THE ARITHMETIC LARGE SIEVE WITH AN APPLICATION TO THE LEAST QUADRATIC NON-RESIDUE

1. The least quadratic non-RESIDue

Given a large prime p how large can the least quadratic non-residue be? Let

$$
n_{p}=\min \left\{1 \leq m \leq(p+1) / 2:\left(\frac{m}{p}\right)=-1\right\} .
$$

Vinogradov conjectured that

$$
n_{p} \ll p^{\varepsilon} .
$$

From the Polya-Vinogradov inequality it follows that $n_{p} \ll p^{1 / 2+o(1)}$ and this estimate was subsequently improved by Vinogradov who showed $n_{p} \ll$ $p^{\frac{1}{2 \sqrt{e}}+o(1)}$. In the 1960's Burgess gave the estimate

$$
n_{p} \ll p^{\frac{1}{\sqrt{e} e}+o(1)},
$$

which up to the $p^{o}(1)$ factor is the best known result today. Conjecturally, Ankeny showed that GRH gives an even better estimate than Vinogradov conjectured, showing GRH implies

$$
n_{p} \ll(\log p)^{2} .
$$

We will prove a result of Linnik which shows that Vinogradov's conjecture holds for all but very few primes.

Theorem 1.1 (Linnik). Let $\varepsilon>0$. Then the number of primes $p \leq N$ such that $n_{p}>N^{\varepsilon}$ is $<_{\varepsilon} 1$ as $N \rightarrow \infty$.

2. The arithmetic large sieve

We begin by describing a sieving problem. Suppose we are given the following

- \mathcal{A} a set of integers with $\# \mathcal{A}=X$.
- \mathcal{P} a subset of primes $\leq z$
- for each $p \in \mathcal{P}$ a set $\Omega_{p} \subset\{h(\bmod p)\}$ of "excluded" residue classes with $\omega(p):=\# \Omega_{p}$
The problem is to estimate

$$
\mathcal{S}(\mathcal{A}, \mathcal{P}, \Omega)=\#\left\{a \in \mathcal{A}: a \notin \Omega_{p} \text { for each } p \in \mathcal{P}\right\}
$$

For square-free $n=p_{1} \cdots p_{r}$ define $\omega(n)=\omega\left(p_{1}\right) \cdots \omega\left(p_{r}\right)$.

Theorem 2.1 (The arithmetic large sieve). In the above notation

$$
\mathcal{S}(\mathcal{A}, \mathcal{P}, \Omega) \leq \frac{X+z^{2}}{S(z)}
$$

where

$$
S(z)=\sum_{\substack{n \leq z \\ n-\text { square-free }}} \frac{\omega(n)}{n \prod_{p \mid n}\left(1-\frac{\omega(p)}{p}\right)}
$$

Remark. If $\omega(p)$ is typically large, say, $>c p$ then the sieve bound is typically effective. That is, the sieve works well if one excludes a "large" number of residue classes $(\bmod p)$. This is the reason for the name "the large sieve".

A trivial lower bound for $S(z)$, which we will use later, is

$$
S(z) \geq \sum_{p \leq z} \frac{\omega(p)}{p}
$$

Definition. An integer n is called Y-smooth if $p \mid n \Rightarrow p \leq Y$.

Before proving Theorem 1.1 we first require the following auxilliary lemma for a lower bound on the number of N^{ε}-smooth numbers $\leq N$.

Lemma 2.2. Let $\varepsilon>0$. Then

$$
\sum_{\substack{n \leq N \\ p \mid n \Rightarrow p<N^{\varepsilon}}} 1>_{\varepsilon} N
$$

Proof. We claim that the set of N^{ε}-smooth numbers $\leq N$ contains the set

$$
B:=\left\{m \leq N: m=n p_{1} \cdots p_{k} \text { where } N^{\varepsilon-\varepsilon^{2}} \leq p_{j} \leq N^{\varepsilon} \text { for } j=1, \ldots, k\right\}
$$

where $k=1 / \varepsilon$ (it suffices to prove the lemma for $\varepsilon^{-1} \in \mathbb{Z}$). To see this note that for $m \in B, m=n p_{1} \cdots p_{k}$ with $N^{\varepsilon-\varepsilon^{2}}<p_{j} \leq N^{\varepsilon}$. We need to show that n is N^{ε}-smooth. This is clear since

$$
n \leq \frac{N}{p_{1} \cdots p_{k}} \leq \frac{N}{N^{k\left(\varepsilon-\varepsilon^{2}\right)}}=N^{\varepsilon}
$$

Thus, to finish the proof we use Mertens' theorem to get

$$
\begin{aligned}
\# B & =\sum_{\substack{n p_{1} \cdots p_{k} \leq N \\
N^{\varepsilon}-\varepsilon^{2} \leq p_{1}, \ldots, p_{k} \leq N^{\varepsilon}}} 1 \\
& =\sum_{N^{\varepsilon-\varepsilon^{2}} \leq p_{1}, \ldots, p_{k} \leq N^{\varepsilon}}\left|\frac{N}{p_{1} \cdots p_{k}}\right| \\
& \gg \sum_{N^{\varepsilon-\varepsilon^{2}} \leq p_{1}, \ldots, p_{k} \leq N^{\varepsilon}} \frac{1}{p_{1} \cdots p_{k}} \\
& =N\left(\sum_{N^{\varepsilon-\varepsilon^{2} \leq p \leq N^{\varepsilon}}} \frac{1}{p}\right)^{k} \\
& =N\left(\log \frac{\log \left(N^{\varepsilon}\right)}{\log \left(N^{\left.\varepsilon-\varepsilon^{2}\right)}\right.}+O(1 /(\varepsilon \log N))\right)^{k} \gg_{\varepsilon} N
\end{aligned}
$$

Proof of Theorem 1.1. Let

$$
\mathcal{A}=\{1, \ldots, N\}, \quad \mathcal{P}=\left\{p \leq N^{1 / 2}:\left(\frac{n}{p}\right)=1 \text { for all } n \leq N^{\varepsilon}\right\}
$$

and

$$
\Omega_{p}=\left\{h \quad(\bmod p):\left(\frac{h}{p}\right)=-1\right\}
$$

so $\omega(p)=\# \Omega_{p}=(p-1) / 2, p>2$. The large sieve gives that

$$
\mathcal{S}(\mathcal{A}, \mathcal{P}, \Omega) \leq \frac{2 N}{S(z)}
$$

where

$$
\mathcal{S}(\mathcal{A}, \mathcal{P}, \Omega)=\#\left\{n \leq N: n \notin \Omega_{p} \text { for all } p \in \mathcal{P}\right\}
$$

and

$$
S(z) \geq \sum_{p \leq z} \frac{\omega(p)}{p}=\frac{1}{2} \sum_{p \in \mathcal{P}}\left(1-\frac{1}{p}\right)
$$

We now proceed in a slightly unusual way. We will derive a lower bound for $\mathcal{S}(\mathcal{A}, \mathcal{P}, \Omega)$ and then use this and the sieve estimate above to get an upper bound for

$$
\sum_{p \in \mathcal{P}}\left(1-\frac{1}{p}\right)
$$

This will imply that the cardinality of the set \mathcal{P} is small, which means there are very few primes $\leq N$ for which $n_{p}>N^{\varepsilon}$.

To obtain a lower bound on $\mathcal{S}(\mathcal{A}, \mathcal{P}, \Omega)$ we claim that the set

$$
\left\{n \leq N: n \notin \Omega_{p} \text { for all } p \in \mathcal{P}\right\}
$$

contains the set of $n \leq N$ such that n is N^{ε}-smooth. To see this note that if n is N^{ε}-smooth and $n=p_{1} \cdots p_{r}$ (not necessarily distinct) it follows by the definition of \mathcal{P} that for $p \in \mathcal{P}$

$$
\left(\frac{n}{p}\right)=\left(\frac{p_{1}}{p}\right) \cdots\left(\frac{p_{r}}{p}\right) \neq-1
$$

i.e. $n \notin \Omega_{p}$ for all $p \in \mathcal{P}$. Thus, by Lemma 2.2

$$
\mathcal{S}(\mathcal{A}, \mathcal{P}, \Omega)>_{\varepsilon} N
$$

so that

$$
\#\left\{p \leq N^{1 / 2}: n_{p}>N^{\varepsilon}\right\}=\sum_{p \in \mathcal{P}} 1 \ll \frac{N}{S(z)} \ll \varepsilon 1
$$

3. Proof of the arithmetic large sieve

The arithmetic large sieve is a consequence of the analytic large sieve which we will discuss in the following lecture. Let

$$
L(\alpha)=\sum_{n \in \mathcal{S}} e(\alpha n)
$$

where $e(x)=e^{2 \pi i x}$ and $\mathcal{S} \subset[M+1, M+N]$. (For us $\# \mathcal{S}=L(0)=$ $\mathcal{S}(\mathcal{A}, \mathcal{P}, \Omega)$ so \mathcal{S} is the remaining set after the sifting has been carried out.)

Let a_{n} be complex numbers and let

$$
\mathcal{L}(\alpha)=\sum_{M<n \leq M+N} a_{n} e(\alpha n)
$$

Theorem 3.1 (The analytic large sieve). In the above notation

$$
\sum_{q \leq Q} \sum_{a(\bmod q)}^{*}\left|\mathcal{L}\left(\frac{a}{q}\right)\right|^{2} \leq\left(Q^{2}+N-1\right) \sum_{M<n \leq N+M}\left|a_{n}\right|^{2}
$$

We now require a few additional lemmas.
Lemma 3.2. For complex numbers a_{n} supported on \mathcal{S} we have

$$
\sum_{h(\bmod p)}\left|\sum_{\substack{n \in \mathcal{S} \\ n \equiv h(\bmod p)}} a_{n}\right|^{2}=\frac{1}{p} \sum_{a(\bmod p)}\left|\mathcal{L}\left(\frac{a}{p}\right)\right|^{2}
$$

Proof. Let

$$
Z(p, h)=\sum_{\substack{n \in \mathcal{S} \\ n \equiv h(\bmod p)}} a_{n} .
$$

Observe that

$$
\mathcal{L}\left(\frac{a}{p}\right)=\sum_{n \in \mathcal{S}} a_{n} e(a n / p)=\sum_{h(\bmod p)} e(a h / p) Z(p, h)
$$

Thus,

$$
\begin{aligned}
\sum_{a(\bmod p)}\left|\mathcal{L}\left(\frac{a}{p}\right)\right|^{2} & =\sum_{a(\bmod p)}\left|\sum_{h(\bmod p)} e(a h / p) Z(p, h)\right|^{2} \\
& =\sum_{h(\bmod p)} \sum_{k(\bmod p)} Z(p, h) \overline{Z(p, k)} \sum_{a(\bmod p)} e\left(\frac{a(h-k)}{p}\right) .
\end{aligned}
$$

One has that

$$
\sum_{a(\bmod p)} e\left(\frac{a(h-k)}{p}\right)=\left\{\begin{array}{l}
p \text { if } h \equiv k(\bmod p) \\
0 \text { otherwise }
\end{array}\right.
$$

So that

$$
\sum_{a(\bmod p)}\left|\mathcal{L}\left(\frac{a}{p}\right)\right|^{2}=p \sum_{h(\bmod p)}|Z(p, h)|^{2}
$$

as claimed.

Lemma 3.3. For complex numbers a_{n} supported on \mathcal{S} we have

$$
|\mathcal{L}(0)|^{2} \frac{\omega(p)}{p-\omega(p)} \leq \sum_{h(\bmod p)}^{*}|\mathcal{L}(a / p)|^{2}
$$

Proof. Let

$$
Z(p, h)=\sum_{\substack{n \in \mathcal{S} \\ n \equiv h(\bmod p)}} a_{n} .
$$

Applying Cauchy-Schwarz and Lemma 3.2 gives

$$
\begin{aligned}
|\mathcal{L}(0)|^{2} & =\left|\sum_{h(\bmod p)} Z(p, h)\right|^{2} \\
& \leq\left(\sum_{\substack{h(\bmod p) \\
Z(p, h) \neq 0}} 1\right)\left(\sum_{h(\bmod p)}|Z(p, h)|^{2}\right) \\
& =\left(\sum_{\substack{h(\bmod p) \\
Z(p, h) \neq 0}} 1\right) \frac{1}{p} \sum_{a(\bmod p)}\left|\mathcal{L}\left(\frac{a}{p}\right)\right|^{2} .
\end{aligned}
$$

Note that $Z(p, h)=0$ if $h \in \Omega_{p}$ so that

$$
\sum_{\substack{h(\bmod p) \\ Z(p, h) \neq 0}} 1 \leq p-\omega(p)
$$

Also note

$$
\sum_{a(\bmod p)}\left|\mathcal{L}\left(\frac{a}{p}\right)\right|^{2}=\sum_{a(\bmod p)}^{*}\left|\mathcal{L}\left(\frac{a}{p}\right)\right|^{2}+|\mathcal{L}(0)|^{2} .
$$

Combining estimates gives

$$
|\mathcal{L}(0)|^{2} \frac{\omega(p)}{p-\omega(p)} \leq \sum_{a(\bmod p)}^{*}\left|\mathcal{L}\left(\frac{a}{p}\right)\right|^{2}
$$

Proof of Theorem 2.1. Let $\mathcal{A} \subset[M+1, N+M]$ and

$$
\mathcal{S}=\left\{n \in \mathcal{A}: n \notin \Omega_{p} \text { for all } p \in \mathcal{P}\right\},
$$

also let

$$
L(\alpha)=\sum_{n \in \mathcal{S}} e(\alpha n),
$$

so that

$$
L(0)=\mathcal{S}(\mathcal{A}, \mathcal{P}, \Omega)
$$

By Lemma 3.3

$$
L(0)^{2} \frac{\omega(p)}{p-\omega(p)} \leq \sum_{a(\bmod p)}^{*}\left|L\left(\frac{a}{p}\right)\right|^{2}
$$

Our goal is to establish a similar bound for square-free q. First consider the case $q=p_{1} p_{2}$ and observe

$$
\sum_{a(\bmod q)}^{*}\left|L\left(\frac{a}{q}\right)\right|^{2}=\sum_{a_{1}\left(\bmod p_{1}\right)}^{*} \sum_{a_{2}\left(\bmod p_{2}\right)}^{*}\left|L\left(\frac{a_{1}}{p_{1}}+\frac{a_{2}}{p_{2}}\right)\right|^{2}
$$

To see this write $a=a_{1} p_{2} \overline{p_{2}}+a_{2} p_{1} \overline{p_{1}}$, where $\overline{p_{1}}$ and $\overline{p_{2}}$ denote the multiplicative inverses of p_{1} modulo p_{2} and p_{2} modulo p_{1} (resp.). By construction $a \equiv a_{1}\left(\bmod p_{1}\right)$ and $a \equiv a_{2}\left(\bmod p_{2}\right)$. The CRT implies that a runs over all residue classes $\left(\bmod p_{1} p_{2}\right)$ as a_{1}, and a_{2} run over the residue classes $\left(\bmod p_{2}\right)$ and $\left(\bmod p_{2}\right)($ resp.). At this point it is not hard to deduce the above identity.

Now take $a_{n}=e\left(n a_{1} / q_{1}\right)$ for $n \in S$ and $a_{n}=0$ otherwise so that by Lemma 3.3

$$
\begin{aligned}
\sum_{a_{2}\left(\bmod p_{2}\right)}^{*}\left|L\left(\frac{a_{1}}{p_{1}}+\frac{a_{2}}{p_{2}}\right)\right|^{2} & =\sum_{a_{2}\left(\bmod p_{2}\right)}^{*}\left|\sum_{M<n \leq N+M} a_{n} e\left(n a_{2} / q_{2}\right)\right|^{2} \\
& \geq \frac{\omega\left(p_{2}\right)}{p_{2}-\omega\left(p_{2}\right)}\left|L\left(a_{1} / q_{1}\right)\right|^{2} .
\end{aligned}
$$

Also by Lemma 3.3

$$
\sum_{a_{1}\left(\bmod p_{1}\right)}^{*}\left|L\left(a_{1} / q_{1}\right)\right|^{2} \geq \frac{\omega\left(p_{1}\right)}{p_{1}-\omega\left(p_{1}\right)}|L(0)|^{2}
$$

Thus, for $q=p_{1} p_{2}$ we have

$$
\sum_{a(\bmod q)}^{*}\left|L\left(\frac{a}{q}\right)\right|^{2} \geq \frac{\omega(q)}{q \prod_{p \mid q}\left(1-\frac{\omega(p)}{p}\right)}|L(0)|^{2}
$$

By induction on the number of prime factors of q this holds for all square free q as well.

Summing over all square-free $q \leq z$ and applying the analytic large sieve, Theorem 3.1 we get that

$$
\begin{aligned}
|L(0)|^{2} \sum_{\substack{q \leq z \\
q-\text { square-free }}} \frac{\omega(q)}{q \prod_{p \mid q}\left(1-\frac{\omega(p)}{p}\right)} & \leq \sum_{q \leq z a} \sum_{a(\bmod q)}^{*}\left|L\left(\frac{a}{q}\right)\right|^{2} \\
& \leq|L(0)|\left(N+z^{2}\right)
\end{aligned}
$$

So that

$$
\mathcal{S}(\mathcal{A}, \mathcal{P}, \Omega)=L(0) \leq \frac{N+z^{2}}{S(z)}
$$

