INTRODUCTORY LECTURES
 COURSE NOTES, 2015

STEVE LESTER AND ZEÉV RUDNICK

1. Partial summation

Often we will evaluate sums of the form

$$
\sum_{A<n \leq B} a_{n} f(n) \quad a_{n} \in \mathbb{C} \quad f: \mathbb{Z} \rightarrow \mathbb{C}
$$

One method, which in practice is quite effective is due to Abel. We start by taking

$$
S(x)=\sum_{1 \leq n \leq x} a_{n}
$$

and observing that

$$
S(n)-S(n-1)=a_{n}
$$

Using this we see that for integers $B>A$

$$
\begin{aligned}
\sum_{A<n \leq B} a_{n} f(n) & =\sum_{A<n \leq B} f(n)(S(n)-S(n-1)) \\
& =\sum_{A<n \leq B} f(n)-\sum_{A-1<n \leq B-1} f(n+1) S(n) \\
& =f(B) S(B)-f(A) S(A)-\sum_{A-1<n \leq B-1} S(n)(f(n+1)-f(n)) .
\end{aligned}
$$

For an integer $n \geq 1$ and $n \leq x<n+1$ one has $S(x)=S(n)$. So if f is continuously differentiable we can use the fundamental theorem of calculus to see that

$$
\begin{aligned}
\sum_{A-1<n \leq B-1} S(n)(f(n+1)-f(n)) & =\sum_{n=A}^{B-1} S(n) \int_{n}^{n+1} f^{\prime}(x) d x \\
& =\sum_{n=A}^{B-1} \int_{n}^{n+1} S(x) f^{\prime}(x) d x \\
& =\int_{A}^{B} S(x) f^{\prime}(x) d x
\end{aligned}
$$

This implies the following formula for partial summation
Date: March 28, 2015.

Theorem 1.1 (Partial summation). Suppose that $f: \mathbb{R} \rightarrow \mathbb{C}$ is continuously differentiable. Then

$$
\sum_{A<n \leq B} a_{n} f(n)=f(B) S(B)-f(A) S(A)-\int_{A}^{B} S(x) f^{\prime}(x) d x
$$

Remark. There is some subtlety with endpoints here. Notice that slightly altering the values of A and B may leave the left-hand side of the formula unchanged. As a consistency check verify that the value of the right-hand would also be unaltered.

Example. Evaluate

$$
\sum_{1 \leq n \leq N} \log n
$$

Take $a_{n}=1, f(n)=\log n, S(x)=\lfloor x\rfloor$. Here and throughout $\lfloor x\rfloor$ is the floor function and equals the largest integer $\leq x$. The partial summation formula gives

$$
\begin{aligned}
\sum_{1 \leq n \leq N} \log n & =\lfloor N\rfloor \log N-\int_{1}^{N} \frac{\lfloor x\rfloor}{x} d x \\
& =N \log N-N+O(\log N)
\end{aligned}
$$

For a complex variable s the Riemann zeta-function $\zeta(s)$ is given by

$$
\zeta(s)=\sum_{n=1}^{\infty} \frac{1}{n^{s}} \quad(\operatorname{Re}(s)>1)
$$

Riemann observed that the analytic properties of $\zeta(s)$ are closely related to the distribution of the prime numbers and (amongst other things) showed that $\zeta(s)$ has an analytic continuation to $\mathbb{C} \backslash\{1\}$. We will prove

Theorem 1.2. The Riemann zeta-function admits an analytic continuation to the half-plane $\operatorname{Re}(s)>0$ except for a simple pole at $s=1$. Morever for $\operatorname{Re}(s)>0$ one has

$$
\zeta(s)=\frac{s}{s-1}-s \int_{1}^{\infty} \frac{\{x\}}{x^{s+1}} d x
$$

where $\{x\}=x-\lfloor x\rfloor$.
Proof. Let s be a complex variable. Using partial summation with $S(x)=$ $\lfloor x\rfloor$ and $f(x)=1 / x^{s}$ we get that

$$
\sum_{1 \leq n \leq N} \frac{1}{n^{s}}=\frac{\lfloor N\rfloor}{N^{s}}+s \int_{1}^{N} \frac{\lfloor x\rfloor}{x^{s+1}} d x
$$

Take $N \rightarrow \infty$ to get that for $\operatorname{Re}(s)>1$

$$
\begin{aligned}
\zeta(s) & =s \int_{1}^{\infty} \frac{\lfloor x\rfloor}{x^{s+1}} d x \\
& =\frac{s}{s-1}-s \int_{1}^{\infty} \frac{\{x\}}{x^{s+1}} d x
\end{aligned}
$$

Note that the right-hand side is analytic in the half-plane $\operatorname{Re}(s)>0$ except for a simple pole at $s=1$. This provides the analytic continuation of $\zeta(s)$ to $\operatorname{Re}(s)>0$.

2. Chebyshev's theorem and Merten's formulas

The prime number theorem states that

$$
\begin{aligned}
\pi(x) & =\sum_{\substack{p \leq x \\
p \text { prime }}} 1=\operatorname{Li}(x)+O(x \exp (-\sqrt{\log x})) \\
& =\frac{x}{\log x}+O\left(\frac{x}{(\log x)^{2}}\right)
\end{aligned}
$$

For our purposes the weaker estimate of Chebyshev will often be sufficient.
Theorem 2.1 (Chebyshev's Theorem). There exist constants $c<1<C$ such that

$$
\frac{c x}{\log x} \leq \pi(x) \leq \frac{C x}{\log x}
$$

Remark. Let

$$
\psi(x)=\sum_{n \leq x} \Lambda(n)
$$

Using partial summation Chebyshev's estimate is equivalent to

$$
c^{\prime} x \leq \psi(x) \leq C^{\prime} x
$$

We will prove Chebyshev's Theorem in this form.
Proof. Recalling $\Lambda * \mathbf{1}=\log$ we have

$$
\begin{aligned}
\sum_{n \leq x} \log n & =\sum_{n \leq x} \sum_{a b=n} \Lambda(a)=\sum_{b \leq x} \sum_{a \leq x / b} \Lambda(a) \\
& =\sum_{b \leq x} \psi\left(\frac{x}{b}\right)=\sum_{b=1}^{\infty} \psi\left(\frac{x}{b}\right) .
\end{aligned}
$$

Therefore

$$
\begin{equation*}
\sum_{b=1}^{\infty} \psi\left(\frac{x}{b}\right)=x \log x-x+O(\log x) \tag{1}
\end{equation*}
$$

Apply (1) twice to get that
(2)
$\begin{aligned} \sum_{b=1}^{\infty} \psi\left(\frac{2 N}{b}\right)-2 \sum_{b=1}^{\infty} \psi\left(\frac{N}{b}\right) & =2 N \log 2 N-2 N-2(N \log N-N)+O(\log N) \\ & =N \log 4+O(\log X) .\end{aligned}$
Combining the even terms from the first sum with the second sum gives

$$
\begin{equation*}
\sum_{b=1}^{\infty}\left(\psi\left(\frac{2 N}{2 b-1}\right)-\psi\left(\frac{N}{b}\right)\right)=N \log 4+O(\log N) \tag{3}
\end{equation*}
$$

The function $\psi(x)$ is non-decreasing so each term in the above sum is positive. Thus dropping all but the first term

$$
\begin{equation*}
\psi(2 N)-\psi(N) \leq N \log 4+O(\log N) \tag{4}
\end{equation*}
$$

Using this relation at $N=x / 2, x / 4, x / 8, \ldots, x / 2^{A}$ where $A=\lfloor\log x / \log 2\rfloor$ and summing gives

$$
\sum_{b=1}^{A}\left(\psi\left(\frac{x}{2^{b}}\right)-\psi\left(\frac{x}{2^{b-1}}\right)\right) \leq x \log 4 \sum_{b=1}^{\infty} \frac{1}{2^{b}}+O\left((\log x)^{2}\right)
$$

Therefore

$$
\begin{equation*}
\psi(x) \leq x \log 4+O\left((\log x)^{2}\right) \tag{5}
\end{equation*}
$$

Next rewrite (3) to see

$$
\psi(2 N)-\sum_{b=1}^{\infty}\left(\psi\left(\frac{N}{b}\right)-\psi\left(\frac{2 N}{2 b+1}\right)\right)=N \log 4+O(\log N)
$$

Every term in the sum on the right hand side is positive so that applying this at $N=x / 2$

$$
\psi(x) \geq x \log 2+O(\log N)
$$

From the proof it follows that by (3) and (5)

$$
\begin{aligned}
\psi(2 x)-\psi(x) & \geq x \log 4-\psi(2 x / 3)+O(\log x) \\
& \geq\left(\frac{1}{3} \log 4\right) x+O(\log x)
\end{aligned}
$$

Therefore,

$$
\begin{aligned}
\sum_{x<p \leq 2 x} 1 & \geq \frac{1}{\log 2 x} \sum_{x<p \leq 2 x} \log p \\
& \geq \frac{1}{\log 2 x}(\psi(2 x)-\psi(x)+O(\sqrt{x} \log x) \\
& \geq\left(\frac{1}{3} \log 4\right) \frac{x}{\log x}(1+o(1))
\end{aligned}
$$

Corollary 2.2 (Bertrand's postulate). For each real number $x \geq 1$ there is a prime number in the interval $[x, 2 x]$.

Remark. Bertrand's postulate has been significantly improved. For any sufficiently large x it is known that there exists $\theta<1$ such that there is a prime number in every interval of the form $\left[x, x+x^{\theta}\right]$. The best known result in this direction gives $\theta=21 / 40$ and it is conjectured that this should hold for any $\theta>0$.

Using the prime number theorem and partial summation it is straightforward to check that

$$
\sum_{p \leq x} \frac{1}{p}=\int_{2}^{x} \frac{d t}{t \log t}(1+o(1))=\log \log x(1+o(1))
$$

However, in this instance Chebyshev's theorem suffices to establish
Theorem 2.3 (Mertens' formulas). We have
a) $\sum_{p \leq x} \frac{1}{p}=\log \log x+O(1)$.
b) $\sum_{p \leq x} \log p=\log x+O(1)$.
c) $\prod_{p \leq x}\left(1-\frac{1}{p}\right) \asymp \frac{1}{\log x}$.

Remarks. For $f, g>0$ the notation $f(x) \asymp g(x)$ means there exist constants c_{1}, c_{2} such that $c_{1} g(x) \leq f(x) \leq c_{2} g(x)$ for all x under consideration.

From part c) it immediately follows that $\phi(n) \gg n / \log \log n,(n \geq 3)$. To see this note that since the number of prime divisors of n is $\leq C \log n$ (for some $C>1$) we have

$$
\frac{\phi(n)}{n}=\prod_{p \mid n}\left(1-\frac{1}{p}\right) \geq \prod_{p \leq C \log n}\left(1-\frac{1}{p}\right) \gg \frac{1}{\log \log n}
$$

Additionally, it is possible to give more precise formulas than those given above. In particular, it is known that

$$
\sum_{p \leq x} \frac{1}{p}=\log \log x+b+O(1 / \log x)
$$

where b is a certain absolute constant. Also,

$$
\prod_{p \leq x}\left(1-\frac{1}{p}\right) \sim \frac{e^{-\gamma}}{\log x}
$$

where γ is Euler's constant.
Proof. We first will establish b). The argument is similar to the one given to prove Chebyshev's theorem. Use the relation $\log =\Lambda * 1$ and switch order
of summation

$$
\begin{aligned}
\frac{1}{x} \sum_{n \leq x} \log n & =\frac{1}{x} \sum_{n \leq x} \sum_{a b=n} \Lambda(a) \\
& =\frac{1}{x} \sum_{a \leq x} \Lambda(a) \sum_{b \leq x / a} 1 \\
& =\sum_{a \leq x} \frac{\Lambda(a)}{a}+O\left(\frac{\psi(x)}{x}\right)
\end{aligned}
$$

Evaluate the left-hand side using partial summation and apply Chebyshev's theorem to get

$$
\sum_{a \leq x} \frac{\Lambda(a)}{a}=\log x+O(1)
$$

Observe that

$$
\sum_{a \leq x} \frac{\Lambda(a)}{a}=\sum_{p \leq x} \frac{\log p}{p}+\sum_{\substack{p^{n} \leq x \\ n \geq 2}} \frac{\log p}{p}
$$

The second sum is clearly $O(1)$. This gives b).
Once again bounding the higher prime powers we see

$$
\sum_{p \leq x} \frac{1}{p}=\sum_{n \leq x} \frac{\Lambda(n)}{n \log n}+O(1)
$$

Now use partial summation with $a_{n}=\Lambda(n) / n$, and $f(x)=1 /(\log x)$ to get

$$
\begin{aligned}
\sum_{n \leq x} \frac{\Lambda(n)}{n \log n} & =\frac{1}{\log x}(\log x+O(1))+\int_{2}^{x} \frac{(\log t+O(1))}{t(\log t)^{2}} d t \\
& =\log \log x+O(1)
\end{aligned}
$$

To establish part c) we note that

$$
\begin{aligned}
\prod_{p \leq x}\left(1-\frac{1}{p}\right) & =\exp \left(\sum_{p \leq x} \log \left(1-\frac{1}{p}\right)\right) \\
& =\exp \left(-\sum_{p \leq x} \frac{1}{p}+O(1)\right) \\
& =\exp (-\log \log x+O(1)) \asymp \frac{1}{\log x}
\end{aligned}
$$

