ARTIN'S PRIMITIVE ROOT CONJECTURE COURSE NOTES, 2015

1. ARTIN'S PRIMITIVE ROOT CONJECTURE

Given a prime p, a primitive root modulo p is a generator of the cyclic group $(\mathbb{Z}/p\mathbb{Z})^{\times}$ of invertible residues modulo p, that is its order in the multiplicative group is p-1, the maximal possible value. Gauss seemed to have observed that 10 occurs often as a primitive root, for instance in 39 of the first 100 primes. Likewise, 2 is a primitive root for 41 of the first 100 primes.

Exercise 1. i) If $p \nmid 10$ then 1/p has a periodic decimal expansion, e.g. $1/7 = 0.142857 \ 142857 \ ...$ has period 6, $1/11 = 0.09 \ 09 \ ...$ has period 2. ii) The order of 10 mod p is the length of the minimal period.

Exercise 2. If p is a prime of the form p = 4p' + 1 where p' is also prime, then 2 is a primitive root modulo p.

The problem with this approach is that we do not know that there are infinitely many primes of this form.

It is clear that a perfect square cannot be a primitive root if p > 2. In 1927, Artin conjectured that for any integer $g \neq -1, \Box$, there are infinitely many prime p for which g is a primitive root modulo p. A quantitative version is that

Conjecture. If $g \neq -1$ or a perfect square, then there is C(g) > 0 such that

$$\#\{p \le x : g \text{ is a primitive root modulo } p\} \sim C(g) \frac{x}{\log x}. \quad x \to \infty$$

The constant C(g) is known; for the simple case g = 2, we have

$$C(2) = \prod_{q \text{ prime}} (1 - \frac{1}{q(q-1)}) = 0.3739\dots$$

In 1967, Hooley [1] proved Artin's conjecture, assuming the Generalized Riemann Hypothesis (GRH) for the Dedekind zeta function of a certain infinite family of number fields (Kummer extensions). Below we will explain his argument. For further reading, see the surveys of Murty [3] and Moree [2].

Date: June 17, 2015.

2. Hooley's Approach

From now on, we will take g = 2, so we want primes p for which 2 is a primitive root modulo p. Set

 $\mathcal{N}(x) := \{ p \le x \text{ prime}, p \nmid 2, 2 \text{ is a primitive root modulo } p \}$

and we want to show that $\#\mathcal{N}(x) \sim C(2)x/\log x$.

We observe that for $p \nmid 2$, the condition 2 is a primitive root modulo p is equivalent to the condition

(1)
$$\forall \text{ prime } q \text{ s.t. } q \mid p-1, \ 2^{(p-1)/q} \neq 1 \ \text{mod } p$$

that is we have not(R(p;q)) for all primes q, where R(p;q) is the condition

(2)
$$R(p;q): p = 1 \mod q \text{ and } 2^{(p-1)/q} = 1 \mod p$$

For z < x, set

$$\mathcal{N}'(x, z) := \{ 2$$

so that

$$\mathcal{N}(x) = \mathcal{N}'(x, x - 1)$$

and

$$\mathcal{N}(x) \subseteq \mathcal{N}'(x,z)$$

for all z < x.

We also set, for w < z,

$$\mathcal{N}''(x; w, z) = \{2$$

Then clearly

$$\mathcal{N}'(x;z) \subseteq \mathcal{N}(x) \cup \mathcal{N}''(x;z,x)$$

and hence

$$\#\mathcal{N}(x) = \#\mathcal{N}'(x;z) + O\Big(\#\mathcal{N}''(x;z,x)\Big)$$

We will take $z = \log x/6$ and show

(3)
$$\#\mathcal{N}'(x;\frac{1}{6}\log x) = C(2)\frac{x}{\log x} + O(\frac{x}{(\log x)^2})$$

and

(4)
$$\#\mathcal{N}''(x;\frac{1}{6}\log x,x) \ll \frac{x}{(\log x)^2}\log\log x$$

which will give our Theorem.

3. EVALUATING $\#\mathcal{N}'(x; \frac{1}{6}\log x)$

Let

$$P(z) := \prod_{2$$

if $z \approx (\log x)/6$. For $d \mid P(z)$ (necessarily squarefree), set

(5)
$$P(x;d) := \#\{p \le x : R(p;q) \text{ holds } \forall \text{ prime } q \mid d\}$$

(for d = 1 there is no condition).

Theorem 3.1. Assume the Generalized Riemann Hypothesis. Then for squarefree d,

$$P(x;d) = \frac{1}{n(d)}\operatorname{Li}(x) + O\left(x^{1/2}\log(dx)\right)$$

where $n(d) = d\varphi(d)$.

To explain Theorem 3.1, we will need a major bit of input from algebraic number theory, the explanation of which is deferred to later on.

By the sieve of Eratosthenes,

$$\#\mathcal{N}'(x;z) = \sum_{d|P(z)} \mu(d)P(x;d)$$

and inputing Theorem 3.1 gives

$$\begin{split} \#\mathcal{N}'(x;z) &= \sum_{d|P(z)} \mu(d) \Big(\frac{\operatorname{Li}(x)}{d\varphi(d)} + O\Big(x^{1/2} \log(dx) \Big) \Big) \\ &= C(2) \Big(1 + O(\frac{1}{z}) \Big) \operatorname{Li}(x) + O(x^{1/2} \log x \sum_{d|P(z)} 1) \\ &= C(2) \Big(1 + O(\frac{1}{z}) \Big) \operatorname{Li}(x) + O(x^{1/2} \log x \cdot 2^z) \end{split}$$

because

$$\sum_{\substack{d|P(z) \\ \text{prime}}} \frac{1}{d\varphi(d)} = \prod_{\substack{q|P(z) \\ \text{prime}}} (1 - \frac{1}{q(q-1)}) = C(2) \left(1 + O(\frac{1}{z})\right)$$

Taking into account $z \approx (\log x)/6$, so that $2^z \ll x^{1/3}$, we get

$$\#\mathcal{N}'(x;\frac{\log x}{6}) = C(2)\frac{x}{\log x} + O(\frac{x}{(\log x)^2})$$

giving (3).

4. Estimating $\# \mathcal{N}''(x; \frac{1}{6} \log x, x)$

To bound $\#\mathcal{N}''(x; \frac{1}{6}\log x, x)$, which is the number of primes 2 for which there is some primes <math>z < q < x such that R(p;q) holds, that is such that $p = 1 \mod q$ and $2^{(p-1)/q} = 1 \mod p$, we use a union bound

$$\#\mathcal{N}''(x; \frac{1}{6}\log x, x) \le \\ \#\mathcal{N}''(x; \frac{1}{6}\log x, \frac{\sqrt{x}}{(\log x)^2}) + \#\mathcal{N}''(x; \frac{\sqrt{x}}{(\log x)^2}, \sqrt{x}\log x) + \#\mathcal{N}''(x; \sqrt{x}\log x, x)$$

where the summands put conditions on the existence of a prime q which is "small" (that is $(\log x)/6 < q < \sqrt{x}/(\log x)^2$), "medium", meaning $\sqrt{x}/(\log x)^2 < q < \sqrt{x} \log x$, and "large", meaning $\sqrt{x} \log x < q < x$. We will apply separate considerations for each summand.

4.1. **Small primes.** For the small primes, we use a union bound together with Theorem 3.1 (so we use GRH here)

$$\begin{split} \#\mathcal{N}''(x;\frac{1}{6}\log x,\frac{\sqrt{x}}{(\log x)^2}) &\leq \sum_{\frac{1}{6}\log x < q \leq \frac{\sqrt{x}}{(\log x)^2}} P(x;q) \\ &\ll \sum_{\frac{1}{6}\log x < q \leq \frac{\sqrt{x}}{(\log x)^2}} \left(\frac{1}{q(q-1)}\frac{x}{\log x} + \sqrt{x}\log x\right) \\ &\leq \frac{x}{\log x} \sum_{\frac{1}{6}\log x < q \leq \frac{\sqrt{x}}{(\log x)^2}} \frac{1}{q^2} + \sqrt{x}\log x \cdot \pi(\frac{\sqrt{x}}{(\log x)^2}) \\ &\ll \frac{x}{(\log x)^2} \end{split}$$

which is an admissible bound.

4.2. Medium primes. To handle the contribution of "medium" primes q, we replace the condition $p = 1 \mod q$ and $2^{(p-1)/q} - 1 \mod p$ with just the first condition, so that

$$P(x;q) \le \#\{p \le x : p = 1 \mod q\} = \pi(x;q,1)$$

Now we use the Brun Titchmarsh theorem, which gave a good upper bound for the number of primes in an arithmetic progression with large modulus:

$$\pi(x;q,1) \le 2\frac{x}{\varphi(q)\log(x/q)}$$

Taking into account that we are in the range that q is close to \sqrt{x} gives

$$P(x;q) \le \pi(x;q,1) \ll \frac{x}{q\log x}$$

and hence we find

$$#\mathcal{N}''(x; \frac{\sqrt{x}}{(\log x)^2}, \sqrt{x} \log x) \le \sum_{\substack{\frac{\sqrt{x}}{(\log x)^2} < q \le \sqrt{x} \log x}} P(x; q)$$
$$\ll \sum_{\substack{\frac{\sqrt{x}}{(\log x)^2} < q \le \sqrt{x} \log x}} \frac{x}{q \log x}$$
$$= \frac{x}{\log x} \sum_{\substack{\frac{\sqrt{x}}{(\log x)^2} < q \le \sqrt{x} \log x}} \frac{1}{q}$$

To estimate the sum over q (which are prime), we use Merten's theorem

$$\sum_{\substack{q < y \\ \text{prime}}} \frac{1}{q} = \log \log y + C + O(\frac{1}{\log y})$$

which gives

$$\sum_{\frac{\sqrt{x}}{(\log x)^2} < q \le \sqrt{x} \log x} \frac{1}{q} \ll \frac{\log \log x}{\log x}$$

and therefore

$$\#\mathcal{N}''(x; \frac{\sqrt{x}}{(\log x)^2}, \sqrt{x}\log x) \ll \frac{x\log\log x}{(\log x)^2}$$

which is an admissible bound.

4.3. Large primes. Finally, we need to bound the contribution of "large" primes, that is $\sqrt{x} \log x < q < x$.

We note that the primes p counted by $\mathcal{N}''(x; \sqrt{x} \log x, x)$ satisfy $q \mid p-1$ and $2^{(p-1)/q} = 1 \mod p$ and that in our range of q's, the fraction $m := (p-1)/q \le \sqrt{x}/\log x$. Thus these p's must all divide some $2^m - 1$ for some $m \le \sqrt{x}/\log x$, so that they are at most the number of prime divisors of the product of these factors $2^m - 1$:

$$\# N''(x; \sqrt{x} \log x, x) \le \omega (\prod_{m \le \sqrt{x}/\log x} (2^m - 1))$$

Using the crude bound $\omega(n) \leq \log_2 n$ gives

$$\omega(\prod_{m \le \sqrt{x}/\log x} (2^m - 1)) \ll \sum_{m \le \sqrt{x}/\log x} m \ll \frac{x}{(\log x)^2}$$

giving

$$\#\mathcal{N}''(x;,\sqrt{x}\log x,x) \ll \frac{x}{(\log x)^2}$$

which is an admissible bound.

5. Algebraic number theory

We now give some background in algebraic number theory needed for understanding Theorem 3.1.

5.1. Splitting of primes. Given a number field K, that is a finite extension of the rationals, a principal goal of algebraic number theory is to understand the splitting of rational primes in the ring of integers of K. Here the ring of integers of K is the set of all algebraic integers contained in K, namely $\alpha \in \overline{\mathbb{Q}}$ which are roots of a *monic* polynomial with integer coefficients.

Example: The Gaussian integers $K = \mathbb{Q}(\sqrt{-1})$. Here the ring of integers is $O_K = \mathbb{Z}[\sqrt{-1}]$, the Gaussian integers, which is a Euclidean ring, hence a principal ideal domain, hence has unique factorization into irreducibles. To find what are the irreducibles of $\mathbb{Z}[\sqrt{-1}]$, we check the factorization of rational primes. The result is that there are three possibilities:

- The split case $p = 1 \mod 4$, in which case $p = \pi \overline{\pi}$ splits as a product of two nonassociate primes of K, so that if $\pi = a + ib$ then $p = a^2 + b^2$.
- The inert case $p = 3 \mod 4$, in which case p remains irreducible in K.
- The ramified case p = 2 which factors as $2 = -i(1+i)^2$.

For other number fields, even quadratic, there is no longer unique factorization into irreducibles and what replaces it is the unique factorization of ideals in the ring of integers O_K into prime ideals. Recall an ideal $P \subset O_K$ is prime if $a \cdot b \in P$ iff $a \in P$ or $b \in P$.

Given a rational prime, we can uniquely factor the principal ideal pO_K as

$$pO_K = P_1^{e_1} \dots P_g^{e_g}$$

where P_j are distinct prime ideals. Defining the norm of a nonzero ideal $(0) \neq I \subset O_K$ as $N(I) = \#O_K/I$ (which is finite if $I \neq (0)$), one has

$$N(P_j) = p^{f_j}$$

for some $f_j \ge 1$, called the degree of the prime ideal P_j , and there is a conservation law involved in the numbers here:

$$\sum_{j=1}^{g} e_j f_j = [K:\mathbb{Q}]$$

We say that a rational prime p splits completely in K if all $e_j = 1 = f_j$, so that

$$pO_K = P_1 \dots P_n, \quad n = [K : \mathbb{Q}]$$

is a product of degree one primes.

5.2. **Examples.** i) In the case of the Gaussian integers, the split primes are precisely $p = 1 \mod 4$.

ii) Another important example are the cyclotomic fields $Z_q = \mathbb{Q}(\zeta_q)$, where ζ_q is a primitive q-th root of unity. These have degree $[Z_q : \mathbb{Q}] = \varphi(q)$, and the split primes are precisely those such that $p = 1 \mod q$. iii) The example we shall need is that of a Kummer extension, specifically for prime q > 2, let

$$K_q = \mathbb{Q}(2^{1/q}, \zeta_q)$$

be the splitting field of the polynomial $x^q - 2$ over the rationals, where ζ_q is a primitive q-th root of unity. For q prime (odd),

$$[K_q:\mathbb{Q}] = q(q-1)$$

since K_q is obtained from the rationals by the sequence $\mathbb{Q} \subset \mathbb{Q}(\sqrt[q]{2}) \subset \mathbb{Q}(\sqrt[q]{2})(\zeta_q)$ and assuming the extension $\mathbb{Q}(\sqrt[q]{2})$, whose degree is q, is disjoint from the cyclotomic extension $\mathbb{Q}(\zeta_q)$, whose degree is $\varphi(q) = q-1$, we obtain $[K_q:\mathbb{Q}] = q(q-1)$. It is then a fact that for $p \nmid 2$,

p splits completely in $K_q \Leftrightarrow p = 1 \mod q$ and $2^{(p-1)/q} = 1 \mod p$.

iv) For (odd) squareefree d, define K_d to be the compositum of all the fields K_q for prime $q \mid d$, whose degree we denote by $n(d) := [K_d : \mathbb{Q}]$. Then $p \nmid 2d$ splits completely in K_d iff $p \nmid 2$ and for all primes $q \mid d$,

$$p = 1 \mod q$$
 and $2^{(p-1)/q} = 1 \mod p$

Thus the number of primes $p \leq x$, $p \nmid 2d$, which split completely in K_d is (maybe up to $O(\omega(d))$) the quantity P(x; d) defined in (5).

5.3. Using GRH. For any normal extension K/\mathbb{Q} (equivalently, Galois here because we are in characteristic zero), Landau showed that there are always infinitely many split primes, in fact that

$$#\{p \le x : p \text{ splits completely in } K\} \sim \frac{1}{[K : \mathbb{Q}]} \operatorname{Li}(x), \quad x \to \infty.$$

This is valid for K/\mathbb{Q} fixed, and $x \to \infty$. We need a version where K varies with x, much as we needed to study the prime number theorem in arithmetic progressions with growing modulus; the case of the progressions $p = 1 \mod q$ being precisely that of the cyclotomic fields.

For a number field K/\mathbb{Q} , the Dedekind zeta function is defined as

$$\zeta_K(s) := \sum_{(0) \neq I \subset O_K} \frac{1}{N(I)^s}$$

the sum over all nonzero ideals of O_K , which is shown to converge absolutely for $\operatorname{Re}(s) > 1$, and in that region by the unique factorization into prime ideals one has an Euler product

$$\zeta_K(s) = \prod_{\substack{P \subset O_K \\ \text{prime}}} (1 - \frac{1}{N(P)^s})^{-1}$$

Is is known that $\zeta_K(s)$ has an analytic continuation to the entire complex plane, save for a simple pole at s = 1, and satisfies a functional equation $s \mapsto 1 - s$. The Generalized Riemann Hypothesis for $\zeta_K(s)$ is that all (nontrivial) zeros of $\zeta_K(s)$ lie on the critical line $\operatorname{Re}(s) = 1/2$. Hooley showed that the assumption of the Generalized Riemann Hypothesis for the Dedekind zeta function of K_d implies that the number of primes $p \leq x$ which split completely in K_d , satisfies

$$\#\{p \le x : p \text{ splits completely in } K_d\} = \frac{\operatorname{Li}(x)}{[K_d : \mathbb{Q}]} + O\left(x^{1/2} \log(xd)\right)$$

Since this number is essentially our P(x; d), we obtain Theorem 3.1.

References

- [1] C. Hooley, On Artin's conjecture. J. Reine Angew. Math. 225 1967 209-220.
- [2] P. Moree, Artin's primitive root conjecturea survey. Integers 12 (2012), no. 6, 1305– 1416.
- [3] M. Ram Murty, Artin's conjecture for primitive roots. Math. Intelligencer 10 (1988), no. 4, 59–67.