
ARTIN’S PRIMITIVE ROOT CONJECTURE

COURSE NOTES, 2015

1. Artin’s primitive root conjecture

Given a prime p, a primitive root modulo p is a generator of the cyclic
group (Z/pZ)× of invertible residues modulo p, that is its order in the mul-
tiplicative group is p−1, the maximal possible value. Gauss seemed to have
observed that 10 occurs often as a primitive root, for instance in 39 of the
first 100 primes. Likewise, 2 is a primitive root for 41 of the first 100 primes.

Exercise 1. i) If p - 10 then 1/p has a periodic decimal expansion, e.g.
1/7 = 0.142857 142857 . . . has period 6, 1/11 = 0.09 09 . . . has period 2.

ii) The order of 10 mod p is the length of the minimal period.

Exercise 2. If p is a prime of the form p = 4p′ + 1 where p′ is also prime,
then 2 is a primitive root modulo p.

The problem with this approach is that we do not know that there are
infinitely many primes of this form.

It is clear that a perfect square cannot be a primitive root if p > 2. In
1927, Artin conjectured that for any integer g 6= −1,�, there are infinitely
many prime p for which g is a primitive root modulo p. A quantitative
version is that

Conjecture. If g 6= −1 or a perfect square, then there is C(g) > 0 such
that

#{p ≤ x : g is a primitive root modulo p} ∼ C(g)
x

log x
. x→∞

The constant C(g) is known; for the simple case g = 2, we have

C(2) =
∏

q prime

(1− 1

q(q − 1)
) = 0.3739 . . .

In 1967, Hooley [1] proved Artin’s conjecture, assuming the Generalized
Riemann Hypothesis (GRH) for the Dedekind zeta function of a certain
infinite family of number fields (Kummer extensions). Below we will explain
his argument. For further reading, see the surveys of Murty [3] and Moree
[2].
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2 ARTIN’S PRIMITIVE ROOT CONJECTURE

2. Hooley’s approach

From now on, we will take g = 2, so we want primes p for which 2 is a
primitive root modulo p. Set

N (x) := {p ≤ x prime, p - 2, 2 is a primitive root modulo p}

and we want to show that #N (x) ∼ C(2)x/ log x.
We observe that for p - 2, the condition 2 is a primitive root modulo p is

equivalent to the condition

(1) ∀ prime q s.t. q | p− 1, 2(p−1)/q 6= 1 mod p

that is we have not(R(p; q)) for all primes q, where R(p; q) is the condition

(2) R(p; q) : p = 1 mod q and 2(p−1)/q = 1 mod p

For z < x, set

N ′(x, z) := {2 < p ≤ x : ∀ prime q ≤ z, notR(p; q)}

so that

N (x) = N ′(x, x− 1)

and

N (x) ⊆ N ′(x, z)

for all z < x.
We also set, for w < z,

N ′′(x;w, z) = {2 < p ≤ x : ∃ prime w < q ≤ z, s.t. R(p, q) holds}

Then clearly

N ′(x; z) ⊆ N (x) ∪N ′′(x; z, x)

and hence

#N (x) = #N ′(x; z) +O
(

#N ′′(x; z, x)
)

We will take z = log x/6 and show

(3) #N ′(x;
1

6
log x) = C(2)

x

log x
+O(

x

(log x)2
)

and

(4) #N ′′(x;
1

6
log x, x)� x

(log x)2
log log x

which will give our Theorem.
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3. Evaluating #N ′(x; 1
6 log x)

Let

P (z) :=
∏

2<p≤z
p ≈ x1/3

if z ≈ (log x)/6. For d | P (z) (necessarily squarefree), set

(5) P (x; d) := #{p ≤ x : R(p; q) holds ∀ prime q | d}

(for d = 1 there is no condition).

Theorem 3.1. Assume the Generalized Riemann Hypothesis. Then for
squarefree d,

P (x; d) =
1

n(d)
Li(x) +O

(
x1/2 log(dx)

)
where n(d) = dϕ(d).

To explain Theorem 3.1, we will need a major bit of input from algebraic
number theory, the explanation of which is deferred to later on.

By the sieve of Eratosthenes,

#N ′(x; z) =
∑

d|P (z)

µ(d)P (x; d)

and inputing Theorem 3.1 gives

#N ′(x; z) =
∑

d|P (z)

µ(d)
( Li(x)

dϕ(d)
+O

(
x1/2 log(dx)

))
= C(2)

(
1 +O(

1

z
)
)

Li(x) +O(x1/2 log x
∑

d|P (z)

1)

= C(2)
(

1 +O(
1

z
)
)

Li(x) +O(x1/2 log x · 2z)

because ∑
d|P (z)

1

dϕ(d)
=
∏

q|P (z)
prime

(1− 1

q(q − 1)
) = C(2)

(
1 +O(

1

z
)
)

Taking into account z ≈ (log x)/6, so that 2z � x1/3, we get

#N ′(x;
log x

6
) = C(2)

x

log x
+O(

x

(log x)2
)

giving (3).
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4. Estimating #N ′′(x; 1
6 log x, x)

To bound #N ′′(x; 1
6 log x, x), which is the number of primes 2 < p ≤ x

for which there is some primes z < q < x such that R(p; q) holds, that is

such that p = 1 mod q and 2(p−1)/q = 1 mod p, we use a union bound

#N ′′(x;
1

6
log x, x) ≤

#N ′′(x;
1

6
log x,

√
x

(log x)2
)+#N ′′(x;

√
x

(log x)2
,
√
x log x)+#N ′′(x;

√
x log x, x)

where the summands put conditions on the existence of a prime q which is
“small” (that is (log x)/6 < q <

√
x/(log x)2), “medium”, meaning

√
x/(log x)2 <

q <
√
x log x, and “large”, meaning

√
x log x < q < x. We will apply sepa-

rate considerations for each summand.

4.1. Small primes. For the small primes, we use a union bound together
with Theorem 3.1 (so we use GRH here)

#N ′′(x;
1

6
log x,

√
x

(log x)2
) ≤

∑
1
6
log x<q≤

√
x

(log x)2

P (x; q)

�
∑

1
6
log x<q≤

√
x

(log x)2

( 1

q(q − 1)

x

log x
+
√
x log x

)

≤ x

log x

∑
1
6
log x<q≤

√
x

(log x)2

1

q2
+
√
xlog x · π(

√
x

(log x)2
)

� x

(log x)2

which is an admissible bound.

4.2. Medium primes. To handle the contribution of “medium” primes q,
we replace the condition p = 1 mod q and 2(p−1)/q − 1 mod p with just the
first condition, so that

P (x; q) ≤ #{p ≤ x : p = 1 mod q} = π(x; q, 1)

Now we use the Brun Titchmarsh theorem, which gave a good upper bound
for the number of primes in an arithmetic progression with large modulus:

π(x; q, 1) ≤ 2
x

ϕ(q) log(x/q)

Taking into account that we are in the range that q is close to
√
x gives

P (x; q) ≤ π(x; q, 1)� x

q log x
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and hence we find

#N ′′(x;

√
x

(log x)2
,
√
x log x) ≤

∑
√
x

(log x)2
<q≤

√
x log x

P (x; q)

�
∑

√
x

(log x)2
<q≤

√
x log x

x

q log x

=
x

log x

∑
√
x

(log x)2
<q≤

√
x log x

1

q

To estimate the sum over q (which are prime), we use Merten’s theorem∑
q<y
prime

1

q
= log log y + C +O(

1

log y
)

which gives ∑
√
x

(log x)2
<q≤

√
x log x

1

q
� log log x

log x

and therefore

#N ′′(x;

√
x

(log x)2
,
√
x log x)� x log log x

(log x)2

which is an admissible bound.

4.3. Large primes. Finally, we need to bound the contribution of “large”
primes, that is

√
x log x < q < x.

We note that the primes p counted by N ′′(x; ,
√
x log x, x) satisfy q | p−1

and 2(p−1)/q = 1 mod p and that in our range of q’s, the fraction m :=
(p− 1)/q ≤

√
x/ log x. Thus these p’s must all divide some 2m − 1 for some

m ≤
√
x/ log x, so that they are at most the number of prime divisors of the

product of these factors 2m − 1:

#N ′′(x; ,
√
x log x, x) ≤ ω(

∏
m≤
√
x/ log x

(2m − 1))

Using the crude bound ω(n) ≤ log2 n gives

ω(
∏

m≤
√
x/ log x

(2m − 1))�
∑

m≤
√
x/ log x

m� x

(log x)2

giving

#N ′′(x; ,
√
x log x, x)� x

(log x)2

which is an admissible bound.
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5. Algebraic number theory

We now give some background in algebraic number theory needed for
understanding Theorem 3.1.

5.1. Splitting of primes. Given a number fieldK, that is a finite extension
of the rationals, a principal goal of algebraic number theory is to understand
the splitting of rational primes in the ring of integers of K. Here the ring
of integers of K is the set of all algebraic integers contained in K, namely
α ∈ Q̄ which are roots of a monic polynomial with integer coefficients.

Example: The Gaussian integers K = Q(
√
−1). Here the ring of integers

is OK = Z[
√
−1], the Gaussian integers, which is a Euclidean ring, hence

a principal ideal domain, hence has unique factorization into irreducibles.
To find what are the irreducibles of Z[

√
−1], we check the factorization of

rational primes. The result is that there are three possibilities:

• The split case p = 1 mod 4, in which case p = ππ splits as a product
of two nonassociate primes of K, so that if π = a+ib then p = a2+b2.
• The inert case p = 3 mod 4, in which case p remains irreducible in
K.
• The ramified case p = 2 which factors as 2 = −i(1 + i)2.

For other number fields, even quadratic, there is no longer unique factor-
ization into irreducibles and what replaces it is the unique factorization of
ideals in the ring of integers OK into prime ideals. Recall an ideal P ⊂ OK

is prime if a · b ∈ P iff a ∈ P or b ∈ P .
Given a rational prime, we can uniquely factor the principal ideal pOK as

pOK = P e1
1 . . . P

eg
g

where Pj are distinct prime ideals. Defining the norm of a nonzero ideal
(0) 6= I ⊂ OK as N(I) = #OK/I (which is finite if I 6= (0)), one has

N(Pj) = pfj

for some fj ≥ 1, called the degree of the prime ideal Pj , and there is a
conservation law involved in the numbers here:

g∑
j=1

ejfj = [K : Q]

We say that a rational prime p splits completely in K if all ej = 1 = fj , so
that

pOK = P1 . . . Pn, n = [K : Q]

is a product of degree one primes.

5.2. Examples. i) In the case of the Gaussian integers, the split primes are
precisely p = 1 mod 4.

ii) Another important example are the cyclotomic fields Zq = Q(ζq),
where ζq is a primitive q-th root of unity. These have degree [Zq : Q] = ϕ(q),
and the split primes are precisely those such that p = 1 mod q.
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iii) The example we shall need is that of a Kummer extension, specifically
for prime q > 2, let

Kq = Q(21/q, ζq)

be the splitting field of the polynomial xq − 2 over the rationals, where ζq is
a primitive q-th root of unity. For q prime (odd),

[Kq : Q] = q(q − 1)

since Kq is obtained from the rationals by the sequence Q ⊂ Q( q
√

2) ⊂
Q( q
√

2)(ζq) and assuming the extension Q( q
√

2), whose degree is q, is disjoint
from the cyclotomic extension Q(ζq), whose degree is ϕ(q) = q−1, we obtain
[Kq : Q] = q(q − 1). It is then a fact that for p - 2,

p splits completely in Kq ⇔ p = 1 mod q and 2(p−1)/q = 1 mod p .

iv) For (odd) squareefree d, define Kd to be the compositum of all the
fields Kq for prime q | d, whose degree we denote by n(d) := [Kd : Q]. Then
p - 2d splits completely in Kd iff p - 2 and for all primes q | d,

p = 1 mod q and 2(p−1)/q = 1 mod p

Thus the number of primes p ≤ x, p - 2d, which split completely in Kd is
(maybe up to O(ω(d))) the quantity P (x; d) defined in (5).

5.3. Using GRH. For any normal extension K/Q (equivalently, Galois
here because we are in characteristic zero), Landau showed that there are
always infinitely many split primes, in fact that

#{p ≤ x : p splits completely in K} ∼ 1

[K : Q]
Li(x), x→∞ .

This is valid for K/Q fixed, and x → ∞. We need a version where K
varies with x, much as we needed to study the prime number theorem in
arithmetic progressions with growing modulus; the case of the progressions
p = 1 mod q being precisely that of the cyclotomic fields.

For a number field K/Q, the Dedekind zeta function is defined as

ζK(s) :=
∑

(0)6=I⊂OK

1

N(I)s

the sum over all nonzero ideals of OK , which is shown to converge absolutely
for Re(s) > 1, and in that region by the unique factorization into prime ideals
one has an Euler product

ζK(s) =
∏

P⊂OK
prime

(1− 1

N(P )s
)−1

Is is known that ζK(s) has an analytic continuation to the entire complex
plane, save for a simple pole at s = 1, and satisfies a functional equation
s 7→ 1 − s. The Generalized Riemann Hypothesis for ζK(s) is that all
(nontrivial) zeros of ζK(s) lie on the critical line Re(s) = 1/2.
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Hooley showed that the assumption of the Generalized Riemann Hypoth-
esis for the Dedekind zeta function of Kd implies that the number of primes
p ≤ x which split completely in Kd, satisfies

#{p ≤ x : p splits completely in Kd} =
Li(x)

[Kd : Q]
+O

(
x1/2 log(xd)

)
Since this number is essentially our P (x; d), we obtain Theorem 3.1.
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