
AN INTRODUCTION TO THE SELBERG SIEVE

STEVE LESTER

1. Introduction: Bounding the number of primes

In the next lecture we will give applications of Selberg’s Λ2-upper bound
sieve. In particular we will use the sieve to give an upper bound for the
number of twin primes less than x. We will see that

π2(x) = {p ≤ x : p+ 2 is prime } � x

(log x)2
.

One may compare this to the conjecture of Hardy and Littlewood that

π2(x) ∼ C x

(log x)2

where C > 0 is the twin prime constant and is given by

C = 2
∏
p 6=2

(
1− 2

p

)
(

1− 1
p

)2 .
Before moving on to these more interesting applications our goal is to

give a simpler and more straightforward application, illustrating the power
of the Selberg Λ2-sieve. Our aim is to show

π(x)� x

log x
.

Recall the following from Zeev’s lecture:

• Let P (z) =
∏

p≤z p and

S(x, z) = #{n ≤ x : gcd(n, P (z)) = 1}.

Then

π(x) ≤ S(x, z) + z.

• For real numbers λd with λ1 = 1 and λd = 0 for d > z we have

(1) S(x, z) ≤ xQ(λ) +R(z)

where

Q(λ) =
∑

d1,d2≤z
d1,d2|P (z)

λd1λd2
[d1, d2]

.
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and

R(z)�

 ∑
d≤z

d|P (z)

|λd|


2

In this lecture we will show how to minimize the quadratic form Q(λ)
with the constraint λd = 1 and bound R(z).

Proposition 1.1. The minimum value of the quadratic form Q(λ) is

S(z) =
∑
d≤z

µ2(d)

φ(d)

and the minimizing vector is given by

λe =
e

ϕ(e)

∑
d≤z

d|P (z)
e|d

µ

(
d

e

)
µ(d)ϕ(d)

for e ≤ z.

The minimizing vector λe clearly is zero for e > z, since the condition on
the sum is empty. It also satisfies λ1 = 1 and is supported on squarefrees.
These latter two properties are (perhaps) not immediately apparent from
the definition but will be seen later.

Proposition 1.2. For the minimizing vector λd as above

|λd| ≤ 1.

Combining the two propositions with (1) immediately implies that

π(x) ≤ x

S(z)
+O(z2).

In Zeev’s lecture we saw that by partial summation

S(z)� log z.

So taking z = (x/ log x)1/2 gives

π(x)� x/(log x).

2. Minimizing quadratic forms

Let’s now discuss the problem (in general) of minimizing a quadratic form

Q(x1, x2, . . . , xn) =
∑

1≤i,j≤n
bi,jxixj ,

subject to a constraint x1 = 1, which is the setting we are interesting in.
Selberg brilliantly solved this problem for the specific quadratic form Q(λ)
in an amazingly simple way.
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The key step in minimizing the quadratic form is a diagonalization proce-
dure. Even though one can always diagonalize the form using linear algebra
it is difficult to do explicitly if the number of variable is large (which it is in
our setting). Once we have diagonalized the form the optimization problem
is easy to solve using Lagrange multipliers (or other methods).

First observe that by taking

ai,j =
bi,j + bj,i

2

we may write

Q(x) =
∑

1≤i,j≤n
ai,jxixj ,

where ai,j = aj,i. Thus the matrix

A = (ai,j)
n
i,j=1 = AT

is symmetric and we can write

Q(x1, . . . , xn) = xTAx

where x = (x1, . . . , xn). A quadratic form is called diagonal if A is a
diagonal matrix.

Any symmetric matrix, A, can be diagonalized in the following way

PAP T = D

where P is an orthogonal matrix (so P T = P−1) and

D =

d1 · · · 0
...

. . .
...

0 · · · dn


is a diagonal matrix. Thus under the linear change of variables y = Px, we
have

Q(x) =yTDy

=
n∑

j=1

djy
2
j

The condition x1 = 1 and the relation P−1y = x gives a linear constraint∑
i≤n

ciyi = 1.

Solving the optimization problem at this stage is easy by using the method
of Lagrange multipliers. (We will do this explicitly later on.)
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3. The proofs Propositions 1.1 and 1.2

We first will require a few auxiliary lemmas

Lemma 3.1.∑
d|n

ϕ(d) = n and ϕ(n) = n
∏
p|n

(
1− 1

p

)
.

Proof. This follows from one of the homework exercises, but let’s go over
the proof again. Apply Möbius inversion to see that

ϕ(n) =
∑
d≤n

(d,n)=1

1 =
∑
d≤n

∑
e|d,e|n

µ(e)

=
∑
e|n

µ(e)
∑
d≤n
e|d

1 =
∑
f |d

µ(f)
⌊n
e

⌋
.

So that
ϕ(n)

n
=
∑
e|n

µ(e)

e
.

Consider the multiplicative function ι(n) = n, so rewriting the above
equation in terms of Dirichlet convolution gives

φ(n) = (µ ∗ ι)(n)

By Möbius inversion this implies that

(1 ∗ φ)(n) = ((1 ∗ µ) ∗ ι)(n) = (δ ∗ ι)(n) = ι(n) = n.

�

Lemma 3.2 (dual Möbius inversion). Let f be an arithmetic function. Also,
let D ⊂ N be a finite set such that for each d ∈ D if e|d then e ∈ D. Then

g(n) =
∑
n|d
d∈D

f(d)

iff

f(n) =
∑
n|d
d∈D

g(d)µ

(
d

n

)
.

We will delay the proof of this lemma until the end of the section.

Proof of Proposition 1.1. Our goal is to minimize the quadratic form

Q(λ) =
∑

d1,d2≤z
d1,d2|P (z)

λd1λd2
[d1, d2]

.

The first step is a diagonalization procedure, which reduces the problem to
minimizing Q(λ) subject to a linear constraint.
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Using the equalities ∑
d|n

ϕ(d) = d

and d1d2/(d1, d2) = [d1, d2] we get that

x
∑

d1,d2≤z
d1,d2|P (z)

λd1λd2
[d1, d2]

=x
∑

d1,d2≤z
d1,d2|P (z)

λd1λd2
d1d2

∑
e|(d1,d2)

ϕ(e)

=x
∑
e≤z

e|P (z)

ϕ(e)
∑

e|d1,e|d2
d1,d2≤z

d1,d2|P (z)

λd1λd2
d1d2

=x
∑
e≤z

e|P (z)

ϕ(e)

( ∑
e|d
d≤z

d|P (z)

λd
d

)2

.

Writing

θe =
∑
e|d
d≤z

d|P (z)

λd
d

we have

Q(λ) =
∑
e≤z

e|P (z)

ϕ(e)θ2e .

So we have succeeded in diagonalizing the quadratic form!
Now use the dual Möbius inversion formula to see that

λe
e

=
∑
e|d
d≤z

d|P (z)

µ

(
d

e

)
θd.

In particular,

(2) 1 =
∑
e≤z

e|P (z)

µ(e)θe.

This is our linear constraint. It remains to minimize

Q(λ) =
∑
e≤z

e|P (z)

ϕ(e)θ2e

subject to (2). I claimed this last step was easy so let’s solve it in two ways.
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Method 1 Cauchy-Schwarz. Applying Cauchy-Schwarz to (2) we get

1 ≤

 ∑
e≤z

e|P (z)

µ2(e)

ϕ(e)


1/2∑

e≤z
φ(e)u2e

1/2

=

∑
e≤z

µ2(e)

ϕ(e)

1/2∑
e≤z

φ(e)θ2e

1/2

where the last identity follows since µ2(e) = 0 for e < z with e - P (z).
Therefore, ∑

e≤z
ϕ(e)θ2e ≥

1∑
e≤z

µ2(e)

ϕ(e)

We may take

θe =
µ(e)

ϕ(e)
∑
e≤z

µ2(e)

ϕ(e)

since this choice satisfies (2). Additionally,∑
e≤z

e|P (z)

µ2(e)

ϕ(e)

∑
e≤z

µ2(e)

ϕ(e)

2 =
1∑

e≤z

µ2(e)

ϕ(e)

so this minimum is achieved.
Method 2 Lagrange Multipliers. Write

Q(λ) = Q̃(θ) =
∑
e≤z

e|P (z)

ϕ(e)θ2e and L(θ) =
∑
e≤z

e|P (z)

µ(e)θe.

The equality

∇Q̃(θ) = C∇L(θ)

implies that for each squarefree e ≤ z

2ϕ(e)θe = Cµ(e)

so

θe =
C

2

µ(e)

ϕ(e)
.

Using (2) we see that this gives

C

2
=

1∑
d≤z

µ2(d)

ϕ(d)

.

�
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Proof of Proposition 1.2. Recall that

λe
e

=
∑
e|d
d≤z

d|P (z)

µ

(
d

e

)
ud =

1∑
f≤z

µ2(f)

ϕ(f)

∑
e|d
d≤z

d|P (z)

µ

(
d

e

)
µ(d)

ϕ(d)
.

In the inner sum write d = ef and note that µ(ef) = 0 unless (e, f) = 1 so
that by multiplicativity∑

e|d
d≤z

d|P (z)

µ

(
d

e

)
µ(d)

ϕ(d)
=
µ(e)

ϕ(e)

∑
f≤z/e
(f,e)=1
f |P (z)

µ2(f)

ϕ(f)
=
µ(e)

ϕ(e)

∑
f≤z/e
(f,e)=1

µ2(f)

ϕ(f)
.

Hence,

λe =
µ(e)

ϕ(e)
∑
f≤z

µ2(f)

ϕ(f)

∑
f≤z/e
(f,e)=1

µ2(f)

ϕ(f)

As a consistency check, note that it is now clear that λ1 = 1 and λe is
supported on squarefrees.

Next, observe that for any e ≥ 1∑
f≤z

µ2(f)

ϕ(f)
=
∑
`|e

∑
m≤z

(m,e)=`

µ2(m)

ϕ(m)
.

In the inner sum write m = `h (m is square free so (`, h) = 1) so that∑
`|e

∑
m≤z

(m,e)=`

µ2(m)

ϕ(m)
=
∑
`|e

∑
h≤z/`

(h,`)=1,(h,e/`)=1

µ2(`h)

ϕ(`h)
=
∑
`|e

µ2(`)

φ(`)

∑
h≤z/`
(h,e)=1

µ2(h)

ϕ(h)

≥
∑
`|e

µ2(`)

φ(`)

∑
h≤z/e
(h,e)=1

µ2(h)

ϕ(h)

So that ∑
h≤z/e
(h,e)=1

µ2(h)

ϕ(h)

/∑
f≤z

µ2(f)

ϕ(f)
≤ 1∑

`|e

µ2(`)

ϕ(`)

.

Collecting estimates, this implies

|λe| ≤
e

ϕ(e)
· 1∑

`|e

µ2(`)

ϕ(`)

=
∏
p|e

((
1− 1

p

)
·
(

1 +
1

p− 1

))−1

=
∏
p|e

((
p− 1

p

)
·
(

p

p− 1

))−1
= 1.
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�

It remains to prove the reverse Möbius inversion lemma.

Proof of reverse Möbius inversion. We will prove that if

g(n) =
∑
n|d
d∈D

f(d)

then

f(n) =
∑
n|d
d∈D

g(d)µ

(
d

n

)
the other claim follows from a similar argument which we will omit. Write

χd=n

{
1 if d = n,

0 otherwise.

Using the definition of g(n) we get that∑
n|d
d∈D

µ

(
d

n

)∑
d|e
e∈D

f(e) =
∑
n|d
d∈D

µ

(
d

n

) ∑
c

cd∈D

∑
r∈D

f(r)χr=cd

=
∑
r∈D

f(r)
∑
m

mn∈D

µ(m)
∑
c

cmn∈D

χcm= r
n

=
∑
r∈D

f(r)
∑
m| r

n

µ(m) = f(n)

�


