INTRODUCTORY LECTURES
COURSE NOTES, 2015

STEVE LESTER AND ZEEV RUDNICK

1. PARTIAL SUMMATION

Often we will evaluate sums of the form
Z anf(n) ap € C f:Z—C.
A<n<B

One method, which in practice is quite effective is due to Abel. We start by

taking
S(z) = Z an

1<n<z
and observing that
S(n)—S(n—1)=ay.
Using this we see that for integers B > A

Yo aufn)= Y f()(S(n)—S(n-1))

A<n<B A<n<B
=Y fm- D fln+1)S(n)
A<n<B A—1<n<B-1
=f(B)S(B) - f(A)S(A) = Y S)(f(n+1) = f(n).

A-1<n<B-1

For an integer n > 1 and n < & < n+ 1 one has S(z) = S(n). Soif f is
continuously differentiable we can use the fundamental theorem of calculus
to see that

o

Yo SM)(fnt1)— f(n)

A—1<n<B-1

n+1
S(n)/ f(z)dz

hS

3

o

n+1
= / S(x)f'(z) dx

n—=

|
b

B
= S(z)f'(x) d.
A
This implies the following formula for partial summation
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Theorem 1.1 (Partial summation). Suppose that f : R — C is continuously
differentiable. Then

B
> anf(n)=f(B)5(B)—f(A)5(A)—/4 S(a)f'(z) da.

A<n<B

Remark. There is some subtlety with endpoints here. Notice that slightly
altering the values of A and B may leave the left-hand side of the formula
unchanged. As a consistency check verify that the value of the right-hand
would also be unaltered.

Example. Evaluate

Z log n.

1<n<N

Take a, = 1, f(n) = logn, S(x) = |z|. Here and throughout [z] is the
floor function and equals the largest integer < x. The partial summation
formula gives

N X
> logn:LleogN—/l ijdx

1<n<N
=Nlog N — N + O(log N).

For a complex variable s the Riemann zeta-function ((s) is given by

1
()= (Re(s) > 1)
n
n=1
Riemann observed that the analytic properties of ((s) are closely related to
the distribution of the prime numbers and (amongst other things) showed

that ((s) has an analytic continuation to C\ {1}. We will prove

Theorem 1.2. The Riemann zeta-function admits an analytic continuation
to the half-plane Re(s) > 0 except for a simple pole at s = 1. Morever for
Re(s) > 0 one has

C(s):i—s Azl dx

s—1 1 s+l
where {z} =z — |z].

Proof. Let s be a complex variable. Using partial summation with S(z) =
|z] and f(x) = 1/2° we get that

1 N Nz
Z nSZI:]VsJ_‘_S/l stjld‘T'

1<n<N
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Take N — oo to get that for Re(s) > 1
= |z
¢(s) 23/1 o dx

5 = {z}
:8_1—3/1 xs+1d$‘
Note that the right-hand side is analytic in the half-plane Re(s) > 0 except

for a simple pole at s = 1. This provides the analytic continuation of {(s)
to Re(s) > 0. O

2. CHEBYSHEV’S THEOREM AND MERTEN’S FORMULAS
The prime number theorem states that

m(z) = Z 1 =Li(z)+ O (m exp(—@))

p<w
p prime

T T
logx +0 ((logx)2) '

For our purposes the weaker estimate of Chebyshev will often be sufficient.

Theorem 2.1 (Chebyshev’s Theorem). There exist constants ¢ < 1 < C
such that
T _ (z) < Cx '
log

log
Remark. Let

U(z) = An).

n<x

Using partial summation Chebyshev’s estimate is equivalent to
dz <y(x) < C'x.
We will prove Chebyshev’s Theorem in this form.

Proof. Recalling A x 1 = log we have

Zlognzz Z A(a) :Z Z A(a)

n<z n<a ab=n b<z a<x/b
=> v () =2 (3):
b<z b=1
Therefore
(1) i@b(i) =zlogx —x + O(log x).

b=1
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Apply (1) twice to get that
(2)

Z¢ <2IJ)V> —2Z¢ (];f) =2Nlog2N — 2N —2(Nlog N — N) 4+ O(log N)
b=1 b=1

=Nlog4 + O(log X).
Combining the even terms from the first sum with the second sum gives
> 2N N
(3) ;(ﬁ; (%_1> —¢(b>> = Nlog4+ O(log N).

The function ¢ (z) is non-decreasing so each term in the above sum is posi-
tive. Thus dropping all but the first term

(4) Y (2N) — 9 (N) < Nlog4 + O(log N).

Using this relation at N = 2/2,2/4,2/8,...,2/2* where A = |[logx/log 2]
and summing gives

 (0(2) -0 (55)) < togd 30 5+ Olttoga)?)
b=1 b=1

Therefore

(5) ¥ (z) < wlog 4+ O((log )?).

Next rewrite (3) to see

P(2N) - i (w (ZZ) — 1 (21;211)) = Nlog4 + O(log N).

b=1

Every term in the sum on the right hand side is positive so that applying
this at N = x/2
P(x) > zlog2 + O(log N).

From the proof it follows that by (3) and (5)
$(22) — (x) >rlogd — (22/3) + O(log )

> <; log 4) x4+ O(log z)

Therefore,
1
1
log 2x Z o8P
r<p<l2x r<p<l2x
> ((22) — (=) + O(VFlog )
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Corollary 2.2 (Bertrand’s postulate). For each real number x > 1 there is
a prime number in the interval [z, 2x].

Remark. Bertrand’s postulate has been significantly improved. For any
sufficiently large x it is known that there exists 8 < 1 such that there is a
prime number in every interval of the form [z, z+x%]. The best known result
in this direction gives 6 = 21/40 and it is congjectured that this should hold
for any 6 > 0.

Using the prime number theorem and partial summation it is straightfor-
ward to check that

S0 = | (1 o(1) = ogloga(1 -+ o(1).

p<w

However, in this instance Chebyshev’s theorem suffices to establish

Theorem 2.3 (Mertens’ formulas). We have

1
a) ZZ; =loglogz + O(1).

p<z
b) Zlogp =logz + O(1).
p<x
1 1
c) H (1 - > = .
e P log

Remarks. For f,g > 0 the notation f(z) =< g(x) means there exist con-
stants c1, co such that ci1g(x) < f(x) < cog(x) for all x under consideration.

From part ¢) it immediately follows that ¢(n) > n/loglogn, (n > 3). To
see this note that since the number of prime divisors of n is < C'logn (for
some C' > 1) we have

1 1 1
DN ) L6
" pln P/ p<Clogn P 0glogn

Additionally, it is possible to give more precise formulas than those given
above. In particular, it is known that

1
Z — =loglogz+ b+ O(1/logx)
p<z
where b is a certain absolute constant. Also,

H 1 -
<1 - > - : 7
P log

p<z

where v is Euler’s constant.

Proof. We first will establish b). The argument is similar to the one given to
prove Chebyshev’s theorem. Use the relation log = A * 1 and switch order
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of summation

%Zlogn :é Z Z A(a)

n<zx n<z ab=n

= AW Y

a<z b<z/a
YA (v),

Evaluate the left-hand side using partial summation and apply Chebyshev’s
theorem to get

A(a)

Z ——= =logx+ O(1).
a<zx a
Observe that Aa) | |
a ogp ogp
— + )
< p<x p"<z
n>2

The second sum is clearly O(1). This gives b).
Once again bounding the higher prime powers we see

z; -y nAlfj;)n +oq).

p<w

Now use partial summation with a, = A(n)/n, and f(z) =1/(logz) to get

Z An) ! (logz +O(1)) + /93 {logt + O(1) dt
2

- 2
=n logn logx t(logt)

=loglogz + O(1).
To establish part ¢) we note that

I1(1-) =ew (2w (5)

p<zx p<z

1
=exp —E -+ 0(1)
pS:cp

1
=exp (—loglogz + O(1)) < gz’



