NOTES ON THE PRIME POLYNOMIAL THEOREM COURSE NOTES, 2015

Z. RUDNICK

0.1. Basics. Let \mathbb{F}_{q} be a finite field of q elements, and $\mathbb{F}_{q}[t]$ the ring of polynomials with coefficients in \mathbb{F}_{q}. The units (invertible elements) are the scalars \mathbb{F}_{q}^{\times}, and any nonzero polynomial may be uniquely written as $c f(t)$ with $c \in \mathbb{F}_{q}^{\times}$and $f(t)=t^{n}+a_{n-1} t^{n-1}+\cdots+a_{0}$ a monic polynomial. We denote by M_{n} the set of monic polynomials, whose cardinality is

$$
\# M_{n}=q^{n}
$$

The ring $\mathbb{F}_{q}[t]$ is a Euclidean ring: Given $A, B \neq 0$ in $\mathbb{F}_{q}[t]$, there are $Q, R \in \mathbb{F}_{q}[t]$ so that

$$
A=Q B+R
$$

and $R=0$ (in which case $B \mid A$) or $\operatorname{deg} R<\operatorname{deg} B$.
A standard consequence of this property is that irreducible polynomials are prime, that is if $P \mid A B$ then either $P \mid A$ or $P \mid B$. Moreover the Fundamental Theorem of Arithmetic holds: Any polynomial of positive degree is "uniquely" a product of irreducible polynomials, that is up to ordering and multiplication by scalars.

Let $\pi_{q}(n)$ be the number of monic irreducibles $P \in \mathbb{F}_{q}[x]$ of degree n. Our goal is to prove the Prime Polynomial Theorem (PPT):

Theorem 0.1 (PPT). As $q^{n} \rightarrow \infty$,

$$
\pi_{q}(n)=\frac{q^{n}}{n}+O\left(\frac{q^{n / 2}}{n}\right)
$$

Moreover for all n we have an inequality

$$
\pi_{q}(n) \leq \frac{q^{n}}{n}
$$

This is an analogue of the Prime Number Theorem (PNT), which states that the number $\pi(x)$ of primes $p \leq x$ is asymptotically equal to

$$
\pi(x) \sim \operatorname{Li}(x):=\int_{2}^{x} \frac{d t}{\log t} \sim \frac{x}{\log x}
$$

Exercise 1. Compute $\pi_{q}(n)$ for $n=2,3,4,5,6$.

Date: April 13, 2015.

1. The zeta function

The proof we give goes via the zeta function for $\mathbb{F}_{q}[t]$, which is defined as

$$
\zeta_{q}(s):=\sum_{\substack{0 \neq f \in \mathbb{F}_{q}[t] \\ f \text { monic }}} \frac{1}{|f|^{s}}, \quad \Re(s)>1
$$

Here the norm of a nonzero polynomial is defined as

$$
|f|:=\# \mathbb{F}_{q}[t] /(f)
$$

the number of residue classes modulo f. The norm depends only on the degree of f :

$$
|f|=q^{\operatorname{deg} f}
$$

As we shall see below, the series converges absolutely in the half-plane $\Re(s)>1$, and uniformly in every closed half-plane $\Re(s) \geq 1+\delta, \delta>0$, and hence defines an anlytic function in $\Re(s)>1$.

1.1. Analytic continuation.

Proposition 1.1. $\zeta_{q}(s)$ is absolutely convergent for $\Re(s)>1$, and has an analytic continuation for all $s \in \mathbb{C}$, save for simple poles where $q^{s}=q$, that is at $s=1+\frac{2 \pi \sqrt{-1}}{\log q} n, n \in \mathbb{Z}$, in fact

$$
\begin{equation*}
\zeta_{q}(s)=\frac{1}{1-q^{1-s}} \tag{1.1}
\end{equation*}
$$

Proof. We rearrange the series (which is allowed because we have absolute convergence):

$$
\begin{aligned}
\sum_{\substack{0 \neq f \in \mathbb{F}_{q}[x] \\
f \text { monic }}} \frac{1}{|f|^{s}} & =\sum_{n=0}^{\infty}\left(\sum_{\substack{\operatorname{deg} f=n \\
f \text { monic }}} \frac{1}{|f|^{s}}\right) \\
& =\sum_{n=0}^{\infty} \frac{1}{q^{n s}} \#\left\{f \in \mathbb{F}_{q}[x], \text { monic }, \operatorname{deg} f=n\right\} \\
& =\sum_{n=0}^{\infty} \frac{1}{q^{n s}} q^{n}
\end{aligned}
$$

since the number of monic polynomials of degree n is q^{n}.
Thus we find that for $\Re(s)>1$,

$$
\zeta_{q}(s)=\sum_{n=0}^{\infty}\left(q^{1-s}\right)^{n}=\frac{1}{1-q^{1-s}}
$$

since when $\Re(s)>1$, we have $\left|q^{1-s}\right|=q^{1-\Re(s)}<1$. The right-hand side of (1.1) now defines the required analytic continuation of $\zeta_{q}(s)$ to the entire complex plane, with the exception of simple poles at $q^{s}=q^{1}$, that is at $s=1+\frac{2 \pi \sqrt{-1}}{\log q} n, n=0 \pm 1, \pm 2, \ldots$.

Exercise 2. Compute the residue at $s=1$ of ζ_{q}.
1.2. The Euler product. We next show that $\zeta_{q}(s)$ admits an Euler product representation

Theorem 1.2. For $\operatorname{Re}(s)>1$,

$$
\zeta(s)=\prod_{P \text { prime }}\left(1-|P|^{-s}\right)^{-1}
$$

Here the infinite product means the limit of the finite subproducts as follows: For $M>0$ define

$$
\zeta^{(M)}(s):=\prod_{\operatorname{deg} P \leq M}\left(1-|P|^{-s}\right)^{-1}
$$

to be the partial Euler product; this is a finite product. The infinite product is defined as the limit $\lim _{M \rightarrow \infty} \zeta^{(M)}(s)$ (assuming it exists).

Proof. We will show that for $\operatorname{Re}(s)>1$,

$$
\lim _{M \rightarrow \infty} \zeta^{(M)}(s)=\zeta_{q}(s)
$$

(in fact uniformly for any $\operatorname{Re}(s) \geq 1+\delta, \delta>0$), which is the meaning of the claim.

We expand

$$
\frac{1}{1-|P|^{-s}}=\sum_{k=0}^{\infty} \frac{1}{|P|^{k s}}=\sum_{k=0}^{\infty} \frac{1}{\left|P^{k}\right|^{s}}
$$

and so obtain

$$
\zeta^{(M)}(s)=\prod_{\operatorname{deg} P \leq M} \sum_{k=0}^{\infty} \frac{1}{\left|P^{k}\right|^{s}}=\sum_{\substack{\operatorname{deg} P_{j} \leq M \\ k_{j} \geq 0}} \frac{1}{\left|\prod_{j} P_{j}^{k_{j}}\right|^{s}}
$$

The sum here goes over all monic f for which all prime factors have degree $\leq M$, and each such f appears exactly once by the Fundamental Theorem of Arithmetic in $\mathbb{F}_{q}[t]$ (unique factorization into primes).

Hence the difference $\zeta-\zeta^{(M)}$ is the sum over all monic f which have at least one prime factor of degree $>M$:

$$
\zeta_{q}(s)-\zeta^{(M)}(s)=\sum_{\substack{f \text { s.t. } \exists P \mid f \\ \operatorname{deg} P>M}} \frac{1}{|f|^{s}}
$$

Taking absolute values and using the triangle inequality (recall $\left|A^{s}\right|=$ $\left.A^{\operatorname{Re}(s)}\right)$ gives

$$
\left|\zeta_{q}(s)-\zeta^{(M)}(s)\right| \leq \sum_{\substack{f \text { s.t. } \exists P \mid f \\ \operatorname{deg} P>M}} \frac{1}{|f|^{\operatorname{Re} s}}
$$

We note that each f appearing above has degree $>M$, hence if we replace the sum by the sum over all f of degree $>M$, we will increase the result because we are adding positive terms. Hence

$$
\left|\zeta_{q}(s)-\zeta^{(M)}(s)\right| \leq \sum_{\operatorname{deg} f>M} \frac{1}{|f|^{\operatorname{Re}(s)}}
$$

The sum on the RHS tends to zero as $M \rightarrow \infty$ (we should have seen this by now) because

$$
\begin{aligned}
\sum_{\operatorname{deg} f>M} \frac{1}{|f|^{\operatorname{Re}(s)}} & =\sum_{n=M+1}^{\infty} \sum_{\operatorname{deg} f=n} \frac{1}{|f|^{s}} \\
& =\sum_{n=M+1}^{\infty} \frac{1}{q^{n s}} \#\{\operatorname{deg} f=n, \text { monic }\} \\
& =\sum_{n=M+1}^{\infty} \frac{q^{n}}{q^{n s}}=\frac{q^{M(1-\operatorname{Re}(s))}}{1-q^{1-s}}
\end{aligned}
$$

which for any fixed $\operatorname{Re}(s)>1$ tends to zero as $M \rightarrow \infty$,
1.3. The Explicit Formula. The von Mangoldt function is defined as $\Lambda(f)=\operatorname{deg} P$, if $f=c P^{k}$ is a power of a prime $P(k \geq 1)$, and is zero otherwise.

Exercise 3. Show that

$$
\sum_{d \mid f} \Lambda(f)=\operatorname{deg} f
$$

Define

$$
\Psi(n):=\sum_{\substack{\operatorname{deg} f=n \\ f \text { monic }}} \Lambda(f)
$$

which counts prime powers weighted by the degree of the corresponding prime.

From the definition it is easy to see that

Lemma 1.3.

$$
\Psi(n)=\sum_{d \mid n} d \pi_{q}(d)
$$

The fundamental fact is that for $\mathbb{F}_{q}[t]$, there is a closed-form expression for $\Psi(n)$:

Proposition 1.4 (The "Explicit Formula").

$$
\Psi(n)=q^{n}
$$

Proof. Setting

$$
u:=q^{-s}
$$

so that the half-plane $\Re(s)>1$ is mapped to the disk $|u|<q^{-1}$, we define

$$
Z(u):=\zeta_{q}(s)=\sum_{\substack{0 \neq f \in \mathbb{F}_{q}[t] \\ f \text { monic }}} u^{\operatorname{deg} f}
$$

for which we have an Euler product representation

$$
\begin{equation*}
Z(u)=\prod_{P \text { prime }}\left(1-u^{\operatorname{deg} P}\right)^{-1}, \quad|u|<q^{-1} \tag{1.2}
\end{equation*}
$$

The resummation (1.1) of $\zeta_{q}(s)$ is expressed as

$$
\begin{equation*}
Z(u)=\frac{1}{1-q u} \tag{1.3}
\end{equation*}
$$

We compute the logarithmic derivative $u \frac{Z^{\prime}}{Z}=u \frac{d}{d u} \log Z$ of $Z(u)$ in two different ways:
a) From the Euler product (1.2) we obtain

$$
\begin{aligned}
u \frac{Z^{\prime}}{Z}(u) & =\sum_{P \text { prime }} \frac{\operatorname{deg}(P) \cdot u^{\operatorname{deg} P}}{1-u^{\operatorname{deg} P}} \\
& =\sum_{P \text { prime }} \operatorname{deg}(P) \sum_{m=1}^{\infty} u^{m \operatorname{deg} P} \\
& =\sum_{f \text { monic }} \Lambda(f) u^{\operatorname{deg} f}
\end{aligned}
$$

by the definition of the von Mangoldt function. Thus

$$
\begin{equation*}
u \frac{Z^{\prime}}{Z}(u)=\sum_{n=1}^{\infty} \Psi(n) u^{n} \tag{1.4}
\end{equation*}
$$

b) By the analytic continuation (1.3) of $Z(u)$ we obtain

$$
\begin{equation*}
u \frac{Z^{\prime}}{Z}(u)=u \frac{d}{d u} \log \frac{1}{1-q u}=\sum_{n \geq 1} q^{n} u^{n} \tag{1.5}
\end{equation*}
$$

Comparing (1.4) and (1.5) gives the result.

2. Proof of the PPT

We use Lemma 1.3 and the Explicit Formula to obtain

$$
\begin{equation*}
\sum_{d \mid n} d \pi_{q}(d)=\Psi(n)=q^{n} \tag{2.1}
\end{equation*}
$$

Hence we find that for all $m \geq 1$,

$$
\begin{equation*}
m \pi_{q}(m) \leq q^{m} \tag{2.2}
\end{equation*}
$$

Furthermore, from (2.1) we get

$$
\begin{equation*}
0 \leq n \pi_{q}(n)-\Psi(n)=\sum_{\substack{d \mid n \\ d<n}} d \pi_{q}(d) \leq \sum_{\substack{d \mid n \\ d<n}} q^{d} \tag{2.3}
\end{equation*}
$$

the last step by (2.2).
The sum over divisors of n is hard to understand, so we convert it to a more tractable form by observing that a proper divisor $d \mid n, d<n$ is at most $n / 2$, and then noting that throwing in some extra terms of the form q^{d}, which are non-negative, will only increase the result. Hence

$$
\sum_{\substack{d \mid n \\ d<n}} q^{d} \leq \sum_{d=1}^{n / 2} q^{d}=\frac{q^{\lfloor n / 2\rfloor+1}-q}{q-1} \leq \frac{q^{\lfloor n / 2\rfloor}}{1-\frac{1}{q}} \leq 2 q^{n / 2}
$$

Inserting in (2.3) gives

$$
0 \leq n \pi_{q}(n)-\Psi(n) \leq 2 q^{n / 2}
$$

and replacing $\Psi(n)$ by q^{n} and dividing by n gives

$$
\pi_{q}(n)=\frac{q^{n}}{n}+O\left(\frac{q^{n / 2}}{n}\right)
$$

which proves the Prime Polynomial Theorem.

