ARTIN'S PRIMITIVE ROOT CONJECTURE COURSE NOTES, 2015

1. Artin's primitive root conjecture

Given a prime p, a primitive root modulo p is a generator of the cyclic group $(\mathbb{Z} / p \mathbb{Z})^{\times}$of invertible residues modulo p, that is its order in the multiplicative group is $p-1$, the maximal possible value. Gauss seemed to have observed that 10 occurs often as a primitive root, for instance in 39 of the first 100 primes. Likewise, 2 is a primitive root for 41 of the first 100 primes.

Exercise 1. i) If $p \nmid 10$ then $1 / p$ has a periodic decimal expansion, e.g. $1 / 7=0.142857142857 \ldots$ has period $6,1 / 11=0.0909 \ldots$ has period 2 .
ii) The order of $10 \bmod p$ is the length of the minimal period.

Exercise 2. If p is a prime of the form $p=4 p^{\prime}+1$ where p^{\prime} is also prime, then 2 is a primitive root modulo p.

The problem with this approach is that we do not know that there are infinitely many primes of this form.

It is clear that a perfect square cannot be a primitive root if $p>2$. In 1927, Artin conjectured that for any integer $g \neq-1, \square$, there are infinitely many prime p for which g is a primitive root modulo p. A quantitative version is that

Conjecture. If $g \neq-1$ or a perfect square, then there is $C(g)>0$ such that

$$
\#\{p \leq x: g \text { is a primitive root modulo } p\} \sim C(g) \frac{x}{\log x} . \quad x \rightarrow \infty
$$

The constant $C(g)$ is known; for the simple case $g=2$, we have

$$
C(2)=\prod_{q \text { prime }}\left(1-\frac{1}{q(q-1)}\right)=0.3739 \ldots
$$

In 1967, Hooley [1] proved Artin's conjecture, assuming the Generalized Riemann Hypothesis (GRH) for the Dedekind zeta function of a certain infinite family of number fields (Kummer extensions). Below we will explain his argument. For further reading, see the surveys of Murty [3] and Moree [2].

2. Hooley's Approach

From now on, we will take $g=2$, so we want primes p for which 2 is a primitive root modulo p. Set

$$
\mathcal{N}(x):=\{p \leq x \text { prime, } p \nmid 2,2 \text { is a primitive root modulo } p\}
$$

and we want to show that $\# \mathcal{N}(x) \sim C(2) x / \log x$.
We observe that for $p \nmid 2$, the condition 2 is a primitive root modulo p is equivalent to the condition

$$
\begin{equation*}
\forall \text { prime } q \text { s.t. } q \mid p-1,2^{(p-1) / q} \neq 1 \bmod p \tag{1}
\end{equation*}
$$

that is we have $\operatorname{not}(R(p ; q))$ for all primes q, where $R(p ; q)$ is the condition

$$
\begin{equation*}
R(p ; q): \quad p=1 \bmod q \quad \text { and } \quad 2^{(p-1) / q}=1 \bmod p \tag{2}
\end{equation*}
$$

For $z<x$, set

$$
\mathcal{N}^{\prime}(x, z):=\{2<p \leq x: \forall \text { prime } q \leq z, \operatorname{not} R(p ; q)\}
$$

so that

$$
\mathcal{N}(x)=\mathcal{N}^{\prime}(x, x-1)
$$

and

$$
\mathcal{N}(x) \subseteq \mathcal{N}^{\prime}(x, z)
$$

for all $z<x$.
We also set, for $w<z$,

$$
\mathcal{N}^{\prime \prime}(x ; w, z)=\{2<p \leq x: \exists \text { prime } w<q \leq z, \text { s.t. } R(p, q) \text { holds }\}
$$

Then clearly

$$
\mathcal{N}^{\prime}(x ; z) \subseteq \mathcal{N}(x) \cup \mathcal{N}^{\prime \prime}(x ; z, x)
$$

and hence

$$
\# \mathcal{N}(x)=\# \mathcal{N}^{\prime}(x ; z)+O\left(\# \mathcal{N}^{\prime \prime}(x ; z, x)\right)
$$

We will take $z=\log x / 6$ and show

$$
\begin{equation*}
\# \mathcal{N}^{\prime}\left(x ; \frac{1}{6} \log x\right)=C(2) \frac{x}{\log x}+O\left(\frac{x}{(\log x)^{2}}\right) \tag{3}
\end{equation*}
$$

and

$$
\begin{equation*}
\# \mathcal{N}^{\prime \prime}\left(x ; \frac{1}{6} \log x, x\right) \ll \frac{x}{(\log x)^{2}} \log \log x \tag{4}
\end{equation*}
$$

which will give our Theorem.
3. Evaluating $\# \mathcal{N}^{\prime}\left(x ; \frac{1}{6} \log x\right)$

Let

$$
P(z):=\prod_{2<p \leq z} p \approx x^{1 / 3}
$$

if $z \approx(\log x) / 6$. For $d \mid P(z)$ (necessarily squarefree), set

$$
\begin{equation*}
P(x ; d):=\#\{p \leq x: R(p ; q) \text { holds } \forall \text { prime } q \mid d\} \tag{5}
\end{equation*}
$$

(for $d=1$ there is no condition).
Theorem 3.1. Assume the Generalized Riemann Hypothesis. Then for squarefree d,

$$
P(x ; d)=\frac{1}{n(d)} \operatorname{Li}(x)+O\left(x^{1 / 2} \log (d x)\right)
$$

where $n(d)=d \varphi(d)$.
To explain Theorem 3.1, we will need a major bit of input from algebraic number theory, the explanation of which is deferred to later on.

By the sieve of Eratosthenes,

$$
\# \mathcal{N}^{\prime}(x ; z)=\sum_{d \mid P(z)} \mu(d) P(x ; d)
$$

and inputing Theorem 3.1 gives

$$
\begin{aligned}
\# \mathcal{N}^{\prime}(x ; z) & =\sum_{d \mid P(z)} \mu(d)\left(\frac{\operatorname{Li}(x)}{d \varphi(d)}+O\left(x^{1 / 2} \log (d x)\right)\right) \\
& =C(2)\left(1+O\left(\frac{1}{z}\right)\right) \operatorname{Li}(x)+O\left(x^{1 / 2} \log x \sum_{d \mid P(z)} 1\right) \\
& =C(2)\left(1+O\left(\frac{1}{z}\right)\right) \operatorname{Li}(x)+O\left(x^{1 / 2} \log x \cdot 2^{z}\right)
\end{aligned}
$$

because

$$
\sum_{d \mid P(z)} \frac{1}{d \varphi(d)}=\prod_{\substack{q \mid P(z) \\ \text { prime }}}\left(1-\frac{1}{q(q-1)}\right)=C(2)\left(1+O\left(\frac{1}{z}\right)\right)
$$

Taking into account $z \approx(\log x) / 6$, so that $2^{z} \ll x^{1 / 3}$, we get

$$
\# \mathcal{N}^{\prime}\left(x ; \frac{\log x}{6}\right)=C(2) \frac{x}{\log x}+O\left(\frac{x}{(\log x)^{2}}\right)
$$

giving (3).

4. Estimating $\# \mathcal{N}^{\prime \prime}\left(x ; \frac{1}{6} \log x, x\right)$

To bound $\# \mathcal{N}^{\prime \prime}\left(x ; \frac{1}{6} \log x, x\right)$, which is the number of primes $2<p \leq x$ for which there is some primes $z<q<x$ such that $R(p ; q)$ holds, that is such that $p=1 \bmod q$ and $2^{(p-1) / q}=1 \bmod p$, we use a union bound

$$
\begin{aligned}
& \# \mathcal{N}^{\prime \prime}\left(x ; \frac{1}{6} \log x, x\right) \leq \\
& \# \mathcal{N}^{\prime \prime}\left(x ; \frac{1}{6} \log x, \frac{\sqrt{x}}{(\log x)^{2}}\right)+\# \mathcal{N}^{\prime \prime}\left(x ; \frac{\sqrt{x}}{(\log x)^{2}}, \sqrt{x} \log x\right)+\# \mathcal{N}^{\prime \prime}(x ; \sqrt{x} \log x, x)
\end{aligned}
$$

where the summands put conditions on the existence of a prime q which is "small" (that is $\left.(\log x) / 6<q<\sqrt{x} /(\log x)^{2}\right)$, "medium", meaning $\sqrt{x} /(\log x)^{2}<$ $q<\sqrt{x} \log x$, and "large", meaning $\sqrt{x} \log x<q<x$. We will apply separate considerations for each summand.
4.1. Small primes. For the small primes, we use a union bound together with Theorem 3.1 (so we use GRH here)

$$
\begin{aligned}
\# \mathcal{N}^{\prime \prime}\left(x ; \frac{1}{6} \log x, \frac{\sqrt{x}}{(\log x)^{2}}\right) & \leq \sum_{\frac{1}{6} \log x<q \leq \frac{\sqrt{x}}{(\log x)^{2}}} P(x ; q) \\
& \ll \sum_{\frac{1}{6} \log x<q \leq \frac{\sqrt{x}}{(\log x)^{2}}}\left(\frac{1}{q(q-1)} \frac{x}{\log x}+\sqrt{x} \log x\right) \\
& \leq \frac{x}{\log x} \sum_{\frac{1}{6} \log x<q \leq \frac{\sqrt{x}}{(\log x)^{2}}} \frac{1}{q^{2}}+\sqrt{x} \log x \cdot \pi\left(\frac{\sqrt{x}}{(\log x)^{2}}\right) \\
& \ll \frac{x}{(\log x)^{2}}
\end{aligned}
$$

which is an admissible bound.
4.2. Medium primes. To handle the contribution of "medium" primes q, we replace the condition $p=1 \bmod q$ and $2^{(p-1) / q}-1 \bmod p$ with just the first condition, so that

$$
P(x ; q) \leq \#\{p \leq x: p=1 \bmod q\}=\pi(x ; q, 1)
$$

Now we use the Brun Titchmarsh theorem, which gave a good upper bound for the number of primes in an arithmetic progression with large modulus:

$$
\pi(x ; q, 1) \leq 2 \frac{x}{\varphi(q) \log (x / q)}
$$

Taking into account that we are in the range that q is close to \sqrt{x} gives

$$
P(x ; q) \leq \pi(x ; q, 1) \ll \frac{x}{q \log x}
$$

and hence we find

$$
\begin{aligned}
\# \mathcal{N}^{\prime \prime}\left(x ; \frac{\sqrt{x}}{(\log x)^{2}}, \sqrt{x} \log x\right) & \leq \sum_{\frac{\sqrt{x}}{(\log x)^{2}}<q \leq \sqrt{x} \log x} P(x ; q) \\
& \ll \sum_{\frac{\sqrt{x}}{(\log x)^{2}}<q \leq \sqrt{x} \log x} \frac{x}{q \log x} \\
& =\frac{x}{\log x} \sum_{\frac{\sqrt{x}}{(\log x)^{2}}<q \leq \sqrt{x} \log x} \frac{1}{q}
\end{aligned}
$$

To estimate the sum over q (which are prime), we use Merten's theorem

$$
\sum_{\substack{q<y \\ \text { prime }}} \frac{1}{q}=\log \log y+C+O\left(\frac{1}{\log y}\right)
$$

which gives

$$
\sum_{\frac{\sqrt{x}}{(\log x)^{2}}<q \leq \sqrt{x} \log x} \frac{1}{q} \ll \frac{\log \log x}{\log x}
$$

and therefore

$$
\# \mathcal{N}^{\prime \prime}\left(x ; \frac{\sqrt{x}}{(\log x)^{2}}, \sqrt{x} \log x\right) \ll \frac{x \log \log x}{(\log x)^{2}}
$$

which is an admissible bound.
4.3. Large primes. Finally, we need to bound the contribution of "large" primes, that is $\sqrt{x} \log x<q<x$.

We note that the primes p counted by $\mathcal{N}^{\prime \prime}(x ;, \sqrt{x} \log x, x)$ satisfy $q \mid p-1$ and $2^{(p-1) / q}=1 \bmod p$ and that in our range of q 's, the fraction $m:=$ $(p-1) / q \leq \sqrt{x} / \log x$. Thus these p 's must all divide some $2^{m}-1$ for some $m \leq \sqrt{x} / \log x$, so that they are at most the number of prime divisors of the product of these factors $2^{m}-1$:

$$
\# N^{\prime \prime}(x ;, \sqrt{x} \log x, x) \leq \omega\left(\prod_{m \leq \sqrt{x} / \log x}\left(2^{m}-1\right)\right)
$$

Using the crude bound $\omega(n) \leq \log _{2} n$ gives

$$
\omega\left(\prod_{m \leq \sqrt{x} / \log x}\left(2^{m}-1\right)\right) \ll \sum_{m \leq \sqrt{x} / \log x} m \ll \frac{x}{(\log x)^{2}}
$$

giving

$$
\# \mathcal{N}^{\prime \prime}(x ;, \sqrt{x} \log x, x) \ll \frac{x}{(\log x)^{2}}
$$

which is an admissible bound.

5. Algebraic number theory

We now give some background in algebraic number theory needed for understanding Theorem 3.1.
5.1. Splitting of primes. Given a number field K, that is a finite extension of the rationals, a principal goal of algebraic number theory is to understand the splitting of rational primes in the ring of integers of K. Here the ring of integers of K is the set of all algebraic integers contained in K, namely $\alpha \in \mathbb{Q}$ which are roots of a monic polynomial with integer coefficients.

Example: The Gaussian integers $K=\mathbb{Q}(\sqrt{-1})$. Here the ring of integers is $O_{K}=\mathbb{Z}[\sqrt{-1}]$, the Gaussian integers, which is a Euclidean ring, hence a principal ideal domain, hence has unique factorization into irreducibles. To find what are the irreducibles of $\mathbb{Z}[\sqrt{-1}]$, we check the factorization of rational primes. The result is that there are three possibilities:

- The split case $p=1 \bmod 4$, in which case $p=\pi \bar{\pi}$ splits as a product of two nonassociate primes of K, so that if $\pi=a+i b$ then $p=a^{2}+b^{2}$.
- The inert case $p=3 \bmod 4$, in which case p remains irreducible in K.
- The ramified case $p=2$ which factors as $2=-i(1+i)^{2}$.

For other number fields, even quadratic, there is no longer unique factorization into irreducibles and what replaces it is the unique factorization of ideals in the ring of integers O_{K} into prime ideals. Recall an ideal $P \subset O_{K}$ is prime if $a \cdot b \in P$ iff $a \in P$ or $b \in P$.

Given a rational prime, we can uniquely factor the principal ideal $p O_{K}$ as

$$
p O_{K}=P_{1}^{e_{1}} \ldots P_{g}^{e_{g}}
$$

where P_{j} are distinct prime ideals. Defining the norm of a nonzero ideal $(0) \neq I \subset O_{K}$ as $N(I)=\# O_{K} / I$ (which is finite if $I \neq(0)$), one has

$$
N\left(P_{j}\right)=p^{f_{j}}
$$

for some $f_{j} \geq 1$, called the degree of the prime ideal P_{j}, and there is a conservation law involved in the numbers here:

$$
\sum_{j=1}^{g} e_{j} f_{j}=[K: \mathbb{Q}]
$$

We say that a rational prime p splits completely in K if all $e_{j}=1=f_{j}$, so that

$$
p O_{K}=P_{1} \ldots P_{n}, \quad n=[K: \mathbb{Q}]
$$

is a product of degree one primes.
5.2. Examples. i) In the case of the Gaussian integers, the split primes are precisely $p=1 \bmod 4$.
ii) Another important example are the cyclotomic fields $Z_{q}=\mathbb{Q}\left(\zeta_{q}\right)$, where ζ_{q} is a primitive q-th root of unity. These have degree $\left[Z_{q}: \mathbb{Q}\right]=\varphi(q)$, and the split primes are precisely those such that $p=1 \bmod q$.
iii) The example we shall need is that of a Kummer extension, specifically for prime $q>2$, let

$$
K_{q}=\mathbb{Q}\left(2^{1 / q}, \zeta_{q}\right)
$$

be the splitting field of the polynomial $x^{q}-2$ over the rationals, where ζ_{q} is a primitive q-th root of unity. For q prime (odd),

$$
\left[K_{q}: \mathbb{Q}\right]=q(q-1)
$$

since K_{q} is obtained from the rationals by the sequence $\mathbb{Q} \subset \mathbb{Q}(\sqrt[q]{2}) \subset$ $\mathbb{Q}(\sqrt[q]{2})\left(\zeta_{q}\right)$ and assuming the extension $\mathbb{Q}(\sqrt[q]{2})$, whose degree is q, is disjoint from the cyclotomic extension $\mathbb{Q}\left(\zeta_{q}\right)$, whose degree is $\varphi(q)=q-1$, we obtain $\left[K_{q}: \mathbb{Q}\right]=q(q-1)$. It is then a fact that for $p \nmid 2$,
p splits completely in $K_{q} \Leftrightarrow p=1 \bmod q$ and $2^{(p-1) / q}=1 \bmod p$.
iv) For (odd) squareefree d, define K_{d} to be the compositum of all the fields K_{q} for prime $q \mid d$, whose degree we denote by $n(d):=\left[K_{d}: \mathbb{Q}\right]$. Then $p \nmid 2 d$ splits completely in K_{d} iff $p \nmid 2$ and for all primes $q \mid d$,

$$
p=1 \bmod q \text { and } 2^{(p-1) / q}=1 \bmod p
$$

Thus the number of primes $p \leq x, p \nmid 2 d$, which split completely in K_{d} is (maybe up to $O(\omega(d))$) the quantity $P(x ; d)$ defined in (5).
5.3. Using GRH. For any normal extension K / \mathbb{Q} (equivalently, Galois here because we are in characteristic zero), Landau showed that there are always infinitely many split primes, in fact that

$$
\#\{p \leq x: p \text { splits completely in } K\} \sim \frac{1}{[K: \mathbb{Q}]} \operatorname{Li}(x), \quad x \rightarrow \infty
$$

This is valid for K / \mathbb{Q} fixed, and $x \rightarrow \infty$. We need a version where K varies with x, much as we needed to study the prime number theorem in arithmetic progressions with growing modulus; the case of the progressions $p=1 \bmod q$ being precisely that of the cyclotomic fields.

For a number field K / \mathbb{Q}, the Dedekind zeta function is defined as

$$
\zeta_{K}(s):=\sum_{(0) \neq I \subset O_{K}} \frac{1}{N(I)^{s}}
$$

the sum over all nonzero ideals of O_{K}, which is shown to converge absolutely for $\operatorname{Re}(s)>1$, and in that region by the unique factorization into prime ideals one has an Euler product

$$
\zeta_{K}(s)=\prod_{\substack{P \subset O_{K} \\ \text { prime }}}\left(1-\frac{1}{N(P)^{s}}\right)^{-1}
$$

Is is known that $\zeta_{K}(s)$ has an analytic continuation to the entire complex plane, save for a simple pole at $s=1$, and satisfies a functional equation $s \mapsto 1-s$. The Generalized Riemann Hypothesis for $\zeta_{K}(s)$ is that all (nontrivial) zeros of $\zeta_{K}(s)$ lie on the critical line $\operatorname{Re}(s)=1 / 2$.

Hooley showed that the assumption of the Generalized Riemann Hypothesis for the Dedekind zeta function of K_{d} implies that the number of primes $p \leq x$ which split completely in K_{d}, satisfies

$$
\#\left\{p \leq x: p \text { splits completely in } K_{d}\right\}=\frac{\operatorname{Li}(x)}{\left[K_{d}: \mathbb{Q}\right]}+O\left(x^{1 / 2} \log (x d)\right)
$$

Since this number is essentially our $P(x ; d)$, we obtain Theorem 3.1.

References

[1] C. Hooley, On Artin's conjecture. J. Reine Angew. Math. 2251967 209-220.
[2] P. Moree, Artin's primitive root conjecturea survey. Integers 12 (2012), no. 6, 13051416.
[3] M. Ram Murty, Artin's conjecture for primitive roots. Math. Intelligencer 10 (1988), no. 4, 59-67.

