PRIMES IN ARITHMETIC PROGRESSIONS: VARYING MODULUS

1. Discussion on PNT in arithmetic progressions with varying MODULUS

The prime number theorem for arithmetic progressions gives for fixed q

$$
\begin{equation*}
\pi(x ; q, a) \sim \frac{x}{\phi(q) \log x} \tag{1}
\end{equation*}
$$

It is much more difficult and interesting to establish this asymptotic for q that grows in terms of x, and this is often crucial for applications. In this direction the Siegel-Walfisz theorem states that for $q \leq(\log x)^{A}$ (1) holds. The Generalized Riemann Hypothesis (GRH) for Dirichlet L-functions implies that this is true for $q \leq x^{1 / 2-o(1)}$.

A conjecture of Hugh Montgomery predicts that the asymptotic should hold in even a greater range $q \leq x^{1-o(1) 1}$, and work of Friedlander and Granville [1] shows that this is essentially best possible. This should be compared to the distribution of primes in short intervals and of the work of Maier [6], which we have previously discussed.

Although GRH is still open we can say quite a bit more about the remainder term

$$
E(x ; q, a):=\psi(x ; q, a)-\frac{x}{\phi(q)}
$$

with uniformity on q, on average. First note that this is only interesting when $q<x$ since for $q>x$ there are not many primes $\leq x$ in progressions modulo q. The Barban-Davenport-Halberstam-Montgomery-Hooley theorem see [8] and [4] states that

$$
\frac{1}{Q} \sum_{\substack{q \leq Q}} \sum_{\substack{a(\bmod q) \\ \operatorname{gcd}(a, q)=1}}|E(x ; q, a)|^{2} \sim x \log Q
$$

for $x /(\log x)^{A}<Q<x$ and on GRH for $x^{1 / 2+o(1)}<Q<x$. Assuming a conjecture on the second moment of the one level density of zeros of Dirichlet L-functions it follows that this holds for $x^{o(1)}<Q<x$.

[^0]Another result in this direction is the famous theorem of Bombieri and Vinogradov which asserts that for any $A \geq 1$ and $Q<x^{1 / 2} /(\log x)^{B}$, for $B=B(A)$,

$$
\frac{1}{Q} \sum_{q \leq Q} \max _{\substack{a \bmod q(a) \\ \operatorname{gcd}(a, q)=1}}|E(x ; q, a)| \ll \frac{x}{Q(\log x)^{A}}
$$

It may be the case that even moreis true and it has been conjectured by Elliot and Halberstam that for $Q<x^{1-o(1)}$

$$
\frac{1}{Q} \sum_{q \leq Q} \max _{q \leq \bmod q)}^{a(\bmod q(a, q)=1}|E(x ; q, a)| \ll \frac{x}{Q(\log x)^{A}}
$$

Friedlander and Granville [1] showed that this does not hold for $Q=x$.

2. The Brun Titchmarsh Inequality

In a different direction the Brun-Titchmarsh theorem gives an upper bound for the number of primes congruent to $a(\bmod q)$ with great uniformity in q.

Theorem 2.1 (Brun-Titchmarsh Inequality). Let a, q be integers with $\operatorname{gcd}(a, q)=$ 1 and suppose that $q=o(x)$. Then

$$
\pi(x ; q, a) \leq \frac{2 x}{\varphi(q) \log x / q}(1+o(1)) .
$$

Remark. Using the large sieve, Montgomery and Vaughan have shown that the $1+o(1)$ factor on the RHS of the above inequality can be removed.

We can rewrite the RHS as

$$
C \frac{x}{\varphi(q) \log x}
$$

with

$$
C=\frac{2}{1-\frac{\log q}{\log x}} .
$$

Improving the value of C is a problem that has been studied by several authors including Motohashi [10], Goldfeld [3], Iwaniec [5], Friedlander and Iwaniec [2], and Maynard [7]. Establishing a version of Brun-Titchmarsh with $C<2$ would have important consequences.

We first require the following lemma
Lemma 2.2. For any integer q

$$
\sum_{\substack{n \leq z \\ \operatorname{gcd}(n, q)=1}} \frac{\mu^{2}(n)}{\varphi(n)} \geq \frac{\varphi(q)}{q} \log z .
$$

Proof. The strategy is to compare

$$
\sum_{\substack{n \leq z \\ \operatorname{gcd}(n, q)=1}} \frac{\mu^{2}(d)}{\varphi(d)} \quad \text { to } \quad \sum_{n \leq z} \frac{\mu^{2}(d)}{\varphi(d)}
$$

the later sum is easily seen to be bounded below by $(\zeta(2))^{-1} \log z$ and with a bit more effort the $(\zeta(2))^{-1}$ factor can be removed. Observe that

$$
\begin{aligned}
\sum_{n \leq z} \frac{\mu^{2}(d)}{\varphi(d)} & =\sum_{\ell \mid q} \sum_{\substack{n \leq z \\
\operatorname{gcd}(n, q)=\ell}} \frac{\mu^{2}(d)}{\varphi(d)} \\
& =\sum_{\ell \mid q} \sum_{\substack{h \leq z / \ell \\
\operatorname{gcd}(h, q / \ell)=1, \operatorname{gcd}(h, \ell)=1}} \frac{\mu^{2}(h \ell)}{\varphi(h \ell)} \\
& =\sum_{\ell \mid q} \frac{\mu^{2}(\ell)}{\varphi(\ell)} \sum_{\substack{h \leq z / \ell \\
\operatorname{gcd}(h, \ell)=1}} \frac{\mu^{2}(h)}{\varphi(h)} \\
& \leq \sum_{\ell \mid q} \frac{\mu^{2}(\ell)}{\varphi(\ell)} \sum_{\substack{h \leq z \\
\operatorname{gcd}(h, \ell)=1}} \frac{\mu^{2}(h)}{\varphi(h)}
\end{aligned}
$$

To complete the proof note that

$$
\sum_{\ell \mid q} \frac{\mu^{2}(\ell)}{\varphi(\ell)}=\prod_{p \mid q}\left(1+\frac{1}{p-1}\right)=\prod_{p \mid q}\left(1-\frac{1}{p}\right)^{-1}=\frac{q}{\varphi(q)}
$$

Proof of Brun-Titchmarsh Inequality. We want to bound

$$
\pi(x ; q, a)=\#\{p \leq x: p \equiv a \quad(\bmod q)\}
$$

Let

$$
\mathcal{A}=\{n \leq x: n \equiv a(\bmod q)\}
$$

and $\mathcal{P}=\{p: \operatorname{gcd}(p, q)=1\}$. Our key observation is that if $p^{\prime} \in\{p \leq x$: $p \equiv a(\bmod q)\}$ then $p^{\prime} \in\{n \leq x: n \equiv a(\bmod q), \operatorname{gcd}(n, P(z))=1\}$ or $p^{\prime} \in\{p \leq z\}$ so that
(2) $\quad \pi(x ; q, a) \leq \#\{n \leq x: n \equiv a(\bmod q), \operatorname{gcd}(n, P(z))=1\}+z$.

Write $\mathcal{S}(\mathcal{A}, \mathcal{P}, z)$ for the first term on the RHS of the above inequality.
For each d such that if $p \mid d$ then $p \in \mathcal{P}$

$$
\mathcal{A}_{d}=\{n \in \mathcal{A}: d \mid n\}
$$

Observe that

$$
\begin{aligned}
\# \mathcal{A}_{d} & =\sum_{\substack{n \leq x \\
n \equiv a(\bmod q), d \mid n}} 1 \\
& =\sum_{\substack{\ell \leq x / d \\
d \ell \equiv a(\bmod q)}} 1
\end{aligned}
$$

Since if $p \mid d$ then $p \in \mathcal{P}$ we know $\operatorname{gcd}(d, q)=1$ so that d is invertible modulo q. Writing \bar{d} for the multiplicative inverse of d modulo $q($ i.e. $d \bar{d} \equiv 1(\bmod q))$ we have

$$
\sum_{\substack{\ell \leq x / d \\ d \ell \equiv a(\bmod q)}} 1=\sum_{\substack{\ell \leq x / d \\ \ell \equiv \bar{d} a(\bmod q)}} 1 .
$$

The condition $\ell \equiv \bar{d} a(\bmod q)$ implies we can write $\ell=q m+r$ with $r \equiv \bar{d} a$ $(\bmod q)$ and $|r|<q$. Thus,

$$
\sum_{\substack{\ell \leq x / d \\ \ell \equiv \bar{d} a(\bmod q)}} 1=\sum_{m: q m+r \leq x / d} 1=\frac{x}{q d}+O(1)
$$

Note that $X:=\# \mathcal{A}=\frac{x}{q}+O(1)$. Hence, we can write

$$
\# \mathcal{A}_{d}=\frac{X}{f(d)}+R_{d}
$$

with $f(d)=d, X=x / q+O(1)$ and $R_{d}=O(1)$. Therefore the Selberg sieve gives

$$
\mathcal{S}(\mathcal{A}, \mathcal{P}, z) \leq \frac{X}{S(z)}+R(z)
$$

where, by Lemma 2.2

$$
S(z)=\sum_{\substack{d \leq z \\ d \mid \stackrel{P}{ }(z)}} \frac{\mu^{2}(d)}{(\mu * f)(d)}=\sum_{\substack{d \leq z \\ \operatorname{gcd}(d, q)=1}} \frac{\mu^{2}(d)}{\varphi(d)} \geq \frac{\varphi(q)}{q} \log z
$$

and

$$
R(z)=\sum_{\substack{d_{1}, d_{2} \leq z \\ d_{1}, d_{2} \mid P(z)}}\left|R_{\left[d_{1}, d_{2}\right]}\right| \ll z^{2}
$$

Thus, by these estimates along with (2) we have

$$
\pi(x ; q, a) \leq \frac{x}{\varphi(q) \log z}+O\left(z^{2}\right)
$$

Taking $z=(x / q)^{1 / 2-o(1)}$ completes the proof.

References

1. John Friedlander and Andrew Granville, Limitations to the equi-distribution of primes. I, Ann. of Math. (2) 129 (1989), no. 2, 363-382. MR 986796 (90e:11125)
2. John Friedlander and Henryk Iwaniec, The Brun-Titchmarsh theorem, Analytic number theory (Kyoto, 1996), London Math. Soc. Lecture Note Ser., vol. 247, Cambridge Univ. Press, Cambridge, 1997, pp. 85-93. MR 1694986 (2001a:11158)
3. Dorian M. Goldfeld, A further improvement of the Brun-Titchmarsh theorem, J. London Math. Soc. (2) 11 (1975), no. 4, 434-444. MR 0382195 (52 \#3083)
4. C. Hooley, On the Barban-Davenport-Halberstam theorem. II, J. London Math. Soc. (2) 9 (1974/75), 625-636. MR 0382203 (52 \#3090b)
5. Henryk Iwaniec, On the Brun-Titchmarsh theorem, J. Math. Soc. Japan 34 (1982), no. 1, 95-123. MR 639808 (83a:10082)
6. Helmut Maier, Primes in short intervals, Michigan Math. J. 32 (1985), no. 2, 221-225. MR 783576 (86i:11049)
7. James Maynard, On the Brun-Titchmarsh theorem, Acta Arith. 157 (2013), no. 3, 249-296. MR 3019418
8. H. L. Montgomery, Primes in arithmetic progressions, Michigan Math. J. 17 (1970), 33-39. MR 0257005 ($41 \# 1660$)
9. Hugh L. Montgomery, Topics in multiplicative number theory, Lecture Notes in Mathematics, Vol. 227, Springer-Verlag, Berlin-New York, 1971. MR 0337847 (49 \#2616)
10. Yoichi Motohashi, On some improvements of the Brun-Titchmarsh theorem, J. Math. Soc. Japan 26 (1974), 306-323. MR 0337848 (49 \#2617)

[^0]: Date: June 2, 2015.
 ${ }^{1}$ Montgomery's conjecture states $\psi(x ; q, a)=x / \varphi(q)+O\left(x^{o(1)}(x / q)^{1 / 2}\right)$ (this version of the conjecture was first given by Friedlander and Granville [1]). In the original formulation (see $[9]$) of the conjecture the error term was stated as $(x / \varphi(q))^{1 / 2+o(1)} \log x$ and this was proven to be false.

