
Approximation Algorithms for
Orienting Mixed Graphs

Michael Elberfeld1,!, Danny Segev2,!, Colin R. Davidson3,
Dana Silverbush4, and Roded Sharan4

1 Institute of Theoretical Computer Science,
University of Lübeck, 23538 Lübeck, Germany

elberfeld@tcs.uni-luebeck.de
2 Department of Statistics, University of Haifa, Haifa 31905, Israel

segevd@stat.haifa.ac.il
3 Faculty of Mathematics, University of Waterloo, Waterloo, Canada, N2L 3G1

colinrdavidson@gmail.com
4 Blavatnik School of Computer Science, Tel Aviv University, Tel Aviv 69978, Israel

{danasilv,roded}@post.tau.ac.il

Abstract. Graph orientation is a fundamental problem in graph theory
that has recently arisen in the study of signaling-regulatory pathways in
protein networks. Given a graph and a list of ordered source-target ver-
tex pairs, it calls for assigning directions to the edges of the graph so as
to maximize the number of pairs that admit a directed source-to-target
path. When the input graph is undirected, a sub-logarithmic approxi-
mation is known for the problem. However, the approximability of the
biologically-relevant variant, in which the input graph has both directed
and undirected edges, was left open. Here we give the first approximation
algorithm to this problem. Our algorithm provides a sub-linear guarantee
in the general case, and logarithmic guarantees for structured instances.

Keywords: protein-protein interaction network, mixed graph, graph ori-
entation, approximation algorithm.

1 Introduction

Protein-protein interactions (ppis) form the skeleton of signal transduction in
the cell. While many of these interactions carry directed signaling information,
current ppi measurement technologies, such as yeast two hybrid [10] and co-
immunoprecipitation [14], cannot reveal the direction in which the signal flows.
The problem of inferring this hidden directionality information is fundamental
to our understanding of how these networks function. Previous work on this
problem has relied on information from perturbation experiments [23], in which
a gene is perturbed (cause) and as a result other genes change their expression
levels (effects), to guide the orientation inference. Specifically, it is assumed that
for an effect to take place, there must be a directed path in the network from
! These authors contributed equally to this work.

R. Giancarlo and G. Manzini (Eds.): CPM 2011, LNCS 6661, pp. 416–428, 2011.
c© Springer-Verlag Berlin Heidelberg 2011

Approximation Algorithms for Orienting Mixed Graphs 417

the causal gene to the affected gene. The arising combinatorial problem is to
orient the edges of the network such that a maximum number of cause-effect
pairs admit a directed path from the causal to the affected gene. When studying
a ppi network in isolation, the input network is undirected. However, the more
biologically relevant variant considers also protein-dna interactions as these are
necessary to explain the expression changes. Moreover, the directionality of some
ppis, like kinase-substrate interactions, is known in advance. Thus, in general,
the input network is a mixed graph containing both directed and undirected
edges.

The optimization problem that we study draws its recent interest from appli-
cations in network biology, but is rooted at practical applications from already a
century ago: In 1939, Robbins [20], who was motivated by applications in street
network design, showed that an undirected graph has a strongly connected ori-
entation if and only if it has no bridge edge. The corresponding decision problem
can be solved in linear time [22]. The characterization of Robbins was extended
to mixed graphs by Boesch et al. [5]; linear time algorithms for deciding whether
a mixed graph admits a strongly connected orientation were presented by Chung
et al. [7]. Hakimi et al. [15] presented a polynomial algorithm for the problem
of orienting an undirected graph so as to maximize the number of source-target
pairs out of all possible ordered vertex pairs that admit a directed source-to-
target path. A recent work by Dorn et al. [9] studies the parameterized complex-
ity of orienting graphs. We refer to the textbook of Bang-Jensen and Gutin [3]
for a comprehensive discussion of various graph orientation problems.

More recently, the problem of network orientation has been motivated by
applications in network biology. Medvedovsky et al. [18] who formulated the
problem that we study here, focused on restricted instances where the input
graph is undirected, providing a logarithmic approximation algorithm for the
problem. The approximation guarantee was later improved to Ω(log log n/ log n)
by Gamzu et al. [13], where n denotes the number of vertices in the input graph.
Gamzu et al. also showed that the orientation problem on mixed graphs can be
approximated to within a poly-logarithmic ratio of Ω(1/ logl n) where l is the
maximum number of alternations between undirected and directed edges on a
source-to-target path. Silverbush et al. [21] developed an ilp-based algorithm to
optimally orient mixed networks, but the approximability of the problem (for
non-constant l) was left open.

In this work, we study the approximability of the orientation problem on
mixed graphs. We show that the problem is NP-hard to approximate to within a
factor of 7/8. We then reduce the problem to orienting acyclic mixed graphs. We
provide logarithmic approximation guarantees for tree-like reduced instances and
use those to develop a sub-linear approximation algorithm for general instances.

The paper is organized as follows: In the next section we formally define the
orientation problem, discuss its complexity and describe a generic reduction to
acyclic mixed graphs. In Section 3 we present logarithmic factor approximation
algorithms for tree-like instances. Section 4 presents the sub-linear approxima-
tion algorithm for the general case.

418 M. Elberfeld et al.

2 Preliminaries

Notation and terminology. We focus on simple graphs with no loops or parallel
edges. A mixed graph is a triple G = (V, EU, ED) that consists of a vertex set
V , a set of undirected edges EU ⊆ {e ⊆ V | |e| = 2}, and a set of directed edges
ED ⊆ V × V . We assume that every pair of vertices is either connected by a
single edge of a specific type (directed or undirected) or not connected at all.
We also write V (G), EU(G), and ED(G) to refer to the sets V , EU, and ED,
respectively. When G is clear from the context, we will denote n = |V |.

Let G1 and G2 be two mixed graphs. The graph G1 is a subgraph of G2 when
the relations V (G1) ⊆ V (G2), EU(G1) ⊆ EU(G2), and ED(G1) ⊆ ED(G2) hold.
A path of length " in a mixed graph G is a sequence p = 〈v1, v2, . . . , v", v"+1〉
of distinct vertices such that for every 1 ≤ i ≤ ", we have {vi, vi+1} ∈ EU (G)
or (vi, vi+1) ∈ ED(G). It crosses a vertex v ∈ V (G) when v = vi for some
i ∈ {1, . . . , " + 1}. It is a cycle when v1 = v"+1. Given s ∈ V (G) and t ∈ V (G),
we say that t is reachable from s when there exists a path in G that goes from s
to t. In this case we also say that G satisfies the pair (s, t). A mixed graph with
no cycles is called a mixed acyclic graph (mag).

Let G be a mixed graph. An orientation of G is a directed graph over the
same vertex set, whose edge set contains all the directed edges of G and a single
directed instance of every undirected edge, but nothing more. When only a subset
of the undirected edges have been oriented, we obtain a partial orientation.

Problem statement. The maximum-mixed-graph-orientation problem is de-
fined as follows:

Input: A mixed graph G, and a collection of source-target vertex pairs P ⊆
V (G) × V (G).

Output: An orientation of G that satisfies a maximum number of pairs from P .

Hardness result. Arkin and Hassin [1] showed that it is NP-complete to decide
whether, for a given mixed graph G and a collection of source-target pairs P ,
the graph G can be oriented to satisfy all pairs in P . Their reduction, based on
the 3-satisfiability problem, guarantees that for every k ∈ N there exists an
assignment with k satisfied clauses if and only if there exists an orientation with k
satisfied pairs. Thus, the inapproximability of maximum-3-satisfiability [16]
directly transfers to maximum-mixed-graph-orientation, implying that it is
NP-hard to approximate it to within a factor of 7/8. We note that this bound is
slightly lower than the 12/13-bound known for the special case where the input
graph is undirected [18].

Reduction to mixed acyclic graphs. Given an orientation instance (G, P), we can
orient the undirected edges of any mixed cycle in a consistent direction without
affecting the maximum number of source-target pairs that are satisfied by an
optimal orientation. This observation gives rise to a polynomial-time reduction
from mixed graphs to mags: First, we iteratively orient mixed cycles in the input

Approximation Algorithms for Orienting Mixed Graphs 419

graph. Then, we contract strongly connected components into single vertices, and
connect two components by an undirected (directed) edge when some vertex in
the first component is connected by such an edge to a vertex in the second
component (note that there cannot be more than one edge type as otherwise the
two strongly connected components would have been merged). The pairs from
P are adjusted accordingly from vertices of G to component vertices. A formal
correctness proof of this reduction is given by Silverbush et al. [21].

Given a mag G, the components of the undirected graph (V (G), EU(G)) are
called the undirected components of G; they must be trees that are connected
by directed edges from ED(G) without producing cycles. The graph of undi-
rected components of G is the directed acyclic graph Gucc with V (Gucc) = {Gi |
Gi is an undirected component of G}, and there is a directed edge from a node
Gi to a node Gj when there is an edge from some vertex v ∈ Gi to some vertex
w ∈ Gj .

By the reduction above, we may focus our attention on treating mags. In
addition, we may assume that each of the input pairs can be satisfied by some
orientation; otherwise, it can be eliminated without affecting the optimum so-
lution. Thus, throughout the paper, all instances considered will be assumed to
satisfy these two properties.

3 Logarithmic Approximations for Tree-Like Instances

In this section we provide logarithmic approximations that apply to orientation
instances where the graph is “similar” to a tree, as formally defined in the sequel.
In the remainder of this section, we make use of the following result about
orienting undirected trees due to Medvedovsky et al. [18]:

Lemma 3.1. Let (G, P) be an orientation instance where G is an undirected
tree. There is a polynomial-time algorithm that computes an orientation satisfy-
ing at least |P |/(4'log n() pairs.

3.1 Orienting Mixed Trees

The above lemma guarantees that a logarithmic fraction of the input pairs
can always be satisfied, and since it is constructive, we immediately derive
an Ω(1/ log n) approximation algorithm for undirected trees. The following se-
quences of claims are of similar nature: We prove the existence of orientations
satisfying a certain fraction of all input pairs, and this leads to approximation
algorithms with the corresponding ratio. We start with orientations for mixed
trees.

Lemma 3.2. Let (G, P) be an orientation instance with a mixed tree G. There
is a polynomial-time algorithm that computes an orientation satisfying at least
|P |/(4'logn() of the pairs.

420 M. Elberfeld et al.

Proof. First contract all directed edges of the tree into single vertices and update
the end vertices of the input pairs accordingly. The resulting graph is an undi-
rected tree with source-to-target paths for every pair in P . By Lemma 3.1, there
exists a polynomial-time algorithm that finds an orientation of the resulting tree
satisfying at least 1/(4'logn() of the pairs. Carrying over the edge directions
to the initial mixed tree produces an orientation that satisfies exactly the same
collection of pairs in the original orientation instance.)*

3.2 Crossings through a Junction Component

Let (G, P) be an orientation instance and let T1, T2, . . . be the undirected com-
ponents of G. We construct a subgraph of G, called the skeleton S = S(G) of G
by deleting all but one directed edge between any pair of trees Ti and Tj. Note
that the exact structure of a skeleton graph depends on the (polynomial-time)
procedure used for its construction; we choose any fixed procedure to define S
unambiguously. It is not difficult to verify that the skeleton S contains source-
to-target paths for the pairs P , and that every orientation of S satisfying certain
pairs directly translates into an orientation for G satisfying at least the same
pairs. Figure 1 shows an example of a graph G and a skeleton for it. Note that
for any mag G and its skeleton S = S(G), we have Gucc = Succ.

G S

Fig. 1. An example mag G and a skeleton S of it

The next lemma is crucial to establish the remaining results of this section,
as well as the sub-linear approximation algorithm described in Section 4.

Lemma 3.3. Let (G, P) be an orientation instance and T be an undirected com-
ponent of G. If each pair in P admits a source-to-target path that crosses a vertex
from T then there is a polynomial-time algorithm that computes an orientation
satisfying at least |P |/(4'logn() of the pairs.

Proof. Since the skeleton S = S(G) is a mag and, therefore, Succ is a directed
acyclic graph, for every undirected component T ′ += T of Succ, exactly one
of the following options holds: (1) T ′ is reachable from T in Succ; (2) T is
reachable from T ′ in Succ; or (3) there is no path between T and T ′ in either
direction. Consequently, we can consider two subtrees that are rooted at T : The
first subtree spans the vertices of Succ that are reachable from T , and the second
subtree spans the vertices of Succ that can reach T . We merge both subtrees at
T and call the resulting directed tree Tucc. To compute an orientation for G, we
consider the subtree of S that is constructed by taking all undirected components

Approximation Algorithms for Orienting Mixed Graphs 421

from Tucc, and connect two vertices in different components by a directed edge
if this edge is already present in S and the components are connected in Tucc.
This subtree of S contains a source-to-target path for each pair in P . Therefore,
by Lemma 3.2, we can construct (in polynomial time) an orientation satisfying
at least |P |/(4'logn() pairs in S and, thus, also in the original graph G.)*

Lemma 3.3 implies an Ω(1/ logn) approximation for a special case of the ori-
entation problem, which we call maximum-junction-tree-orientation. In
Section 4 we shall apply the algorithm to instances where all pairs have source-
to-target paths crossing a distinguished vertex r.

3.3 Orientations for Small Feedback Vertex Sets or Treewidth

We end this section by providing logarithmic approximations to the orientation
problem on tree-like instances. Precisely, we consider two graph parameters:
feedback vertex number and treewidth, showing that whenever either one of these
is bounded by a constant, it is possible to compute an orientation that satisfies
a poly-logarithmic fraction of the input pairs.

Lemma 3.4. Let (G, P) be an orientation instance where the underlying undi-
rected subgraph of Gucc can be turned into a tree by deleting at most k vertices.
There is a polynomial-time algorithm that computes an orientation satisfying at
least |P |/(4(2k + 1)'log n() pairs.

Proof. We begin by detecting a small-sized feedback vertex set F = {T1, . . . , T"},
consisting of " vertices whose removal turns the underlying undirected subgraph
of Gucc into a tree. Even though finding a minimum cardinality vertex set of
this type is NP-hard [17], this problem can be approximated to within a factor
of 2 in undirected graphs [2], implying that we can assume " ≤ 2k. We now
partition P into two subsets, the collection of pairs P+ for which we can find
source-to-target paths in G that cross undirected components from F , and the
collection P− = P \ P+. We further partition P+ into " subsets P+

1 , . . . , P+
" ,

where a pair (s, t) ∈ P+ lies in P+
i if i is the minimal index for which there exists

a source-to-target path for this pair that crosses the undirected component Ti.
With these definitions at hand, note that by deleting the undirected components
F from G, we can use Lemma 3.2 to efficiently compute an orientation of G
satisfying at least |P−|/(4'log n() pairs; after deleting F the skeleton of the
resulting graph is a tree and all pairs in P− remain connected since they are
only connected through paths that not visit vertices from F . On the other hand,
for each collection P+

i we can satisfy at least |P+
i |/(4'logn() pairs by applying

Lemma 3.3. Picking the option that generates the highest number of satisfied
pairs results in an orientation satisfying at least |P |/(4(2k + 1)'logn() of the
pairs in P .)*

We note that the above approximation result can be improved by a factor of 2
if the feedback vertex set has bounded size. For such instances we can invoke an
exact fixed parameter algorithm [6] to find an optimal feedback set, rather than
using the 2-approximation algorithm.

422 M. Elberfeld et al.

Lemma 3.5. Let (G, P) be an orientation instance where the underlying undi-
rected subgraph of Gucc has treewidth k. There is a polynomial-time algorithm
that computes an orientation satisfying at least |P |/(4(k + 1)'log n(2) pairs.

Proof. We first compute a tree decomposition of width k for the undirected
underlying graph of Gucc. A tree decomposition (T , {Bt}t∈V (T)) consists of a
tree T whose nodes are labeled with possibly-overlapping subsets Bt of vertices,
called bags, such that: (1) the incident vertices of every edge are both contained
in some bag; and (2) for every original vertex, the nodes of the bags that contain
it make up a connected subtree. Its width is defined as the maximum number of
vertices in a bag minus 1. For a comprehensive discussion on tree decompositions
and their polynomial-time computability in the case of bounded tree width, we
refer to the book of Flum and Grohe [11].

Based on the tree decomposition (T , {Bt}t∈V (T)), we partition P into subsets
P1, P2, . . . , PL with L ≤ 'log n(such that for every subset we can efficiently
find an orientation that satisfies a fraction of at least 1/(4(k + 1)'log n() of its
pairs. By picking the largest subset of pairs and its corresponding orientation,
we obtain an orientation satisfying at least |P |/(4(k + 1)'log n(2) pairs.

For the purpose of constructing P1, consider a centroid node t of T whose
removal breaks this tree into subtrees of cardinality at most |V (T)|/2, noting
that any tree necessarily contains a centroid (see, for instance, [12]). Let P1 be
the pairs in P with source-to-target paths that cross vertices from undirected
components of Bt = {T1, . . . , Tl}, where l ≤ k + 1. We further partition P1 into
l collections P 1

1 , . . . , P l
1 such that a pair (s, t) ∈ P1 lies in P 1

i if there exists an
s-t path that crosses vertices from Ti but no s-t paths that cross vertices from
components Tj with j < i. By Lemma 3.3, we can compute an orientation that
satisfies at least |P i

1|/(4'log n() of the pairs in P i
1, for every 1 ≤ i ≤ l. By taking

the largest collection, we can satisfy at least |P1|/(4(k + 1)'log n() pairs in P1.
To construct P2, we proceed with the pair collection P \ P1 that contains

exactly the pairs from P with no source-to-target paths that cross vertices from
the components of P1. We delete the node t from T , as well as the components
in Bt from G. This results in a graph that contains source-to-target paths for all
pairs from P \P1 and a forest of tree decompositions for the graph. For each tree
decomposition we compute a centroid bag and, in the same way as above, the
collection P2 of pairs in P \P1 with source-to-target paths that cross components
from these centroid bags. Using the same arguments as above, we can compute
an orientation that satisfies at least |P2|/(4(k +1)'log n() of the pairs in P2. We
proceed recursively in the same way to construct P3, P4, . . . , PL as long as each
tree decomposition (and the corresponding subgraph of G) is not empty. Since
the maximal size of a subtree decreases by a factor of at least 2 in each level of
the recursion, this process terminates within 'log n(steps.)*

4 Sub-linear Approximations for General Instances

In what follows, we focus our attention on approximating the orientation prob-
lem in its utmost generality, that is, without making simplifying structural

Approximation Algorithms for Orienting Mixed Graphs 423

assumptions on the underlying (mixed-acyclic) graph G and on the collection of
input pairs P . The main result of this section can be briefly stated as follows.

Theorem 4.1. The maximum-mixed-graph-orientation problem can be ap-
proximated within a factor of Ω(1/(M1/

√
2 log n)), where M = max{n, |P |}.

In addition, we provide an improved approximation guarantee for input instances
with bounded-distance pairs. This result is described in Section 4.3.

4.1 The Algorithm

For each pair (si, ti) ∈ P , let pi be a shortest path from si to ti in G, and let P be
the set of all shortest paths, i.e., P = {pi : (si, ti) ∈ P}. Our algorithm is based
on a greedy framework where paths in P are oriented (from source to target)
one after the other, trying not to interfere with future orientations of too many
other paths by picking the shortest path in each step. Somewhat informally, this
process concludes as soon as one of the following termination conditions is met:

The greedy step. At any point in time, we will be holding a partial orientation
G" of G and a subset P" ⊆ P of shortest paths, where these sets are indexed
according to the step number that has just been completed. In other words, at
the conclusion of step " we have G" and P", where initially G0 = G and P0 = P .
Now, as long as none of the termination conditions described below is met, we
proceed as follows:

1. Let p̂ =< s, . . . , t > be a shortest path in P".
2. Orient p̂ in the direction from s to t to obtain G"+1.
3. Discard from P" the path p̂ as well as any path that has a non-empty edge

intersection with p̂. This way, we obtain P"+1.

Termination conditions. There are two conditions that will cause the greedy
iterations to terminate. For now, we state both conditions in terms of two pa-
rameters α ≥ 0 and β ≥ 0, whose values will be optimized later on.

Condition 1: |P"| ≤ nα. In this case, we will orient an arbitrary path from
P", and update the current orientation to G", as in the preceding greedy
iterations. We then complete the orientation by arbitrarily orienting all yet-
unoriented edges.

Condition 2: There exists a vertex r such that at least |P"|β paths in P"

go through r. We construct a maximum-junction-tree-orientation in-
stance with input graph G", junction vertex r, and pairs {(si, ti) : pi ∈
P" goes through r}. We then apply the algorithm described in Section 3.2
for this special case, and return its output as our final orientation.

4.2 Analysis

To establish a lower bound on the number of satisfied pairs, we break the analy-
sis into two cases, depending on the condition that caused the greedy iterations to

424 M. Elberfeld et al.

terminate. In the remainder of this section, we assume that L greedy iterations
have been completed prior to satisfying one of the termination conditions.

Connections due to condition 1: In this case we satisfy a single pair out of
{(si, ti) : pi ∈ PL}, noting that |PL| ≤ nα.

Connections due to condition 2: Following Lemma 3.3, the number of pairs
satisfied out of {(si, ti) : pi ∈ PL} is Ω(1/ logn) · |PL|β .

We proceed by arguing that an Ω(1/n1−α(1−2β)) fraction of the pairs in
{(si, ti) : pi /∈ PL} are already satisfied by the partial orientation GL. To this
end, note that in each iteration 1 ≤ " ≤ L we satisfy a single pair by orienting
the shortest path p̂ ∈ P"−1, and eliminating several others to obtain P". To
prove the claim above, it is sufficient to show that the number of eliminated
paths satisfies |P"−1 \ P"| ≤ n1−α(1−2β). Denote by E(p) the set of edges of
a path p, so that |E(p)| is its length. We begin by observing that, since con-
dition 2 has not been met in iteration ", each edge can have at most |P"−1|β
paths from P"−1 going through it, implying that |P"−1 \ P"| ≤ |E(p̂)| · |P"−1|β .
Since |E(p̂)| is upper bounded by the average length of the paths in P"−1,
we have

|E(p̂)| ≤ 1
|P"−1|

∑

pi∈P!−1

|E(pi)| ≤
1

|P"−1|
∑

pi∈P!−1

|V (pi)|

=
1

|P"−1|
∑

v∈V

|{pi ∈ P"−1 : v ∈ V (pi)}|

≤ 1
|P"−1|

· n · |P"−1|β =
n

|P"−1|1−β
,

where the third inequality holds since condition 2 has not been met. Hence,

|P"−1 \ P"| ≤
n

|P"−1|1−2β
≤ n

nα(1−2β)
= n1−α(1−2β) ,

where the second inequality follows from |P"−1| > nα, as condition 1 has not
been met.

Putting it all together. Based on the above discussion, it follows that the number
of satisfied pairs when we terminate the algorithm due to condition 1 is

Ω

(
1

n1−α(1−2β)

)
(|P |− |PL|) + 1 = Ω

(
1

n1−α(1−2β)

)
(|P |− nα) +

1
nα

nα

= Ω

(
1

max{n1−α(1−2β), nα}

)
|P |

= Ω

(
1

nmax{1−α(1−2β),α}

)
|P | .

Approximation Algorithms for Orienting Mixed Graphs 425

Similarly, the number of satisfied pairs when the algorithm is terminated due to
condition 2 is

Ω

(
1

n1−α(1−2β)

)
(|P |− |PL|) + Ω

(
1

log n

)
|PL|β

= Ω

(
1

n1−α(1−2β)

)
(|P |− |PL|) + Ω

(
1

|PL|1−β log n

)
|PL|

= Ω

(
1

max{n1−α(1−2β), |P |1−β log n}

)
|P |

= Ω

(
1

Mmax{1−α(1−2β),1−β}

)
1

log n
|P | .

To obtain the best-possible performance guarantee, we pick values for α and β
so as to minimize max{α, 1 − β, 1 − α(1 − 2β)}. As explained below, the last
term is optimized for α∗ =

√
1/2 and β∗ =

√
1/2/(2

√
1/2 + 1) = 1 −

√
1/2, in

which case its value is
√

1/2 ≈ 0.707.

Optimizing α and β. Suppose we know the value of α∗. In this case, β∗ should be
picked so as to minimize max{1−β, 1−α∗(1− 2β)}. Since 1− β is a decreasing
linear function of β and 1 − α∗(1 − 2β) is an increasing linear function, this
minimum is attained when 1 − β = 1 − α∗(1 − 2β), that is, β∗ = α∗/(2α∗ + 1).
For this value, we have min max {1 − β, 1 − α∗(1 − 2β)} = (α∗ + 1)/(2α∗ + 1).
It remains to find a value of α that minimizes max{α, (α + 1)/(2α + 1)}. Using
similar arguments, it is not difficult to verify that the right value to pick is
α∗ =

√
1/2.

4.3 An Improved Approximation for Bounded-Distance Pairs

In practice, the diameter of biological networks is sub-logarithmic due to their
scale-free property [4,8,19]. For example, in the yeast physical network described
in [21], the maximum source-target distance is 14. This motivates examining
the approximation guarantee in terms of the maximum length of a shortest
source-target path in the reduced mixed acyclic graph, which we denote by
∆ = ∆(G, P). In the following we present an Ω(1/

√
∆|P | log n) approximation

to the orientation problem.
Our algorithm remains essentially unchanged, except for its termination con-

ditions. Unlike the more general procedure, we ignore condition 1, and terminate
the greedy iterations as soon as condition 2 is met, i.e., when there exists a ver-
tex r ∈ V such that at least |P"|β paths in P" go through r. In this case, we
construct a maximum-junction-tree-orientation instance as before, with
input graph G", junction vertex r, and pairs {(si, ti) : pi ∈ P" goes through r}.
Our logarithmic approximation for this particular setting is then applied.

Similarly to the analysis in Section 4.2, we can prove the next two claims:

Connections due to termination condition 2: The number of pairs satis-
fied out of {(si, ti) : pi ∈ PL} is Ω(1/ log n) · |PL|β .

426 M. Elberfeld et al.

Connections due to greedy iterations: A fraction of Ω(1/(∆|P |β)) of the
pairs in {(si, ti) : pi /∈ PL} are already satisfied by the partial orientation
GL. This follows by observing that the number of paths that are eliminated
from P"−1 in iteration " is at most ∆|P"−1|β ≤ ∆|P |β .

Consequently, the number of satisfied pairs upon termination is:

Ω

(
1

∆|P |β

)
(|P |− |PL|) + Ω

(
1

log n

)
|PL|β

= Ω

(
1

∆|P |β

)
(|P |− |PL|) + Ω

(
1

|PL|1−β log n

)
|PL|

= Ω

(
1

max{∆|P |β , |P |1−β log n}

)
|P | .

By choosing β = 1
2 (1 + log|P |(

log n
∆)), we obtain an approximation ratio of

Ω(1/
√

∆|P | log n).
In this section we used the usual definition of path lengths: the length of

a path is the number of its edges. The above analyses work in a similar way
if we measure the length of a path by the number of its undirected edges or
even by the number of undirected components the path visits. This yields the
same asymptotic bounds with respect to the size of the input, but highlights the
increasing performance of the algorithm for structured inputs where these path
length measures are small.

5 Conclusions

In this paper we presented approximation algorithms for the maximum-mixed-
graph-orientation problem, which has recently arisen in the study of biolog-
ical networks. We first showed that tree-like instances admit orientations (that
can be computed in polynomial time) satisfying a poly-logarithmic fraction of
the input pairs. Then we extended these algorithms to develop the first approx-
imation algorithm for the problem whose ratio depends only on the size of the
input instance, where no structural properties are assumed. The algorithm has
a sub-linear approximation ratio, which can be improved when the input pairs
are connected by short paths. The known upper and lower bounds for the ap-
proximation ratio of maximum-mixed-graph-orientation are far from being
tight. Closing this gap, both in the undirected and mixed cases, remains an open
problem.

Acknowledgments

M.E. was supported by a research grant from the Dr. Alexander und Rita Besser-
Stiftung. C.R.D. would like to thank Gerry Schwartz, Heather Reisman, and the
University of Waterloo-Haifa International Experience Program for funding his
visit to the University of Haifa, during which part of this work was done. R.S.
was supported by a research grant from the Israel Science Foundation (grant no.
385/06).

Approximation Algorithms for Orienting Mixed Graphs 427

References

1. Arkin, E.M., Hassin, R.: A note on orientations of mixed graphs. Discrete Applied
Mathematics 116(3), 271–278 (2002)

2. Bafna, V., Berman, P., Fujito, T.: A 2-approximation algorithm for the undirected
feedback vertex set problem. SIAM Journal on Discrete Mathematics 12(3), 289–
297 (1999)

3. Bang-Jensen, J., Gutin, G.: Digraphs: Theory, Algorithms and Applications, 2nd
edn. Springer, Heidelberg (2008)

4. Barabási, A.-L., Oltvai, Z.N.: Network biology: understanding the cell’s functional
organization. Nature Reviews Genetics 5(2), 101–113 (2004)

5. Boesch, F., Tindell, R.: Robbins’s theorem for mixed multigraphs. The American
Mathematical Monthly 87(9), 716–719 (1980)

6. Chen, J., Fomin, F.V., Liu, Y., Lu, S., Villanger, Y.: Improved algorithms for
feedback vertex set problems. Journal of Computer and System Sciences 74(7),
1188–1198 (2008)

7. Chung, F.R.K., Garey, M.R., Tarjan, R.E.: Strongly connected orientations of
mixed multigraphs. Networks 15(4), 477–484 (1985)

8. Cohen, R., Havlin, S., ben-Avraham, D.: Structural properties of scale-free net-
works. In: Handbook of Graphs and Networks: From the Genome to the Internet.
Wiley-VCH, Weinheim (2002)

9. Dorn, B., Hüffner, F., Krüger, D., Niedermeier, R., Uhlmann, J.: Exploiting
bounded signal flow for graph orientation based on cause–effect pairs (To appear).
In: Marchetti-Spaccamela, A., Segal, M. (eds.) TAPAS 2011. LNCS, vol. 6595, pp.
104–115. Springer, Heidelberg (2011)

10. Fields, S.: High-throughput two-hybrid analysis. The promise and the peril. The
FEB Journal 272(21), 5391–5399 (2005)

11. Flum, J., Grohe, M.: Parameterized Complexity Theory. Springer, Heidelberg
(2006)

12. Frederickson, G.N., Johnson, D.B.: Generating and searching sets induced by net-
works. In: ICALP 1980. LNCS, vol. 85, pp. 221–233. Springer, Heidelberg (1980)

13. Gamzu, I., Segev, D., Sharan, R.: Improved orientations of physical networks. In:
Moulton, V., Singh, M. (eds.) WABI 2010. LNCS, vol. 6293, pp. 215–225. Springer,
Heidelberg (2010)

14. Gavin, A., Bösche, M., Krause, R., Grandi, P., Marzioch, M., Bauer, A., Schultz,
J., Rick, J.M., Michon, A.-M., Cruciat, C.-M., Remor, M., Höfert, C., Schelder,
M., Brajenovic, M., Ruffner, H., Merino, A., Klein, K., Hudak, M., Dickson, D.,
Rudi, T., Gnau, V., Bauch, A., Bastuck, S., Huhse, B., Leutwein, C., Heurtier,
M.-A., Copley, R.R., Edelmann, A., Querfurth, E., Rybin, V., Drewes, G., Raida,
M., Bouwmeester, T., Bork, P., Seraphin, B., Kuster, B., Neubauer, G., Superti-
Furga, G.: Functional organization of the yeast proteome by systematic analysis of
protein complexes. Nature 415(6868), 141–147 (2002)

15. Hakimi, S.L., Schmeichel, E.F., Young, N.E.: Orienting graphs to optimize reach-
ability. Information Processing Letters 63(5), 229–235 (1997)

16. H̊astad, J.: Some optimal inapproximability results. Journal of the ACM 48(4),
798–859 (2001)

17. Karp, R.M.: Reducibility among combinatorial problems. In: Complexity of Com-
puter Computations, pp. 85–103. Plenum Press, New York (1972)

428 M. Elberfeld et al.

18. Medvedovsky, A., Bafna, V., Zwick, U., Sharan, R.: An algorithm for orient-
ing graphs based on cause-effect pairs and its applications to orienting protein
networks. In: Crandall, K.A., Lagergren, J. (eds.) WABI 2008. LNCS (LNBI),
vol. 5251, pp. 222–232. Springer, Heidelberg (2008)

19. Newman, M.E.J.: The structure and function of complex networks. SIAM Re-
view 45(2), 167–256 (2003)

20. Robbins, H.E.: A theorem on graphs, with an application to a problem of traffic
control. The American Mathematical Monthly 46(5), 281–283 (1939)

21. Silverbush, D., Elberfeld, M., Sharan, R.: Optimally orienting physical networks.
In: Bafna, V., Sahinalp, S.C. (eds.) RECOMB 2011. LNCS, vol. 6577, pp. 424–436.
Springer, Heidelberg (2011)

22. Tarjan, R.E.: A note on finding the bridges of a graph. Information Processing
Letters 2(6), 160–161 (1974)

23. Yeang, C., Ideker, T., Jaakkola, T.: Physical network models. Journal of Compu-
tational Biology 11(2-3), 243–262 (2004)

	Approximation Algorithms for Orienting Mixed Graphs
	Introduction
	Preliminaries
	Logarithmic Approximations for Tree-Like Instances
	Orienting Mixed Trees
	Crossings through a Junction Component
	Orientations for Small Feedback Vertex Sets or Treewidth

	Sub-linear Approximations for General Instances
	The Algorithm
	Analysis
	An Improved Approximation for Bounded-Distance Pairs

	Conclusions
	References

