
THE ANALYTIC LARGE SIEVE

1. The analytic large sieve

In the last lecture we saw how to apply the analytic large sieve to derive
an arithmetic formulation of the large sieve, which we applied to the problem
of bounding the least quadratic non-residue. In this lecture we will derive
the analytic large sieve. For more discussion of the large sieve I recommend
the excellent survey article written by Montgomery [2]. Before stating the
main result let us introduce the following notation. Given a real number α
define the nearest distance from α to an integer as

‖α‖ := min
n∈Z
|n− α|.

Definition. A subset of real numbers {αr} is called δ-spaced if for r 6= s

‖αr − αs‖ ≥ δ.

Also, for complex numbers an write

L(α) =
∑

M<n≤M+X

ane(αn).

Theorem 1.1 (The analytic large sieve 1). Let {αr} ⊂ R be δ-spaced then∑
r

|L(αr)|2 ≤ (X + 1/δ − 1)
∑

M<n≤M+X

|an|2.

Specializing the points αr gives the following

Corollary 1.2 (The analytic large sieve 2). We have∑
q≤Q

∑∗

a (mod q)

∣∣∣∣L(aq
)∣∣∣∣2 ≤ (X +Q2 − 1

) ∑
M<n≤M+X

|an|2.

Proof. Consider the set of points⋃
1≤q≤Q

⋃
1≤a<q

gcd(a,q)=1

{a/q}.

It suffices to show this set of points is 1/Q2-space. To see this observe that∥∥∥∥a1q1 − a2
q2

∥∥∥∥ =

∥∥∥∥a1q2 − a2q1q1q2

∥∥∥∥ ≥ 1

q1q2
≥ 1

Q2
.
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2. Duality

As a first attempt, let us try to directly estimate the second moment of
L(αr). We get that∑

r

|L(αr)|2 =
∑

M<m,n≤M+X

aman
∑
r

e(αr(m− n))

However, at this stage we do not have enough information about the points
{αr} to proceed further.

We now proceed in a different direction. Consider a linear map

Θ : CX → CR,

which can be expressed as Θ = {θ(n, r)}M+X,R
n=M+1,r=1. Observe that for

θ(n, r) = e(αrn) and α = (aM+1, . . . , aM+X)

‖Θα‖22 =
∑
r

∣∣∣∣∣∑
n

ane(αrn)

∣∣∣∣∣
2

.

Our goal is to show that

‖Θα‖22 ≤ (X + 1/δ − 1)‖α‖22.

Let us now recall that the norm of Θ is given by

‖Θ‖ = inf{c : ‖Θα‖2 ≤ c‖α‖2 for all α}.

The adjoint of Θ which is denoted by Θ∗ is defined via the formula 〈Θα, β〉 =
〈α,Θ∗β〉 and such an operator exists by the Riesz representation theorem.
In our setting Θ∗ is just the conjugate transpose, which we will denote by
Θ†. Observe that for β = (b1, . . . , bR)

‖Θ†β‖22 =
∑
n

∣∣∣∣∣∑
r

bre(−αrn)

∣∣∣∣∣
2

.

Recall the following result

‖Θ‖ = ‖Θ†‖,
which we state as

Proposition 2.1 (Duality). Suppose that there exists ∆ such that for bn ∈ C

(1)
∑

M<n≤M+X

∣∣∣∣∣∑
r

bre(αrn)

∣∣∣∣∣
2

≤ ∆
∑
r

|br|2.

Then for an ∈ C

(2)
∑
r

∣∣∣∣∣∣
∑

M<n≤M+X

ane(αrn)

∣∣∣∣∣∣
2

≤ ∆
∑

M<n≤M+X

|an|2.

The converse holds as well.
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Remark. Duality is a key component of the proof that we will give. It is
natural to want to give an asymptotic for∑

r

|L(αr)|2

and one might hope that if an has extra structure say for example an = τ(n)
this might be possible. However, this cannot be done if we use duality since
in order to establish (1) we need to know that (2) holds for more general bn
and we lose the extra structure of the an.

By other methods, recent work of Conrey, Iwaniec, and Soundararajan [1]
gives an asymptotic large sieve in a special, and important, setting.

Proof. This is a special instance of the fact that the norm of a linear operator
is equal to the norm of its adjoint. For clarity we will give a direct proof.

We will show (1) implies (2) the converse follows from a similar argument,
which we will omit. Define

Ψ =
∑
n

∑
r

anbre(nαr)

and take

br =
∑
m

ame(mαr).

So that

Ψ =
∑
n,m

anam
∑
r

e((n−m)αr) =
∑
r

∣∣∣∣∣∑
n

ane(αrn)

∣∣∣∣∣
2

.

Applying Cauchy-Schwarz we also have

|Ψ|2 =
∑
n

∣∣∣∣∣∑
r

anbre(nαr)

∣∣∣∣∣
2

≤
∑
n

|an|2
∑∣∣∣∣∣∑

r

bre(nαr)

∣∣∣∣∣
2

≤∆
∑
n

|an|2
∑
r

|br|2.

Now observe that ∑
r

|br|2 =
∑
r

∣∣∣∣∣∑
n

ane(mαr)

∣∣∣∣∣
2

= Ψ.

Combining estimates gives∑
r

∣∣∣∣∣∑
n

ane(mαr)

∣∣∣∣∣
2

≤ ∆
∑
n

|an|2

as claimed.
�
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3. A problem in Fourier analysis

3.1. Background on Fourier analysis. For f ∈ L1(R) define the Fourier
transform of f by

f̂(ξ) =

∫
R
f(x)e(−xξ) dx.

Recall the space of Schwarz functions, S(R) is the set of smooth functions
such that for any i, j ≥ 0

xif (j)(x)�i,j 1.

We now recall some basic facts

• For f ∈ S(R) the mapping f → f̂ is a continuous injective map of
S onto itself.
• The Fourier transform is an isometry on S(R), i.e. ‖f‖2 = ‖f̂‖2.

and Plancherel’s theorem extends this isometry to f ∈ L1 ∩ L2.

• A special case of the uncertainty principle is that both f, f̂ cannot
both have extremely rapid decay. In particular, both cannot be
compactly supported.
• For f ∈ S(R) the Poisson summation fomula states∑

n∈Z
f(n) =

∑
m∈Z

f̂(m).

In fact the above formula is valid for f such that f(x), f̂(x)� (1 +
|x|)−1−ε.

3.2. An extremal problem arising from the large sieve. From the
previous section we know that by duality it suffices to prove that for complex
numbers bn ∑

M<n≤M+X

∣∣∣∣∣∑
r

bre(nαr)

∣∣∣∣∣
2

≤ (X + 1/δ − 1)
∑
r

|br|2.

We now proceed directly to see that∑
M<n≤M+X

∣∣∣∣∣∑
r

bre(nαr)

∣∣∣∣∣
2

=
∑
r,s

brbs
∑
n∈Z

1[1,X](n+M)e(n(αr − αs)).

The sum on the right-hand side has been written in a suggestive way. We
would like to apply the Poisson summation formula∑

nZ
f(n) =

∑
m∈Z

f̂(m).

to the function
f(x) = 1[1,X](n+M)e(n(αr − αs)).

Unfortunately for us

1̂[−1,1](ξ) =
sin(πξ)

πξ
,
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is not in L1(R) so applying Poisson summation is not valid.
Since we are only concerned with upper bounds we will now modify the

problem by taking a smooth majorant of 1, which has a Fourier transform
that is compactly supported (hence the majorant itself will not be compactly
supported). Notice that if F (x) ≥ 1[1,X](x) is a Schwarz function (or is such

that both F (x), F̂ (x) � (1 + |x|)−1−ε) then we get by applying Poisson
summation∑

M<n≤M+X

∣∣∣∣∣∑
r

bre(nαr)

∣∣∣∣∣
2

≤
∑
n

F (n+M)

∣∣∣∣∣∑
r

bre(nαr)

∣∣∣∣∣
2

=
∑
r,s

brbs
∑
m

e(−mM)F̂ (m− (αr − αs)).

If in addition we have that F̂ (ξ) = 0 for ξ ≥ δ then since {αr} is δ-spaced∑
M<n≤M+X

∣∣∣∣∣∑
r

bre(nαr)

∣∣∣∣∣
2

≤
∑
r,s

brbs
∑
m

e(−mM)F̂ (m− (αr − αs))

=F̂ (0)
∑
r

|br|2.
(3)

3.3. The extremal problem. Note that

F̂ (0) =

∫
R
F (x) dx.

and F (x) ≥ 1[1,X](x). So we have the following extremal problem in Fourier
analysis. Given a function whose Fourier transform that is compactly sup-
port on |ξ| ≤ δ how small can∫

R

(
F (x)− 1[1,X](x)

)
dx

be?
Independently, Beurling and Selberg solved this extremal problem. More-

over, they gave explicit constructions of the minimizing function F (x) which
solves this problem.

Theorem 3.1. Let δ > 0. There exists a function Fδ(x) such that

i) Fδ(x) ≥ 1[1,X](x),

ii) F̂δ(ξ) = 0 for |ξ| ≥ δ,
iii)

∫
R

(
Fδ(x)− 1[1,X](x)

)
dx = 1/δ.

iv) Fδ(x)�δ,X (1 + |x|)−2.

Remark. For further discussion of these functions see section 20 of Sel-
berg’s lectures [3] on sieves . Additionally, Montgomery’s survey article [2]
on the large sieve gives a quick overview of these functions and Vaaler [4]
gives a more extensive study.
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Using the Beurling-Selberg function in (3) gives∑
M<n≤M+X

∣∣∣∣∣∑
r

bre(nαr)

∣∣∣∣∣
2

≤ F̂δ(0)
∑
r

|br|2 = (X − 1 + 1/δ)
∑
r

|br|2.

Therefore, applying Proposition 2.1 we have proved

∑
r

∣∣∣∣∣∣
∑

M<n≤M+X

ane(αrn)

∣∣∣∣∣∣
2

≤ (X + 1/δ − 1)
∑

M<n≤M+X

|an|2.
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