the signature
Index Terms—Composition method, finite-set interpretations, of 20 to MSO-formulas in the signature & (just replace
infinite scattered trees, monadic second order logic. atoms by their definitions, and relativize quantifiers). 8e t
MSO-theory of2l is computable in the MSO-theory @f. This
. INTRODUCTION explains the long term efforts to extend MSO-decidabilitynfi

Monadic-second order logic (MSO) extends first-order logic and T, to their expansions by unary predicates [8], [10],
with free variables that range over subsets of the domaih, d22], [26].
allows quantification over them. When interpreted overdree SupposeX is set-interpretable iff. Then there is a uniform
MSO is expressive enough to capture interesting mathematieay to translate FO-formulas in the signaturekbto MSO-
while still being manageable. Indeed, Rabin [20] proved thormulas in the signature of, and in this case the FO-
the MSO-theory of the full binary tre&, is decidable, and theory of 2 is computable in the MSO-theory &. So the
many other logical theories have been shown decidable @gme here is to work out which structur€g known to
a reduction to this theory (see for instance the introdyctohave decidable FO-theory, are set-interpretable in treés w
sections in [20]). Thenterpretation methods a broad term decidable MSO. Already Biichi noticed, in the language of
that refers to effective reductions that are expressilgeally, automata, that the semigrodp, +) is finite-set interpretable
by a collection of formulas. in w. In modern terminologyN, +) is (finite-word) automatic.
We consider interpretations that define, by MSO-formulad|so, the rational grougQ, +) is finite-set interpretable in a
structures( inside treesT. Our trees are subtrees of thelecidable expansion of (see [19]).
countably-branching tree in the signature consisting of gf,a¢ is the expressive power of the interpretation method?
order symbol (intended to be interpreted as the ancestor . .
relation between nodes of the tree) and finitely many unar)(The research program that tries to outline the power

predicate symbols (intended to be interpreted as labsllin the Interpretation methc_)q invariably has to prove non-
of the nodes of the tree). In particular, nodes may haJiterpretability results. Traditionally these were résuibout

infinitely many children. A commonly occurring infinite treenon-mterpretablhty|n expansions by unary predicatenefar

is (N, <), also writtenw. There are various kinds of inter-orders (known as chains) [13], [18], [21]. However there are

pretations depending on whether elements of the stru@lurealso non-interpretability results in graphs and trees.Caecal

are represented by nodes or (finite) sets of nodeS.ofhe hierarchy is a sequends, C; ... of sets of graphs such that

latter are calledfinite) set-interpretationgind the former we Ci Is closed under 1-dim point-interpretations. There is plra

in C; which is not 1-dim point-interpretable in any graph in
IFor instance, we learned in school that rational arithmistieducible to  Cj for j < i [6].
integer arithmetic by coding a rational by pairs of integénsthe terminology
of this paper(Q, +, x, =) is 2-dim point-interpretable ifZ, +, x). 2|n the literature these are sometimes called MSO-inteapiosis.



A consequence of a general result in [7] is thaP {f(2() is Finite-set interpretations in expansionswf We prove that
1-dim finite-set weak-MSO interpretable in binary-branchinno scattered order or scattered tree of non-finite rank itefini
T then already?l is 1-dim weak-MSO point-interpretable in set interpretable in any expansion by unary predicates of
7.3 In the contrapositive this is a non-interpretability resul (Section 1Il). This generalizes an early breakthrough ia th
and indeed one of the main motivations in [7] is to reducarea of automatic structures that no scattered order desedt
set-interpretability to the simpler point-interpretétyil More tree of non-finite rank is finite-set interpretabledn(devoid
recently, we learn that the real fieldR,+, x) is not set- of any unary predicate) [9].
interpretable inw [1]. Looking at the proof we see that Finite-set interpretations in scattered tree¥ve prove that
it goes through for any expansion af. Also, the rational there is an ordinal functiods such that no ordinal of rank
group (Q, +) is not set-interpretable in (devoid of unary > G(«) is finite-set interpretable in any scattered tree of rank
predicates) [27]. Much work in automatic structures is dbost «. We may takeG(n) = w™ for 0 < n < w and G(«a) =
proving that certain classes of structures are not (finiét) sw®*! for a > w (Theorem 4.1).
interpretable inv or ¥, (see [4], [15], [24]). Injective set-interpretations in scattered tree¥ve prove
that no ordinal of rank> G(«) is injectively set-interpretable
in any scattered tree of rank « (Corollary 5.3). So nei-
ther P(Q) nor P(%3) are injectively set-interpretable in any

It is intuitively obvious that the more complex a treescattered tree (Corollary 5.4). Compare this with the fhat t
the more it can interpret. We add weight to this contentidh(Q) and P(%,) are injectively set-interpretable if,. We
by considering interpretations in trees with countably ynarconjecture that neitheP(Q) nor P(%,) are set-interpretable
infinite branches. We call theseattered treessince they are in any scattered tree.
exactly the trees that do not embed the full binary tree. ThisFinitary-set interpretations in arbitrary treesThe previ-
name mimics the fact that linear orders that do not embeds result about injective set-interpretations followsnfr a
the rational order are called scattered orders, see [23}. Ttheorem that is of independent interest. Even though set-
measure of complexity associates to every order andifrae interpretations allow one to interpret uncountable stroes
ordinalrank(2() (Definition 2.5). The rank of a tree reflects thel, we do not study these. Instead consider the following
structure of its infinite branches (similar to Cantor-Bexstin general question: if2l is countable and set-interpretable in
rank). All finite trees have ran@, the linew has rankl, while (not necessarily scattered) tr@eis 2l finite-set interpretable
any tree that embeds the full binary trgg has rankx (which in €? We do not solve this difficult problem. We establish
is greater than all ordinals, and thus of maximum compléxitya result of the same principle: #l is countable and injec-
The rank of an order resembles Hausdorff ranks; thus ordinakly set-interpretable in tre@ then there is an injective set
w® has rankx. We prove, intuitively, that the rank of a tré& interpretation of2( in ¥ for which the domain consists of
limits the possible ranks of orders and trees interpretaisle  tuples of finite sets and unlabelled-trees with finitely many
Compare this with the fact that every countable order istpoiimfinite branches. Thus we manage to replace injective set-
interpretable in some expansion of the non-scattereddsee interpretations by these injective ‘finitary’-set integgations.

We emphasize that our results are of the forthis not Similar ideas also give: ifl is countable and injectively set-
interpretable in any expansion & by unary predicates’, interpretable in a scattered trée of finite rank then 2 is
whether or not the expanded tree is decidable or even finitdigite-set interpretable iff. We do not know if this holds for
presented. This is in line with previous investigations lod t rank(¥) = w.
expressive power of interpretations in expansion of ordersHierachy strictness:For = a type of interpretation define
(called chains) [13], [18], [21] and in expansions of tre@k [ Z% as the set of structures that arenterpretable in labelled
trees of rank< «a. Clearly if « < 8 thenZ} C Ig. We have
proven that these sets can be separated by ordinals; moreove
the bounds are tight. In summary, the hierarchies of injecti

Point interpretations in scattered treeShese are simpler set-interpretations, finite-set interpretations, dndim point
than set-interpretations and so proofs will not appear.i&ee interpretations are strict: ift < 3 thenZ’, C Ig.
prove that if an order or tre¥ is 1-dim point-interpretable in A note about technicalities.As far as the objects of study
a tree¥ thenrank(2() < rank(¥). An immediate consequenceare concerned, the reader should have passing familiaitity w
is that neitherQ nor ¥ is point-interpretable in any scatteredinear orders and ordinal arithmetic (see [23]) and logical
tree. This is an analogue of the result that neit@enor ¥, interpretations (see [14]). The central proof tool is Shisla
is point-interpretable in any scattered chain [21][Lemn®.2 composition theorem (see [11] for a readable account).sldea

from the proof in Section Il are used in Section IV. Section V
3The structureP(2) expands(24, C) by the relations oft on singleton &N be read independently.

sets. SoP(Q) is (22, ¢, <) where for X, Y € 22, X < Y if and only
if X ={z}, Y = {y} and the rationak is less than the rationaj. The 1. DEFINITIONS AND PRELIMINARIES

structureP s () is the substructure dP(2A) consisting of finite subsets of. Th in thi h fini lati I si
By weak-MSO interpretation we mean an interpretation inaitadditionally e structures In this paper have finite relational sigrestur

bound variables vary over finite sets. A, typically of the formA; := {<, P1,..., P} where<is

Overview

Technical contribution and related work



a binary predicate symbol and eaéh is a unary predicate T T T3 T T T3
symbol. In trees< represents the ancestor relation and in

orders < represents element comparison. The tuplerep-

resents a labelling of the domain by elements {of 1}'.

In the next sections we define labelled linear orders (called

chains) and labelled trees. Informally, the trees in thipgpa

are subtrees of the countably-branching infinite tree ogffei Fig. 1. Anw-sum (left), andw-glueing.
w, with unordered siblings, and expanded by finitely many

unary predicates. The operations on these objects (sutog) al

us to define the scattered orders and trees. Countable megRgre each?, C T and

finite or countably infinite. If unspecified structures insthi
paper are countable. We reserydor the ordering on ordinals.
We write w for the smallest infinite ordinal. The domain of
a structure name@! is written A. The expansion ofl by

predicates” is written (20, V). If B C A then write (B, 7) Terminology.If [ = 0 the tree isunlabelled A nodew is
for the substructure ofl ’V) on domainB ’ a child of a nodeu if u < v and there is noz with v <

z < v. If every node has finitely many children the tree is

o T is non-empty, partially ordered by with unique
minimal element (theoot r);
o every{y € T | y =< z} is a finite linear order.

A. Labelled Orders finitely branching otherwise it iscountably-branchinglf b is
An [-chainis a labelled linear ordet = (L, <, P1,--- , ;). the smallest integer with the property that every node has at
If I =0 we talk about a linear order, or just order. mostb children then the tree ig-ary branching If for non-
Definition 2.1 (Sums afchains): Given order(Ind, <;,4) emptyT’ C T the substructur& | T’ is also a tree (ie. has a
and for every:; € Ind anli-chain£; = (L;,<;, P, -+, Py) unique minimal element) the®’ is a subtree off. A typical

the sum 3}, & is defined as thel-chain with domain example of a subtree ithe subtree off rooted atx € T,
Uiemali} x Ls, ordering=< defined by(i,a) < (i',a’) if and written T, and defined by the domaifw € T | u = z}.
only if ¢ <;,q ¢’ Or (i =4 anda <; a’), and thekth unary Another example is given by downward-closed sef C T
predicate defined byJ, 417} X Pix. (e.t <ie€l = t e I). AsubsetX is abranch if
Write w for the order type of the positive integers with thet is linearly-ordered by< and maximal with respect to set
usual orderw* for that of the negative integers, andfor the inclusion. Branches are subtrees and may be finite or infinite

order type of the firsk positive integers. Definition 2.4 (tree sum)Given an unlabelled
Definition 2.2 (scattered orders and rankdpefine sets of tree (Ind,<;,q) and for everyi € Ind an I-tree

orders®B,, and £, by transfinite induction. %, = (T;,<i, P, -+, Py) with root r;, the sum ", 4 %;
o By := {1}. is the I-tree with domain J,.,q{i} x T;i; ancestor relation

« £, consists ofy ", £; where Ind is finite and’; € B,. defined by(i,a) < (i',a’) if and only if (i = i anda <; a’)
« B, consists ofy", ,£; where Ind has order type or or (i <inq i’ anda = 7;); and thekth unary predicateP;,
w* and for alli € Ind, £ € Uz, £5. defined bylJ,cnqli} < Pik-

An order £ is scatteredif it is in £, for somea and the  Terminology Suppose = 3" ,%;. If Ind is finite then®
minimal sucha is called therank of £, writtenrank(£). The is afinite sum of%;s; if (Ind, <i,q) is a linear order of type
rank of a non-scattered order, writter, is defined to be w then}’, %, is anw-sum of%;s. If (Ind, <;.4) consists of
greater than all countable ordindlsThe rank of a chain is a rootr andn < w children, and¥, is a singleton tree, then
defined as the rank of its underlying linear order. % is an(n)-glueing of¥;s.

The rank of a countable scattered order is countable and théVe now define ranks and scattered trees. The idea is that
rank of the ordinal written in Cantor-normal forln, ., w® w-sums andw-glueings increase the rank while finite sums
iS a1. In particularw® is the least ordinal of rankv. The and finite glueings do not.
following pigeonhole principle for linear orders is used so Definition 2.5 (scattered trees and rank€)efine families
often that we isolate it here. of unlabelled treeg, and &, by transfinite induction.

Lemma 2.3 (partition property for orders)f the domain ., %, consists of the unique tree with a single element.
of an orderg is partitioned into finitely many pieces, then , @ _ consists of finite sums of;s with ; € ..

the order on at least one of the pieces has the same rank as g, consists ofu-sums andu-glueings of<;s wheres; €
that of £. If £ has order type/® then at least one of the pieces Uﬂ@ Gps.

has order type.®. A tree T is scatteredif it is in &, for somea and the

B. Labelled Trees minimal sucha is called therank of €. The rank of a non-
An [-labelled tree (orl-tree)is a structure scattered tree, writtemo, is defined to be greater than all
ordinals. The rank of a labelled tree is defined as the rank of
T=(T=h,....P) the unlabelled tree formed by removing the labels.

4Non-scattered orders can also be given an ordinal rank 283 though Thus the flnlte.trees al! have raink the trees of rank are
we do not need this notion. w-sums orw-glueings of finite trees, and finite sums of these.



An embeddingf unlabelled tre€® in unlabelled tree€’ isan A, ,X; = Y; thenT is an injective set-interpretation and
injective functionf : T'— T’ such thatr <y = f(z) < TI'T is injectively set-interpretable it via I'. If d = 1 then
f(y). The following lore clarifies the status of scattered treesie might stress thdf is a 1-dim set interpretation
tree T is scattered if and only if the complete infinite binary We consider two particular types of interpretations depend
tree does not embed i if and only if ¥ has countably many ing, loosely speaking, on whether the free variables arentak
infinite branches. to vary over elements ot or finite subsets of.

Definition 2.7 (point- and finite-set interpretationd)et I"
be a set interpretation. If in Definition 2.6 one replace§

Monadic second order (MSO) logic consists BMSO- everywhere it occurs by restricted tod-tuples of finite
variables X,Y, Z, ... that are interpreted as subsets of theets (resp. singletons) then we say that is (d-dim) finite-
domain, and allows quantification over these variables. Tket interpretablegresp.point-interpretablg in <.
non-logical symbols are those from signatufe and the = Remark 2.8:Note that because finiteness is not definable
binary predicate symbolC (representing set containment)in our trees2 may be finite-set interpretable in tré&ewhile
Atomic formulas are those using symbols frafm as well not being set interpretable .
as those such a¥ C Y. Formulas are built from atomic Example 2.9:For everyn < w there is am-dim injective
formulas by applying Boolean connectives and universal apdint-interpretation ofo™ in w. For instancejr (X1, - -+ , X,,)
existential quantification of variables. We use abbreviati states that eacl; is a singleton{z;}; and<r (X,Y) states
such asX =Y, X C Y andX NY = (. For convenience that the leastt < n such thatz; # y, satisfies thatr; <
we may use FO-variables, y, z--- since X is a singleton’ ;. Also, w™ is injectively finite-set interpretable iw. For
is definable in MSO. instance, takér(X) to be all sets of size and ordetX <Y

A A-structurel consists of a domair and for eachk-ary if the smallest integer in the symmetric differenceXfandY’
predicate symboR from A a k-ary predicateR® C A*. We isin X. The ordinaks* is the least ordinal that is not finite-set
may drop the superscript i®* when we are only dealing interpretable inv [9]. A corollary of Theorem 3.1 is that®
with one structure. Arexpansiorof A-structure by [ many is the least ordinal that is not finite-set interpretable ny a

C. MSO and Interpretations

predicates is a structuc@l, P2, - -- , P*) in the signatureAU  expansion ofu by unary predicates.

{P1,---, B} whereP,; are new unary predicate symbols Definition 2.10 (interpretation with parametershet I' be
formulais an MSO-formula in the signature. Write P(A) for  an interpretation in the signaturd such that every formula
the set of all subsets of. If p(X,...,X,,) is aA-formula in I contains an additional-tuple of free variables. Then
and?l is a A-structure then define I is called aninterpretation withm parameters Let S be

o m an m-tuple of subsets of a tre€. ThenT(%,S), and any
PA = (51, Sm) EP(A)™ [ A (1., Sm)}- structure isomorphic to it, is said to literpretable inT with
What types of interpretations do we consider? m parameters vid'. A famlly {%1} is interpretable inT with

Co : o . parameters vial' if for every members; there exists an
The most well studied interpretations in this field are pom%-tuple? such thats, is isomorphic tol'(T, 5).

|nte_rpretat|0ns — the mterpretlng formulgs are MSQ (boun Example 2.11: [20] The rational ordefQ is injectively 1-

variables vary over sets) but their free variables arectffely, i boint-interpretable with one parameter in the full bina

first order variables. We also consider a more general notign P P ; P n
tree T, = ({0,1}*, <prer). The parameter may be taken

called (finite-)set interpretations— here the interpreting for- AP,
( ) pre : preung oS R = {0,1}*1 and allows one to distinguish left and
mulas have free monadic variables that vary over (finitey; set.

bound variables vary over arbitrary subsets. So in (finget) r'ghlt}fh'ggigea:in? d;::g: gl/zrIeﬁgﬁg{:glzlcoggfgﬁbggs
interpretations elements are coded by (finite) sets. Maﬂ'eod A d Y y

interpretations may be multi-dim (elements are coded blptupm the rational order, there is &dim point-interpretatiol”

of finite sets) and not necessarily injective (each elemant cSUCh that the family of countable linear orders is injedjive

interpretable in%¥, with two parameters; one parameteriis
be coded by more than one tuple). and the other picks out the domain of the countable linear
Definition 2.6 (set interpretation)A (d-dim) set interpre- P

- ) ) . order.
tation I (in the signatureA) consists ofA-formulas . .
( 9 ) The next proposition follows from the standard interpreta-

or(X1), EQr (X1, X2), ob (X1, ..., Xy )y -+, @R (X7, ..., X, ) tion of the full countably-branching treg,, in T, [20].

) ) . ) Proposition 2.12:Every tree of ranka is 1-dim point-
wherek is an integer.X; is a d-tuple of MSO-variables and interpretable in a binary tree of rank

in each formula all the variables named are distinct. Eet
be aA-structure. IfEQ-T is a congruence on the structurédd. Composition Theorem for Tree-sums and Order-sums

(OrT, 1%, -, op%) then define Write A, for the signature of ordex with [ unary predicate
'Y = (T, oh%, -, kT ’ Py,---, P, symbols. Thus aA;-structure2l has the form
(9rT or 83 jear (A,<,P2,---,P*). The quantifier rank of a formula,
and say thatl't, and any structure isomorphic to it, isdenotedyr(y), is the maximum depth of nesting of quantifiers
set-interpretable in¥ via T'. If EQr(X,Y) is the formula in . Forr,l € N we denote byForm; the set of formulas of



guantifier rank< r and with free variables amonyg, ..., X;
in signature{<}. For A;-structuresi, B write A =} B if for
every p € Formy,

A (PR, P if and only if B |- (P, -

=T

-

,PP).

Clearly is an equivalence relation and the $gtrm;

T T2 I3

71 T2
G Ge—

73

Fig. 2. lllustration of composition: The-type of the tree (left) is determined

is infinite. Since the signaturd,; is finite and relational the by theg-type of the chain (right) where; := Tp" (%;). This g-type is called

set Form; contains only finitely many semantically distinc

formulas so there are only finitely many;-classes ofA;-
structures. The following lemma isolates maximally cotesis
formulas.

Lemma 2.13 (Hintikka lemma)or r,I € N, there is a
finite set H] C Form; such that:

1) For everyA;-structure2( there is auniquer € H;" with
2 ':T(Plglv"' vPlQl)'
2) If 7 € H andy € Formy, then eitherr = ¢ or 7 =
ﬁsp,s
Elements ofH] are called(r,{)-Hintikka formulas For
everyr, | we fix an enumeratiom (X), ..., 74y (X) of H/.
Definition 2.14 (type of a structure)ror A;-structure A
write Tp; () for the uniquer(X.,---,X;) € H] such that
A 7(PE,---, PY), and call it the(r, )-type of 2.
ThusTp; () effectively determines for which formulase
Form] it holds that2l = ¢(P?,---,P?). Sincel is often
clear we may drop it and writ&p" (2() and r-type.

ta projected type.

that for every unlabelled tre@nd, <;,4) and family{Z;};cing
of [-trees

Z‘Ij ': p =
Ind
where @ is the HJ-partition induced by{T;};cina. The
guantifier-rank o) depends only om and! and so is written
q(r,1).

Projected Types:The notions in the remainder of this
section are only used in Section IV. We visualise (Figt)rthe
r-type of T, projected onta and introduce notation to capture
this. A projected (r, 1)-Hintikka formulais a (¢(r,1), |H]|)-
Hintikka formula. Theprojected(r, I)-type of family{T; }.cind
of I-treesis the (¢(r,1),|H]|)-type of the H]-expansion of
(Ind, <;nq) induced by{%;}ing. Note that the projected type
determines which quantifier-rankformulas hold in), , T;.

(Ind, <ina) E 0(Q)

We now discuss increasingly informative versions of the When dealing with scattered trees Ind is ofigrso the type
composition theorem for MSO over tree-sums and order-sum$,an w-sum of trees reduces to the type of an expansion of

see [25] or [11], [12] for details. The first, lets call iteak

w. Given a family{¥;};, of I-trees(n < w) andm-tuple A

composition says that thér, [)-type of a sum depends on thewrite Per(A)[Tl._’j) for the projectedr, [ + m)-type of family

(r,1)-types of its summands.

Theorem 2.15 (weak composition for tree- and order-sums):

For every Ind, if Tp; (;) = Tp; (~A}) for all i € Ind then
Tpi (g i) = TP (Xing A7)-

We use the following consequence of the weak compositigp
for orders: for everyr, ! there is associative binary operation,,

+ on the setd; such that for all-ordersg;, £, the formula
Tp; (£1) + Tp; (£2) is identical with the(r,)-type of their
sumTp; (32, £i).

Definition 2.16 (partition of Ind):Let {2(;};cing be a fam-
ily of I-structures. TheH;-partition (of Ind) induced
{;}iema is the |HJ|-tuple Q@ where Q := {i
Ind | Tp;(%;) = 7} and 7 is the kth formula in the
enumeration off;". The H;-expansion ofInd, <;,q) induced
by {2;}icing is the structurgInd, <ing, Q).

{(Zk, A)}repi,j)- Under this notation we have

PrTp(A)fg,n,) = PrTp(A)} ) + PrTp(4)],

[a,n)’

The following proposition says that if elementsIop " <;
e all in an ‘interval sum’ off thenI' )" ¥ is interpretable
his interval.

Proposition 2.18:Suppose? = ) ¥, is anl-tree andl’
is d-dim set (resp. point-, finite-set) interpretation. If ther
exists a < b such that¥ | Op(Wq,---,Wy) implies
W; C Zie[a’b) T;, thenT'T is d-dim set (resp. point-, finite-

by set) interpretable in some expansionEfie[a b) Si-
c ;

IIl. FINITE-SETINTERPRETATIONS IN EXPANSIONS OFv

We write A; for the signature consisting ef andi predicate
symbols.

With  this notation weak composition states that Theorem 3.1: 1) For everyfinite-set interpretationl™ in

Tp; (D-hq2L) is determined by théi; -expansion induced by
{4 }ing. It turns out thatT'p; (>°,,42;) is already determined

by someg-type of the H]-expansion. In the next version
does not even depend on Ind:

Theorem 2.17 (composition for tree-sumEpr every for-
mulay € Form; there exists a formulé(Ys, . . ., Y‘HH)G such

5Furthermore,H{ is computable fronr,, and there is an algorithm that
given 7 and ¢ decides betweer = ¢ and T = —. We do not use these

facts.
6Moreover,§ is computable fromp, although we do not use this fact.

the signature); there exists an integeé¥r such that for
every expansio@ of w by [ unary predicates, iFC is a
scattered order or scattered tree then its rank is at most
Nr.
2) In particular, no scattered order or scattered tree of non
finite rank is finite-set interpretable in any expansion of
w by unary predicates.
The second item immediately follows from the first. More-
over, the bound is tight since every ordinal of finite rank is
finite-set (even many-dim point-) interpretable dn It was



shown in [9] that no ordinal of non-finite rank is finite-se€Qr(x,y)}; write <,, for the ordering{(z,y) | (w,p, w,) E

interpretable inv. That proof, which does not go through forz <r y}; and write<,, for <,, U =,,.

expansions ofv, inspired Theorem 3.1. For 2 C w andt € w write L,(z,t) for the set ofx €
From [3, Propositior8.1] we can conclude that a countableD,, such thatz[0,¢) = z[0,t). That is, L,,(z,¢) consists of

structure that is set-interpretable with parameters inxgpae- elements in the domai®,, that agree withz on the initial

sionC of w is already finite-set interpretable with parameteiisterval [0,¢). Note L,,(z,0) = D,, for all z.

in C. Thus no countable scattered order or tree of non-finiteClaim 1 For every index: € I there isz,, C w such that

rank issetinterpretable in any expansion af for everyt € w the rank of (L, (z,,t), <,)/=, equals the
The proof of Theorem 3.1 uses the followirank properties rank ofC,,.

on a class of structurés closed under isomorphism and under Proof of Claim 1 Fix n and suppose,, has already been

substructure: defined on the interval0, k) and for all¢ < k the rank of
1) Isomorphic structures i@ have the same rank. (Lyn(2n,t),<n)/=, equals the rank of,,. Partition the sets
2) If 2 € C has ranka and A is partitioned intoPy;, P,, in L, (2, k) into two classed4, V; depending on whether or
then at least one oft | P, and®l | P, has rankx. not k£ is in the set. By rank property 2) above at least one

3) There s d-dim point-interpretatiol with point param- of (V;,<,)/=, has the same rank &3%,; say the class is
eters such that for evesy of finite rankk (infinite rank) represented by € {0,1}. Put integerk in z, if and only if
there is a family oft — 1 (infinitely many) structures of e =1. o
distinct ranks interpretable with parameterirvia I'. For everyn € [ fix z, by Claim 1. Suppose, for a
Ranks on the class of linear orders (Definition 2.2) satisfy contradiction, there were more thaf- distinct ranks amongst
these properties. For the third property use the fact that ifthe C;s. By Claim 1, and rank property 1) above, for every
has ranka then for everys < « there exist an open intervalthere are more thaivr structures up to isomorphism amongst
of £ of rank 8. Infact the domain formul@p(z, p1,p2) may  (Ln(2n:t), <n)/=, (n € I). Pick finite J; C I of size
be defined ag, < = < p, where thep;s are parameters. greater thanNr indexing non-isomorphic structures (that is,
Similarly the classC of forests (ie. sets of trees) is closed # k € Ji; implies (L;(z;,t),<;)/=; is not isomorphic
under substructure (unlike the class of trees) and we migy (Lx(2k,1), <k)/=,)- The following claim shows that the
define a ranking on forests (agreeing with the ranking orsjre€hoice of Nr ensures that this is impossible.
satisfying these three properties as follows: the rank eftéss ~ Claim 2 There exists integefr and distinct indices:, k €
of trees is the supremum of ranks of the treesinTheorem J: such that(L,(zn,t), <n)/=, and (Lx(zk,t), <x)/=x are
3.1 is immediate from rank property 3) and the following. isomorphic.

Proposition 3.2: For everysetinterpretation” in the signa-  Proof of Claim 2 Write (w,)[0,¢) for the structurgw, v)
ture A; with m parameters there exists an inte@gr such that restricted to domai, ¢). By choice ofNr, for everyt there
if " interprets a family of scattered structures (orders orsjreeeXist distinctn, k € J; such thatl'p?(w, B, wn, 2n, 2,)[0,t) =
{C;}Yier with m-manyfinite-set parameters in some expansionl P’ (w, B, wy;, 2k, 2x)[0, ). Fix an integert that is greater than
C of w then the number of distinct ranks amongst the rani the integers in all thev;s fori € J;; and taken, k as in
of {C;}ics is at mostNy. the previous sentence. 3@,, w, C [0,t). Forz,y C [t,w),

Proof: To help readability we prove the proposition for

1-dim interpretations andn = 1 (one parameter). However 0 - 0 -
the same proof goes through féwdim interpretations andh Tp®(w, P wns 2, 20)[0,8) + Tp?(w, P, 0, 2, y) [t ) =
parameters — replace variables and parameters ranging ovefp?(w, D, w, 2k, 21)[0,t) + Tp?(w, P, 0, z, y)[t,w) =
subsets of_u by those_ ranging oyedi-tuples of subsets af. TpY(w, P, wk, 21[0,1) Uz, 2.[0,1) U y).
We sometimes mentiom andd in the proof below to help
the reader generalize.

qu(w,ﬁ,wn,zn[o,t)Ua:,zn[O,t)Uy) =

Immediately then

Let ¢ be an upper bound on the quantifier-rank of the 1) (2n(0,) Uz) € Ln(zn,1) iff (2¢[0, L‘)UCC) € Ly (zk,t)
formulas in the interpretation. Define Nr- greater than  2) (22[0,t) Ux) <, (2,[0,¢) U y) iff (2[0,%) U z) <y
the number of(q,! + m + 2d)-Hintikka formulas, namely (2x[0,t) Uy), and
|HY. ..\ 0ql- Take a family {C,,}ner of scattered orders of 3) (2n[0,8) U ) =n (2n[0,8) U y) iff (24[0,2) U ) =4
distinct ranks that is interpreted with-many parameters in an (21[0,1) Uy).
expansior{w, p) viaT'. By assumption thex:-many parameters These properties ensure that the maf), t)Uz +% 230, t) Uz
are restricted to be finite subsetswof (Wherex ranges over subsets [pfw)) induces an isomorphism

Notation. For the rest of this proof we use lowercasg . (L (2n,t), <n)/=, — (Li(zk,t), <x)/=,. Indeed® is a
pi,w;, ... to refer to subsets ab, and uppercasé;, D;,...  well-defined function by item 3); it is onto by item 1); and
to refer to sets of subsets af. For z C w write z[a,b) for  order-preserving by item 2. m
zNJa,b).

For everyn € I: fix a finite parametet, C w so that IV. FINITE-SETINTERPRETATIONS INSCATTERED TREES

INw,p,w,) = Cy; write D,, for the domain{z | (w, D, w,) E Theorem 4.1:There is an ordinal functiorG such that
or(z)}; write =, for the relation{(z,y) | (w,p,w,) E no ordinal of rank> G(«) is finite-set interpretable in any



labelled tree of rank< «. We may takeG(n) = w™ for The aim is to bound every3 < ¢ in terms ofr,{,d and

0<n<wandG(a) =w*"! for a > w. G1(d!) (for o/ < «). So take arbitrarys < ¢ and write
w € D for the code ofv”. By Lemma 2.3 (partition property
A. Natural Sum and Product on Ordinals for orders) for allt there exists projecteft, [ 4+ 2d)-Hintikka

The proof has some similarities with that of PropositioﬁormUIaS)‘wvt and p,¢ such that

3.2 but requires additional machinery, including the use ob,,, :={z €D |z <w and PrTp(w,z)ps = Aw,:
the natural-sun® (also called Hessenberg-sum) and natural-
product® (also called Hausdorff-product) on ordinals. These
operations were introduced in [5] and can be thought of @sdered by< has order type,”. Define setsL,, ; as
addition and multiplication of polynomials . The natural- - _

sum is a commutative, associative binary operatidnon {y < T(0,2) | y finite andPrTp(w, y)po, = duw.c}
ordinals. Supposer = >, w® and3 = 3 ._ w? are and Ry, = {z C T[t,w) | z finite andPrTp(w, 2)pt..) =
in Cantor-normal-form. Themy @ 8 is defined as the sum puw,t}-

(as in Definition 2.1) of allu® and w? arranged in non-  Inotherwords, every € D,, ; satisfies thatN[0,) € Ly,
increasing order. Similarly the natural-product is a comm@nd x N [t,w) € R, ;. Define binary relations<y, ., and
tative, associative binary operatiop on ordinals. Define =r,w,t ON Ly ¢ bY

a ® B as the natural sum of alb*:®7%, We implicitly use
easy properties of natural ordinal arithmetic: for ins&nc
the natural sum or natural product of countable ordinals is
countable; ifa, 5 < W thena @ 8 < w7 if a,f < w*"  and binary relations<z,., ; and=p, ., + ON Ry, ; by
thena ® 8 < w¥ . Here is a central property ob. A
function f : (a1 X -+ X ag) — ~ is coordinate-wise non-

and  PrTp(w, )y w) = Pu,t}

Y<pwey if I2€ R, yUz=<y' Uz
Yy=pwey if 32E€ Ry, yUz=ry' Uz

y%R,w,tyl if 32 € Ly ¢ yUz <19y Uz

decreasingf for all (4;,---,dy) in the domain off and all Y =Rwty if 32€ Ly yUz=ry Uz
n zSS k ang ai orc;mals& \(;wth 66" ; 0 < ag’ it holds that Let #w denote the smallest such thatw C T[0, s]. We will
F(O1,-+,0k) < (01,7, 01,0, Ont1, -, O). show that(t) for ¢ > #w we can replacelz by Vz in the

Lemma 4.2: [5] If f: (a1 X -+ X ag) — ~y is onto and
coordinate-wise non-decreasing therd a1 ® - - - ® ay,.

above definitions.
Lemma A. Fort > #w, both (L ¢, <1 w,t)/=,. ... and
Ryt <Rrwt)/=L .. are well-orders.
B. Proof of Theorem 4.1 ( We defer t)h/e Lhréof of Lemma A. Writér, ,,+ and g .+
We illustrate the proof for dimensioh to get a function for their respective order types and ndtg that each is at
G1 and remark at the end how to deal with dimensiort is mostw®. The map® : Br, w1+ X Brw: — w” (induced by
enough to find a functiod?; such that ifw? is 1-dim finite set (y, z) — y U z) is surjective by definition of,, ; andR,, ;. It
interpretable in a tree of rankthend < G(«) (this is because is co-ordinate wise non-decreasing @y. Apply Lemma 4.2
wrnk(8) < 3 and the ordinals that are finite-set interpretabk® conclude £x) that ordinalw?® is at most3y, ..+ ® Br.w.:-
in expansions of are closed downwards). To this end, sy =~ The order(L.;, <r.w,:)/=, is finite-set interpretable in
is finite-set interpretable in thietreeT of rank o viaI'. Write %[0, ¢) (by Proposition 2.18). This tree has some rank< «,
D for the domain of the interpretatior; for <, and=r for so apply induction and concludexx) that Sz, ., + < wGi(e),
EQrT. Since(D, <)/, is isomorphic tav’, say via bijection All that is left is to bound3r,.,,;. For this we use a pigeonhole
f, for every ordinalr < w® pick a unique element i from argument. )
the equivalence clasg~!(z) and call it thecodeof z. Let r Lemma B. If w’ codesv? (B’ < &) then fort > #w, #w’,
be the largest quantifier-rank appearing in formulag oFor if Ayt = Aw ¢ @nd py,s = pur e then Br v = Brow t-
the remainder write’rTp(A)j; ;) instead ofPrTp(A)y, ;. We defer the proof of Lemma B. Defing(a) :=
A note on the structure of the proof. We induct anto  Sup,/ -, G1(a’) and pick a sequence of ordinajs such that
bound §. For the base casé€,(0) := 1 (since no infinite 70 := (@) and(f) vi+1 > Y0 & V-
structure is interpretable in a finite one). For the remainde Let n be the number of projectedr,i + 2d)-Hintikka
supposen > 0. We consider two cases: the first is tiatis formulas and sefV := n* + 1. Suppose, for a contradiction,
an w-sum of ¥;s of lower rank (these we call Cagetrees); thatyx < 3. Then each ordinab? (0 < i < N) has a
and the second is thatis a finite sum of Casg trees (called code, sayw; € D. For all¢ > maxo<;<n #w; there exist two
Case2 trees). The case that is anw-glueing is reduced to indicesc < d < N such that\,,.: = Aw,,t aNdpu, ¢ = pugt
these cases by Proposition 2.12. (by choice of N). Then

Notation. For the rest of this proof we use lowercase W < BLawst @ Brovs.t (DY *%)
p;, w;, ... to refer to subsets of’, and uppercasé, R, ... o ' b
to refer to sets of subsets @f. < W@ BRuws.t (BY xx )
Case 1 Say¥ is anw-sum of%;s of lower rank. For interval = w" @ Bruw,: (by Lemma B)
[a,b) write T'[a,b) for the setU;c(, 1) T;. < W @w’ (by %)



which equalsw?°®7<, contradicting(f). Thus 8 < ~x and Finally, the same proof goes through fédim interpreta-
we have bound the arbitrarily chos@nin terms ofr, [, d and tions (replace variables by tuples of variables and makemin
G1(a’) for o < . This achieves thaim. We conclude that changes in notation). And the dimensidrhas no effect on
thed < . Of course ag, ! andd vary there is no bound on Gy; that is Gy, = G1. Thus defineGG := G, to complete the

N. Thus defineG; (o) := sup,; so thatd < G1(«). proof. [ |
To be concrete, take; 11 := (70 ® i) + 1, SOsup;v; = The proof just presented can be adapted to scatteredarank
v X w. There are four cases: 1) f < a < w then~vy(a) = trees of height+1, in particular to completion$. We explain

Gi(a—1) = w* ! and soG;(a) = w®; 2) if a = w then the terminology. A ‘well-founded tree’ is one in which every
Y(w) = sup, ., w" = w* and so0G; (w) = w*!; 3)if  >w set of the form{y | y < 2} is a (not necessarily finite) well-

is a successop + 1 theny(a) = G1(8) = w1 = w* founded set. Théaeightof a well-found tree is the supremum
and soGy(a) = w*!; 4) if @ > w is a limit ordinal then of the order types of these sets. Thus the trees as defined in

Y(@) = supy o w® T = w® and s0G (@) = w* T, Section II-B have heigh&< w. Writing [%] for the infinite

Proof of Lemma A. For t > #uw, y,¥ € Ly, branches off define thecompletionof a tree, written T, as
and z,2 € Ry,; we claim PrTp(w,y,%’,2)jow = the partial order whose domain 18U [T] and for whichu is
PrTp(w,y,y’, 2 )jow)y and PrTp(w,y, z,2")p,w) = beloww if eitheru,v € T andu <* v, oru € T,v € [%] and

PrTp(w,y’, 2,2 )ow). We prove the first equality (thew € v (thatis,u is a node on infinite branch). If T has height
second is similar). Recall that is the operation summing < « then[%] has height< w + 1. To define scattered trees of
types of chains. The®rTp(w,y,y’, 2)0..) €quals heightw + 1 we replacew-sums byw + 1-sums} " T;
where¥,, is a tree with exactly one element.

Corollary 4.3: Let G be the function from Theorem 4.1.

i<w+1
Per(wv Y, y/a Z)[O,t) + Per(wa Y, y/v Z)[t,w)

/ —
PrTp(w,y,y",0)j0,c) + PrTp(0,0,0, 2) .y = No ordinal of rank> G(«) is finite-set interpretable in the
PrTp(w,y,y’, 2" )jo,0) + PrTp(@,0,0, 2" )10 = completion of any labelled tree of rank .
PrTp(w,y,y', 2o + PrTp(w, .y, 2 ey = Proof Sketch: The composition theorem holds for well-

PrTp(w, ¥,y #)jo.w)- founded trees, SO we can .run the proof of Theorem 4.1_ yvith
the following modifications: at the start of Case 1, pantitio
To go from the second line to the third line use thahe domain depending on whether the set Hitsor not. It
PrTp(0,0,0, 2)}..,) is determined byPrTp(0, z):,..,) which s sufficient to deal with each of these domains. The latter
is pw,: by definition of R, ;. Sincez’ € R, then also case is as before. For the former case replace) by [t, w],
PrTp(0,0,0,2"). is determined by, ;. and definefts as the smallest integer (exclud®. In Lemma
Thus fort > #w, we can replacé by V in the definitions A for instancePrTp(w,y,y', 2)jw.w) = PrTp(w, 0,0, 2)1, ),
of <r w,t aNd=r ¢, AN <pg,,+ ANd =R .,,+. FOr example, which is, now, also independent of the set This yields the

if y,y/ S Lw,t andz € Rw,t andy Uz =r y/ U z, then for all same function’s. u
z' € Ry ¢ it holds thaty U 2’ =p ¢/ U 2’. It is now immediate
that both(L. ¢, <r,w,¢)/=1 . aNAd(Ruw,t, <Rw,t)/=1 ... &r€ V. REPLACING SET-INTERPRETATIONS BYSIMPLER
well-defined well-orders. INTERPRETATIONS

Proof of Lemma B. First note R, = R,/ : since

If 2 is finite-set interpretable it then 2( is necessarily
countable. A general problem, that we do not solve, states:

Problem 5.1:If 2( is countable and set-interpretable in (not
necessarily scattered) tré@g is 2 finite-set interpretable if?

Here is our contribution.

Theorem 5.2:For every injective set interpretatidn there
exists injective set interpretatidry such that (for labelled tree

that is not necessarily scattered)if is countable then

1) I'T is set interpretable it viaT'y, and
2) every set in every tuple in the domain Bf< is either

PrTp(w, 2)pw) = PrTp(0, 2)i,w) = PrTp(w’, 2)p..). Sec-
ond by the reasoning in Lemmd& and using\,, ; = Ay ¢+ We
see that ify;,y2 € Ry andz € Ly, with y1 Uz < ya U 2
then for allz’ € L, it holds thaty; Uz’ <y, U z'.

Case 2 SayT = ), |,q T: is a finite-sum of typel trees
each of ranka. We provew’ < w&(®), By Lemma 2.3
(partition property for orders) we may assume that for eve
i1 € Ind there is a type; such that ifx € D then(%;,zNT;)
has typer;. DefineD; := {x NT; | « € D} and a binary
relation<; onD; by x <; y if 3z € D 2U(2\T;) < yU(2\T;), o - . N
and similarly a binary relation=;. By the same composi- a finite subset of” or a finite union of infinite branches
tional reasoning as aboveD;, <;)/=, is well-ordered and of .
< w’, say of typen,. By a fact similar to Proposition 2.18 Corollary 5.3: Let G be the function from Theorem 4.1.
ordinal ; is finite-set interpretable in (Casetree) X;, thus No ordinal of rank> G(«) is injectively set-interpretable in
n; < w9 (). The function sendindz1, -+, znq) — Uz; any labelled tree of rank a.
from Dy x -+ x Djingg — D induces a surjective co-ordinate ~ Proof: Since a finite subset ¢ is, modulo interpretation,
wise non-decreasing functiom x --- X njpg| — w?. Thus a union of finite sets and finitely many infinite branches,
W< e ® ning|- BuUt since eachy, < w@1(@) and Theorem 5.2 states that # is countable and injectively
sinceG4 (a) is a power ofw, we see that® < w&(®), Thus set interpretable irE then A is finite-set interpretable in the
rank(w’) = 0 < G1(a). completion¥. Apply Corollary 4.3. ]



Corollary 5.4: Neither P(Q) nor P(%5) is injectively set- for the I-decomposition off — I'(%, I) is isomorphic to the

interpretable in any scattered tree. H[-expansion of(I, <) induced by{T;}ic;.
Conjecture 5.5:NeitherP(Q) norP(%5) is set-interpretable  Proposition 5.11 (trunk is finitary)iet ¢ be a formula of
in any scattered tree. guantifier-rankr and ¥ a labelled tree. IfoT is countable

then for everyV satisfyingy in € — writing {%;} for the
A. Proof Plan trunk” (%, V)-decompositiors:7 ofT,V) — =

Given an MSO-formulay the aim is to define an MSO- 1) All but finitely manyT;s areU-trees.
formula coDE such that for every tre&€ for which ¢ is 2) The settrunk” (T, V) is a union of a finite set and a
countable: finite set of infinite branches.

« CODE s an injective function with domaip¥, i .

« the range of.ODE consists of tuples whose sets are eithe?' First Coding

finite subsets of” or finite unions of finitely many infinite ~ SupposeT is an I-tree, T is countable and- is the
branches of. quantifier-rank ofp(X1, - - - , X,,,). ForV such thatf = ¢(V)

If o is the domain formula of an injective set-interpretatiofft 1¥i} be thetrunk := trunk’ (¥, V')-decomposition of tree
I" then define finitary interpretation; as follows: its domain (%> V). Write £ for finite set ofi & trunk such thatt; is a
formula expresses thaX is in the range ofcopE, its ith 1-tree. WriteBuDs for the set of children of the root f;
relation formula, say of arity:, expresses that there exi§gs ©" ¢ € £. We can coden-tuple V' by the following data:
such thatcope(Y ;, X;) and ¢i(Y1,---,Y,,) (wheregi. is 1) a pa|r(F,B) whlereF,B partition trunk, F' is a finite
the ith relation formula in the interpretatioR). Injectivity set, andB is a finite set of infinite branches,
ensures thatoDE is an isomorphism betwedPT and';T.  2) the H;,, -partition of I induced by{T:}icr,

In section V-B we discuss structural propertiesyt. In  3) the H],,-partition of B induced by{%.}ic 5,
section V-C we provide a first coding that when applied to 4) the  Hj,  -partiton —of BuDS induced by
finitely-branching tre&€ codesV (for T = (7)) by a subtree {(T=s, V) }sesups: B
with finitely many (finite and infinite) branches as well as dhis coding is injective: we argue that the coding Bf
labelling of this subtree. In section V-D we sketch how teiniquely determined’. Considerj € trunk. If T; is a U-
replace the labelling of the finitely many infinite branchgsab tree thenV NT; is determined by the data in 2) and 3);3if
tuple of finite sets. If the first coding is applied to a couttab is a D-tree then considere T~ for some childs € BUDS of
branching treet we still obtain a subtree with finitely manythe root ofT;. ThenV' N T\ is determined by the data in 4)
infinite branches, but now it may also contain infinitely mangince it is al/-tree. Moreove#” N{;} is determined by 2) and
finite branches. In the full version of the paper we show ho@). The coding is MSO-definable: indeeH, B are definable
to replace the labelled subtree consisting of the finiteditas from trunk which is definable by Lemma 5.8, partitions are

with a tuple of finite sets. definable by Lemma 5.10, arfd andBUDS are definable since
. the set ofD-trees (wrt.r, k) are definable.
B. Structural Properties The predicates in 1) and 2) are finitark: is a finite set,

The definitions and ideas of this section are from [2].  its partition is a tuple of finite sets, anll is a finite set of

Definition 5.6 (/-trees andD-trees): Let ¥ be ani-tree,V  infinite branches. Two tasks remain.

a k-tuple andr an integer. If there exist®)” # V (tuples of Task 1. The predicates in 3) label the subtree on domain
subsets ofl") with Tp" (T, W) = Tp" (%, V) then call(T,V) B. In Section V-D we sketch how to code this labelling by a
a D-tree wrt. r, k. Otherwise call(T,V) a U-tree wrt.r, k. tuple offinite sets.

Definition 5.7 (trunk): Define trunk” (%,V) as the set of  Task 2. If ¥ is finitely-branching then each predicate in
nodesu € T such that the subtree ¢f, V) rooted atu is a 4) is a finite set. In the full version we show how, f is
D-tree wrt.r, k. countably-branching, to code the possibly infinite BeDS

Lemma 5.8:The set trunk’ (%, V) is MSO-definable in and its ;' ,,,-partition by a tuple of finite sets.

(%,V) and downward closed. . D. Dealing with Infinite Labelled Branches (Task
We can decompose a tree along a downward closed set: o

Definition 5.9 (tree decomposition):et ¥ be ani-tree and  Proposition 5.12: [2] For A;-formula o(Xy,---, Xm)
I ¢ T a downward closed set. Forc I defineT; as those there isi such that for every I-tre& and every branc,
t € T such thati < t and there is na’ € I with i < i’ < ¢. 0f T — writing C = (I, <, Q) for the H] "™ -expansion ofl,
As usual writeT; for the substructure of restricted to7;. induced by thel;-decomposition off — the following holds
We call the family{T;};c; the I-decomposition of. forall W: C Ew(W) if and only if there existd” such that
If {%,}ics is the I-decomposition oft then¥ is isomorphic 1) T = »(V), and
to 3°,c; T; and theH -partition of I induced by{T;}ic; is ~ 2) W is the Hy - partition of J, induced by thel,-
definable inT expanded by. decomposition of T, V).

Lemma 5.10 (interpretability off;-expansion):For every In particular if T is countable them)C is countable.

r,l there is al-dim injective point interpretatiofl such that for Definition 5.13: For setsX,Y C T, write X =¢ng Y tO
every tree¥ and downward closed C T — writing {¥,};c; mean that the symmetric difference & andY is finite (and



say thatX andY have the samend. This notion extends to
k-tuples: writeX =engY if X; =enqY; for all i < k.
Proposition 5.14 (definable ends i): For every A,-
formulay (X, --- , X,,) there exist a constadt/ := M (s, n)
and formulasl (X), - -- , ¥,,(X) such that for everg-chain
C overw there existM-many tuplesiVy, - -- , Wy, such that

if ©C is countable then

1) For everyn < M: z € G,, if and only there existd, y
such thatu,,(V,I) ande(1,y) andz is the <-minimal
element such thag < z andv,,(V, I, 2);

2) H is the restriction of thed],  -partition of B induced
by {¥;}icp to the finite sed/, _ ,,{u | 3z € G u = z}.
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property forw-chains: a formula.(X) is a selector for formula
B(X) over a class of structuresif the following conditions
hold in C: 1) there is at most on& with «(X); 2) for all X
if a(X) thenp(X); 3) if there existsy” with 3(Y') then there
exists X with a(X). Every MSO-formulag has a selector
«, also an MSO-formula, over the class of all expansiong2
of w by unary predicates, see [17], [22]. Since a branch of
% is isomorphic tow, from Propositions 5.12 and 5.14, and [3]
Lemma 5.10 we get: [4]
Proposition 5.15 (definable ends along a branchkpr ev-
(5]

ery A;-formula ¢(Xq,---, X,,) of quantifier rankr there
[6]

(1]

exists a constant/ and MSO-formula®, - - - , ®,, such that
for everyi-tree ¥ with ¢ countable, ifl, C T is an infinite
branch of% and {%;}cs, is the I,-decomposition off then
there existM-many tuplesiV,, - -- , W, over I, such that 7]

1) T = (V) implies somelW; has the same end as thel8]
Hy, . -partition of I, induced by{(%;,V)}icy, -

2) W, is the unique tuple satisfied b¥; in (%, I). 9]

We sketch how to finish Task Recall we have to encode,[lo]
by a tuple of finite sets, thél;, -partition of B induced by
{%:}ien (Where{%;} is the trunk” (¥, V')-decomposition of [11]
(Z,V)). One set stores, for each of the finitely many branchFﬁl
I'in B, an indexn < M such that thef;,  -partition of I
induced by{%;};c; has the same end as tuple definedihy
The same set stores from which pointlobnwards the tuples
agree. In fact the index fof can be coded as a label of &gi5)
definable node, of I that is on no other branch aB (see
formula e below). Also mark the<-least nodez of I above
y from which point on the tuples agree. Finally we need ta7)
store the restriction of the partition to all nodes belewT his
data can be stored in a tuple of finite sets, and determines
HJ . -partition of B. We now argue that it is MSO-definable [19]

Formally, apply Proposition 5.15 to the domain formula of
T". This givesM and®y,--- , ®,,. Forn < M define formula 20
un(V, 1) stating that! is an infinite branch ofrunk”(T,V) |21
andn is the least integer with the property that the unique
tuple W,, overI satisfying®,, has the same end as the, - [
partition of I induced by{¥;},cs; if furthermoreW,, and the
mentionedH;,  -partition of I agree on{i € I | z < i} then
write v, (V, I, z). Define an auxiliary formula(X, z) stating
that X is an infinite branch ana is the <-minimal element
such thatz is on X and no two elements oB abovex are
<-incomparable.

Finally, code ther;, , -partition of B induced by{%;}cn
by |H],,,|-tuple of finite sets7 and M-tuple of finite set:"

[13]

[16]

[23]
[24]

[25]
[26]

[27]

Nr. ICT 10-050, ARISE FWF Nr. S11403-N23.
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