
THE ARITHMETIC LARGE SIEVE WITH AN

APPLICATION TO THE LEAST QUADRATIC

NON-RESIDUE

1. The least quadratic non-residue

Given a large prime p how large can the least quadratic non-residue be?
Let

np = min

{
1 ≤ m ≤ (p+ 1)/2 :

(
m

p

)
= −1

}
.

Vinogradov conjectured that

np � pε.

From the Polya-Vinogradov inequality it follows that np � p1/2+o(1) and
this estimate was subsequently improved by Vinogradov who showed np �
p

1
2
√
e
+o(1)

. In the 1960’s Burgess gave the estimate

np � p
1

4
√
e
+o(1)

,

which up to the po(1) factor is the best known result today. Conjecturally,
Ankeny showed that GRH gives an even better estimate than Vinogradov
conjectured, showing GRH implies

np � (log p)2.

We will prove a result of Linnik which shows that Vinogradov’s conjecture
holds for all but very few primes.

Theorem 1.1 (Linnik). Let ε > 0. Then the number of primes p ≤ N such
that np > N ε is �ε 1 as N →∞.

2. The arithmetic large sieve

We begin by describing a sieving problem. Suppose we are given the
following

• A a set of integers with #A = X.
• P a subset of primes ≤ z
• for each p ∈ P a set Ωp ⊂ {h (mod p)} of “excluded” residue classes

with ω(p) := #Ωp

The problem is to estimate

S(A,P,Ω) = #{a ∈ A : a /∈ Ωp for each p ∈ P}
For square-free n = p1 · · · pr define ω(n) = ω(p1) · · ·ω(pr).
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2 THE ARITHMETIC LARGE SIEVE WITH AN APPLICATION

Theorem 2.1 (The arithmetic large sieve). In the above notation

S(A,P,Ω) ≤ X + z2

S(z)

where

S(z) =
∑
n≤z

n−square-free

ω(n)

n
∏
p|n(1− ω(p)

p )

Remark. If ω(p) is typically large, say, > cp then the sieve bound is typi-
cally effective. That is, the sieve works well if one excludes a “large” num-
ber of residue classes (mod p). This is the reason for the name “the large
sieve”.

A trivial lower bound for S(z), which we will use later, is

S(z) ≥
∑
p≤z

ω(p)

p
.

Definition. An integer n is called Y -smooth if p|n⇒ p ≤ Y .

Before proving Theorem 1.1 we first require the following auxilliary lemma
for a lower bound on the number of N ε-smooth numbers ≤ N .

Lemma 2.2. Let ε > 0. Then

∑
n≤N

p|n⇒p<Nε

1�ε N.

Proof. We claim that the set of N ε-smooth numbers ≤ N contains the set

B := {m ≤ N : m = np1 · · · pk where N ε−ε2 ≤ pj ≤ N ε for j = 1, . . . , k}

where k = 1/ε (it suffices to prove the lemma for ε−1 ∈ Z). To see this note

that for m ∈ B, m = np1 · · · pk with N ε−ε2 < pj ≤ N ε. We need to show
that n is N ε-smooth. This is clear since

n ≤ N

p1 · · · pk
≤ N

Nk(ε−ε2) = N ε.



THE ARITHMETIC LARGE SIEVE WITH AN APPLICATION 3

Thus, to finish the proof we use Mertens’ theorem to get

#B =
∑

np1···pk≤N
Nε−ε2≤p1,...,pk≤Nε

1

=
∑

Nε−ε2≤p1,...,pk≤Nε

⌊
N

p1 · · · pk

⌋

�N
∑

Nε−ε2≤p1,...,pk≤Nε

1

p1 · · · pk

=N

 ∑
Nε−ε2≤p≤Nε

1

p

k

=N

(
log

log(N ε)

log(N ε−ε2)
+O(1/(ε logN))

)k
�ε N.

�

Proof of Theorem 1.1. Let

A = {1, . . . , N}, P =

{
p ≤ N1/2 :

(
n

p

)
= 1 for all n ≤ N ε

}
and

Ωp =

{
h (mod p) :

(
h

p

)
= −1

}
,

so ω(p) = #Ωp = (p− 1)/2, p > 2. The large sieve gives that

S(A,P,Ω) ≤ 2N

S(z)

where

S(A,P,Ω) = #{n ≤ N : n /∈ Ωp for all p ∈ P}
and

S(z) ≥
∑
p≤z

ω(p)

p
=

1

2

∑
p∈P

(
1− 1

p

)
.

We now proceed in a slightly unusual way. We will derive a lower bound
for S(A,P,Ω) and then use this and the sieve estimate above to get an
upper bound for ∑

p∈P

(
1− 1

p

)
.

This will imply that the cardinality of the set P is small, which means there
are very few primes ≤ N for which np > N ε.

To obtain a lower bound on S(A,P,Ω) we claim that the set

{n ≤ N : n /∈ Ωp for all p ∈ P}
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contains the set of n ≤ N such that n is N ε-smooth. To see this note that
if n is N ε-smooth and n = p1 · · · pr (not necessarily distinct) it follows by
the definition of P that for p ∈ P(

n

p

)
=

(
p1
p

)
· · ·
(
pr
p

)
6= −1,

i.e. n /∈ Ωp for all p ∈ P. Thus, by Lemma 2.2

S(A,P,Ω)�ε N

so that

#{p ≤ N1/2 : np > N ε} =
∑
p∈P

1� N

S(z)
�ε 1.

�

3. Proof of the arithmetic large sieve

The arithmetic large sieve is a consequence of the analytic large sieve
which we will discuss in the following lecture. Let

L(α) =
∑
n∈S

e(αn)

where e(x) = e2πix and S ⊂ [M + 1,M + N ]. (For us #S = L(0) =
S(A,P,Ω) so S is the remaining set after the sifting has been carried out. )

Let an be complex numbers and let

L(α) =
∑

M<n≤M+N

ane(αn).

Theorem 3.1 (The analytic large sieve). In the above notation∑
q≤Q

∑∗

a (mod q)

∣∣∣∣L(aq
)∣∣∣∣2 ≤ (Q2 +N − 1

) ∑
M<n≤N+M

|an|2

We now require a few additional lemmas.

Lemma 3.2. For complex numbers an supported on S we have∑
h (mod p)

∣∣∣∣∣ ∑
n∈S

n≡h (mod p)

an

∣∣∣∣∣
2

=
1

p

∑
a (mod p)

∣∣∣∣L(ap
)∣∣∣∣2 .

Proof. Let

Z(p, h) =
∑
n∈S

n≡h (mod p)

an.

Observe that

L
(
a

p

)
=
∑
n∈S

ane(an/p) =
∑

h (mod p)

e(ah/p)Z(p, h).
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Thus,

∑
a (mod p)

∣∣∣∣L(ap
)∣∣∣∣2 =

∑
a (mod p)

∣∣∣∣∣∣
∑

h (mod p)

e(ah/p)Z(p, h)

∣∣∣∣∣∣
2

=
∑

h (mod p)

∑
k (mod p)

Z(p, h)Z(p, k)
∑

a (mod p)

e

(
a(h− k)

p

)
.

One has that ∑
a (mod p)

e

(
a(h− k)

p

)
=

{
p if h ≡ k (mod p)

0 otherwise.

So that ∑
a (mod p)

∣∣∣∣L(ap
)∣∣∣∣2 = p

∑
h (mod p)

|Z(p, h)|2

as claimed.
�

Lemma 3.3. For complex numbers an supported on S we have

|L(0)|2 ω(p)

p− ω(p)
≤

∑∗

h (mod p)

|L(a/p)|2.

Proof. Let

Z(p, h) =
∑
n∈S

n≡h (mod p)

an.

Applying Cauchy-Schwarz and Lemma 3.2 gives

|L(0)|2 =

∣∣∣∣∣∣
∑

h (mod p)

Z(p, h)

∣∣∣∣∣∣
2

≤

 ∑
h (mod p)
Z(p,h)6=0

1


 ∑
h (mod p)

|Z(p, h)|2


=

 ∑
h (mod p)
Z(p,h)6=0

1

 1

p

∑
a (mod p)

∣∣∣∣L(ap
)∣∣∣∣2 .

Note that Z(p, h) = 0 if h ∈ Ωp so that∑
h (mod p)
Z(p,h)6=0

1 ≤ p− ω(p).
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Also note ∑
a (mod p)

∣∣∣∣L(ap
)∣∣∣∣2 =

∑∗

a (mod p)

∣∣∣∣L(ap
)∣∣∣∣2 + |L(0)|2.

Combining estimates gives

|L(0)|2 ω(p)

p− ω(p)
≤

∑∗

a (mod p)

∣∣∣∣L(ap
)∣∣∣∣2 .

�

Proof of Theorem 2.1. Let A ⊂ [M + 1, N +M ] and

S = {n ∈ A : n /∈ Ωp for all p ∈ P},
also let

L(α) =
∑
n∈S

e(αn),

so that
L(0) = S(A,P,Ω).

By Lemma 3.3

L(0)2
ω(p)

p− ω(p)
≤

∑∗

a (mod p)

∣∣∣∣L(ap
)∣∣∣∣2 .

Our goal is to establish a similar bound for square-free q. First consider
the case q = p1p2 and observe∑∗

a (mod q)

∣∣∣∣L(aq
)∣∣∣∣2 =

∑∗

a1 (mod p1)

∑∗

a2 (mod p2)

∣∣∣∣L(a1p1 +
a2
p2

)∣∣∣∣2 .
To see this write a = a1p2p2 + a2p1p1, where p1 and p2 denote the multi-
plicative inverses of p1 modulo p2 and p2 modulo p1 (resp.). By construction
a ≡ a1 (mod p1) and a ≡ a2 (mod p2). The CRT implies that a runs over
all residue classes (mod p1p2) as a1, and a2 run over the residue classes
(mod p2) and (mod p2) (resp.). At this point it is not hard to deduce the
above identity.

Now take an = e(na1/q1) for n ∈ S and an = 0 otherwise so that by
Lemma 3.3∑∗

a2 (mod p2)

∣∣∣∣L(a1p1 +
a2
p2

)∣∣∣∣2 =
∑∗

a2 (mod p2)

∣∣∣∣∣∣
∑

M<n≤N+M

ane(na2/q2)

∣∣∣∣∣∣
2

≥ ω(p2)

p2 − ω(p2)
|L(a1/q1)|2 .

Also by Lemma 3.3∑∗

a1 (mod p1)

|L(a1/q1)|2 ≥
ω(p1)

p1 − ω(p1)
|L(0)|2



THE ARITHMETIC LARGE SIEVE WITH AN APPLICATION 7

Thus, for q = p1p2 we have∑∗

a (mod q)

∣∣∣∣L(aq
)∣∣∣∣2 ≥ ω(q)

q
∏
p|q

(
1− ω(p)

p

) |L(0)|2.

By induction on the number of prime factors of q this holds for all square
free q as well.

Summing over all square-free q ≤ z and applying the analytic large sieve,
Theorem 3.1 we get that

|L(0)|2
∑
q≤z

q−square-free

ω(q)

q
∏
p|q

(
1− ω(p)

p

) ≤∑
q≤z

∑∗

a (mod q)

∣∣∣∣L(aq
)∣∣∣∣2

≤|L(0)|(N + z2).

So that

S(A,P,Ω) = L(0) ≤ N + z2

S(z)
.

�


