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0.1. Basics. Let Fq be a finite field of q elements, and Fq[t] the ring of
polynomials with coefficients in Fq. The units (invertible elements) are the
scalars F×q , and any nonzero polynomial may be uniquely written as cf(t)

with c ∈ F×q and f(t) = tn + an−1t
n−1 + · · · + a0 a monic polynomial. We

denote by Mn the set of monic polynomials, whose cardinality is

#Mn = qn

The ring Fq[t] is a Euclidean ring: Given A,B 6= 0 in Fq[t], there are
Q,R ∈ Fq[t] so that

A = QB +R

and R = 0 (in which case B | A) or degR < degB.
A standard consequence of this property is that irreducible polynomials

are prime, that is if P | AB then either P | A or P | B. Moreover the Fun-
damental Theorem of Arithmetic holds: Any polynomial of positive degree
is “uniquely” a product of irreducible polynomials, that is up to ordering
and multiplication by scalars.

Let πq(n) be the number of monic irreducibles P ∈ Fq[x] of degree n. Our
goal is to prove the Prime Polynomial Theorem (PPT):

Theorem 0.1 (PPT). As qn →∞,

πq(n) =
qn

n
+O(

qn/2

n
) .

Moreover for all n we have an inequality

πq(n) ≤ qn

n
.

This is an analogue of the Prime Number Theorem (PNT), which states
that the number π(x) of primes p ≤ x is asymptotically equal to

π(x) ∼ Li(x) :=

∫ x

2

dt

log t
∼ x

log x
.

Exercise 1. Compute πq(n) for n = 2, 3, 4, 5, 6.
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1. The zeta function

The proof we give goes via the zeta function for Fq[t], which is defined as

ζq(s) :=
∑

06=f∈Fq [t]
f monic

1

|f |s
, <(s) > 1

Here the norm of a nonzero polynomial is defined as

|f | := #Fq[t]/(f),

the number of residue classes modulo f . The norm depends only on the
degree of f :

|f | = qdeg f .

As we shall see below, the series converges absolutely in the half-plane
<(s) > 1, and uniformly in every closed half-plane <(s) ≥ 1 + δ, δ > 0,
and hence defines an anlytic function in <(s) > 1.

1.1. Analytic continuation.

Proposition 1.1. ζq(s) is absolutely convergent for <(s) > 1, and has an
analytic continuation for all s ∈ C, save for simple poles where qs = q, that

is at s = 1 + 2π
√
−1

log q n, n ∈ Z, in fact

(1.1) ζq(s) =
1

1− q1−s
.

Proof. We rearrange the series (which is allowed because we have absolute
convergence):∑

0 6=f∈Fq [x]
f monic

1

|f |s
=
∞∑
n=0

( ∑
deg f=n
f monic

1

|f |s
)

=

∞∑
n=0

1

qns
#{f ∈ Fq[x], monic ,deg f = n}

=
∞∑
n=0

1

qns
qn

since the number of monic polynomials of degree n is qn.
Thus we find that for <(s) > 1,

ζq(s) =

∞∑
n=0

(q1−s)n =
1

1− q1−s

since when <(s) > 1, we have |q1−s| = q1−<(s) < 1. The right-hand side
of (1.1) now defines the required analytic continuation of ζq(s) to the entire
complex plane, with the exception of simple poles at qs = q1, that is at

s = 1 + 2π
√
−1

log q n, n = 0± 1,±2, . . . . �
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Exercise 2. Compute the residue at s = 1 of ζq.

1.2. The Euler product. We next show that ζq(s) admits an Euler prod-
uct representation

Theorem 1.2. For Re(s) > 1,

ζ(s) =
∏

P prime

(1− |P |−s)−1

Here the infinite product means the limit of the finite subproducts as
follows: For M > 0 define

ζ(M)(s) :=
∏

degP≤M
(1− |P |−s)−1

to be the partial Euler product; this is a finite product. The infinite product
is defined as the limit limM→∞ ζ

(M)(s) (assuming it exists).

Proof. We will show that for Re(s) > 1,

lim
M→∞

ζ(M)(s) = ζq(s)

(in fact uniformly for any Re(s) ≥ 1 + δ, δ > 0), which is the meaning of
the claim.

We expand

1

1− |P |−s
=
∞∑
k=0

1

|P |ks
=
∞∑
k=0

1

|P k|s

and so obtain

ζ(M)(s) =
∏

degP≤M

∞∑
k=0

1

|P k|s
=

∑
degPj≤M
kj≥0

1

|
∏
j P

kj
j |s

The sum here goes over all monic f for which all prime factors have degree
≤ M , and each such f appears exactly once by the Fundamental Theorem
of Arithmetic in Fq[t] (unique factorization into primes).

Hence the difference ζ − ζ(M) is the sum over all monic f which have at
least one prime factor of degree > M :

ζq(s)− ζ(M)(s) =
∑

f s.t.∃P |f
degP>M

1

|f |s

Taking absolute values and using the triangle inequality (recall |As| =

ARe(s)) gives ∣∣∣ζq(s)− ζ(M)(s)
∣∣∣ ≤ ∑

f s.t.∃P |f
degP>M

1

|f |Re s



4 Z. RUDNICK

We note that each f appearing above has degree > M , hence if we replace
the sum by the sum over all f of degree > M , we will increase the result
because we are adding positive terms. Hence∣∣∣ζq(s)− ζ(M)(s)

∣∣∣ ≤ ∑
deg f>M

1

|f |Re(s)

The sum on the RHS tends to zero as M →∞ (we should have seen this by
now) because ∑

deg f>M

1

|f |Re(s)
=

∞∑
n=M+1

∑
deg f=n

1

|f |s

=
∞∑

n=M+1

1

qns
#{deg f = n,monic}

=

∞∑
n=M+1

qn

qns
=
qM(1−Re(s))

1− q1−s

which for any fixed Re(s) > 1 tends to zero as M →∞, �

1.3. The Explicit Formula. The von Mangoldt function is defined as
Λ(f) = degP , if f = cP k is a power of a prime P (k ≥ 1), and is zero
otherwise.

Exercise 3. Show that ∑
d|f

Λ(f) = deg f .

Define

Ψ(n) :=
∑

deg f=n
f monic

Λ(f)

which counts prime powers weighted by the degree of the corresponding
prime.

From the definition it is easy to see that

Lemma 1.3.

Ψ(n) =
∑
d|n

dπq(d) .

The fundamental fact is that for Fq[t], there is a closed-form expression
for Ψ(n):

Proposition 1.4 (The “Explicit Formula”).

Ψ(n) = qn
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Proof. Setting

u := q−s

so that the half-plane <(s) > 1 is mapped to the disk |u| < q−1, we define

Z(u) := ζq(s) =
∑

06=f∈Fq [t]
f monic

udeg f

for which we have an Euler product representation

(1.2) Z(u) =
∏

P prime

(1− udegP )−1, |u| < q−1 .

The resummation (1.1) of ζq(s) is expressed as

(1.3) Z(u) =
1

1− qu
.

We compute the logarithmic derivative uZ
′

Z = u d
du logZ of Z(u) in two

different ways:
a) From the Euler product (1.2) we obtain

u
Z ′

Z
(u) =

∑
P prime

deg(P ) · udegP

1− udegP

=
∑

P prime

deg(P )
∞∑
m=1

um degP

=
∑

f monic

Λ(f)udeg f

by the definition of the von Mangoldt function. Thus

(1.4) u
Z ′

Z
(u) =

∞∑
n=1

Ψ(n)un .

b) By the analytic continuation (1.3) of Z(u) we obtain

(1.5) u
Z ′

Z
(u) = u

d

du
log

1

1− qu
=
∑
n≥1

qnun .

Comparing (1.4) and (1.5) gives the result. �

2. Proof of the PPT

We use Lemma 1.3 and the Explicit Formula to obtain

(2.1)
∑
d|n

dπq(d) = Ψ(n) = qn .

Hence we find that for all m ≥ 1,

(2.2) mπq(m) ≤ qm .
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Furthermore, from (2.1) we get

(2.3) 0 ≤ nπq(n)−Ψ(n) =
∑
d|n
d<n

dπq(d) ≤
∑
d|n
d<n

qd

the last step by (2.2).
The sum over divisors of n is hard to understand, so we convert it to a

more tractable form by observing that a proper divisor d | n, d < n is at
most n/2, and then noting that throwing in some extra terms of the form
qd, which are non-negative, will only increase the result. Hence∑

d|n
d<n

qd ≤
n/2∑
d=1

qd =
qbn/2c+1 − q

q − 1
≤ qbn/2c

1− 1
q

≤ 2qn/2

Inserting in (2.3) gives

0 ≤ nπq(n)−Ψ(n) ≤ 2qn/2

and replacing Ψ(n) by qn and dividing by n gives

πq(n) =
qn

n
+O(

qn/2

n
)

which proves the Prime Polynomial Theorem. �


