
COURSE NOTES, 2015: MEAN VALUES OF

MULTIPLICATIVE FUNCTIONS

1. Mean values of multiplicative functions

1.1. Motivation: the Selberg sieve. Recall the sieving problem from the
last lecture: given the following

• A ⊂ Z with #A = X;
• P a set of primes and

P (z) =
∏
p≤z
p∈P

p;

• for each square-free d such that p|d⇒ p ∈ P define

Ad = {n ∈ A : d|n}.
and assume

(1) #Ad =
X

f(d)
+Rd

where f is a multiplicative function;
•

S(A,P, z) = #{n ∈ A : gcd(n, P (z)) = 1}
The Selberg Sieve gave the bound

S(A,P, z) ≤ X

S(z)
+R(z)

where

S(z) =
∑
d≤z
d|P (z)

µ2(d)

(µ ∗ f)(d)

and
R(z) =

∑
d1,d2≤z
d1,d2|P (z)

|R[d1,d2]|.

It will be convenient for us to write f(d) = d/ω(d).
We saw that when applying the Selberg sieve one requires a lower bound

for

S(z) =
∑
n≤z
n|P (z)

µ2(n)

(µ ∗ f)(n)
.

Date: May 14, 2015.

1



2 MEAN VALUES OF MULTIPLICATIVE FUNCTIONS

In applications this can be difficult. In this lecture we will discuss the prob-
lem of evaluating mean values of multiplicative functions, and in particular
estimating sums of the form above.

First let us rewrite S(z) in a more convenient way. Define the multiplica-
tive function ω(n) such that ω(pk) = 0 for k ≥ 2 and

ω(p) =

{
p

f(p) if p ∈ P
0 if p /∈ P.

It follows that for n|P (z) and d|n we have

ω
(n
d

)
=
ω(n)

ω(d)

so for n|P (z) we have

(µ ∗ f)(n) =
∑
d|n

f(n/d)µ(d) = n
∑
d|n

µ(d)

dω(d)
=

n

ω(n)

∏
p|n

(
1− ω(p)

p

)
Thus,

S(z) =
∑
d≤z
d|P (z)

µ2(d)

(µ ∗ f)(d)
=
∑
d≤z

ω(d)

d
∏
p|d

(
1− ω(p)

p

) .
Our main result is

Theorem 1.1. Let ω(p) be as above. Suppose in addition that∑
p≤z

ω(p) log p

p
= κ log z +O(1),

for some κ ≥ 0. Then

S(z) � (log z)κ.

In fact under these assumptions it is possible to give an asymptotic for-
mula for S(z). We will delay discussion of this for later. An immediate
corollary is

Corollary 1.2. In the notation as above, we have for ω(p) satisfying the
hypotheses of the previous theorem that

S(A,P, z)� X

(log z)κ
+

∑
d1,d2≤z
d1,d2|P (z)

|R[d1,d2]|,

To see a simple application of the result let us recall that when bounding
the number of twin primes we saw that

π2(x)� x

S(z)
+ (z log z)2
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where

S(z) =
∑
d≤z

ρ(d)

d
∏
p|d(1− ρ(p)/p)

and ρ(d) is supported on square frees and is given by

ρ(p) =

{
1, if p = 2

2, otherwise.

From the above definition one gets by Mertens’ theorem

∑
p≤z

ρ(p) log p

p
= 2 log z +O(1).

Theorem 1.1 implies S(z) � (log z)2. Taking z = x1/2−o(1) we get

π2(x)� x

(log x)2
.

1.2. Mean values of multiplicative functions. For a multiplicative func-
tion f define

Mf (x) =
∑
n≤x

f(n)

to be its mean value. Let’s first start with a simple example. Recall τ(n) =
(1 ∗ 1)(n) =

∑
d|n 1, so that

Mτ (x) =
∑
n≤x

∑
d|n

1

=
∑
d≤x

∑
n≤x
d|n

1

=
∑
d≤x

(x
d

+O(1)
)

=x log x+O(x).

This example suggests the following strategy for estimating Mf (x). Write
f = 1 ∗ g, where g = µ ∗ f so that h is multiplicative following the same
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argument gives

Mf (x) =
∑
n≤x

∑
d|n

g(d)

=
∑
d≤x

g(d)
∑
n≤x
d|n

1

=
∑
d≤x

g(d)
(x
d

+O(1)
)

=x
∑
d≤x

g(d)

d
+O

∑
d≤x
|g(d)|

 .

At this point we now argue heuristically. Since h is multiplicative one
may expect that∑

d≤x

g(d)

d
∼
∏
p≤x

(
1 +

g(p)

p
+
g(p2)

p2
+ · · ·

)

=
∏
p≤x

(
1 +

f(p)− 1

p
+
f(p2)− f(p)

p2
+ · · ·

)

=
∏
p≤x

(
1 +

f(p)

p
+
f(p2)

p2
+ · · ·

)(
1− 1

p

)
Remark. In the case of the divisor function τ(n) the heuristic accurately
predicts Mτ (x) � x log x, however for the Möbius function the heuristic gives
Mµ(x) � x/(log x)2, which is known to be false. So for general multiplicative
functions the heuristic will not be able to be made rigorous. However, if
g = µ ∗ f is small then the heuristic can be made rigorous.

1.3. Upper bounds. Even though the heuristic does not hold in general,
it is possible to prove upper bounds of this form for certain multiplicative
functions.

Proposition 1.3. Let f be a multiplicative function. Then if f(pk) −
f(pk−1) ≥ 0 for all k ≥ 1

Mf (x) ≤ x
∏
p≤x

(
1 +

f(p)

p
+
f(p2)

p2
+ · · ·

)(
1− 1

p

)
.

Proof. Write f = 1∗g so that g = µ∗f . This implies that g is multiplicative
and

g(pk) =
∑
d|pk

µ

(
pk

d

)
f(d) = f(pk)− f(pk−1) ≥ 0.
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Thus, h(n) ≥ 0 so that

Mf (x) =
∑
n≤x

∑
d|n

g(d)

≤x
∑
n≤x

g(d)

d

≤x
∏
p≤x

(
1 +

g(p)

p
+
g(p2)

p2
+ · · ·

)
.

�

Consider the function τk(n) = (τk−1 ∗ 1)(n) where τ2(n) = τ(n) is the
divisor function. Then

τk(p
j) =

(k + j − 1)!

j!(k − 1)!
.

Corollary 1.4. For each k ≥ 2 and j ≥ 1∑
n≤x

τk(n)` � x(log x)k
`−1.

Consequently,
τk(n)� nε.

Proof. Clearly τk(p
j)− τk(pj−1) ≥ 0 so the previous lemma implies that

M
τ jk

(x) ≤x
∏
p≤x

(
1 +

k`

p
+O

(
1

p2

))(
1− 1

p

)

=x exp

(k` − 1)
∑
p≤x

(
1

p
+O

(
1

p2

))
�x(log x)k

`−1.

Using this we have that

τk(n)` ≤
∑

1≤m≤2n
τk(m)` � n(log n)k

`−1 � n2

so that for ` sufficiently large

τk(n)� n2/` < nε.

�

For our application to sieves we needed to estimate sums of the form

Mh(x, z) =
∑
n≤x
n|P (z)

h(n)

where h is a non-negative multiplicative function and is supported on square
free integers.
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Lemma 1.5. For h as above

Mh(x, z) ≤
∏
p≤z

(1 + h(p))

Proof. We have

Mh(x, z) =
∑
n≤x
n|P (z)

h(n) ≤
∑
n|P (z)

h(n) =
∏
p|P (z)

(1 + h(p)).

�

Lower bounds are much more difficult. In the next section we will make
an extra assumption on h and establish a lower bound

Mh(x, z) ≥ 1

2

∏
p≤z

(1 + h(p))

which holds for z sufficiently small relative to x.

2. Lower bounds

To obtain lower bounds we will need more information about our mul-
tiplicative function in particular we will need some information about its
behavior on the prime numbers. Let ω be a non-negative multiplicative
function supported on square-frees. In this section we will make the follow-
ing hypothesis

(2)
∏

w<p≤z

(
1− ω(p)

p

)−1
≤ C

(
log z

logw

)κ
where κ ≥ 0. In applications we will often know that

(3)
∑
p≤z

ω(p) log p

p
= κ log z +O(1).

It is possible to show that this condition implies (2) with C = 1 + o(1).

Lemma 2.1. Let δ > 0. Then for f satisfying (2)∑
p≤z

ω(p)

p
(pδ − 1) ≤ (κ+ logC)(zδ − 1).

Proof. Using the inequality log(1− x)−1 ≥ x we get that∑
y<p≤z

ω(p)

p
≤ κ log

log z

log y
+ logC.

Write

A(x) =
∑
p≤x

ω(p)

p
.



MEAN VALUES OF MULTIPLICATIVE FUNCTIONS 7

and F (t) = tδ − 1. Therefore, by partial summation

∑
p≤z

f(p)

p
F (p) =F (z)A(z)−

∫ z

2
F ′(t)A(t) dt

=

∫ z

2
F ′(t)(A(z)−A(t)) dt

≤
∫ z

2

(
κ log

log z

log t
+ logC

)
F ′(t) dt

≤F (z) logC + κ

∫ z

2
F ′(t) log

log z

log t
dt

Integrating by parts and making the change of variables v = δ log t∫ z

1
F ′(t) log

log z

log t
dt =

∫ z

1

F (t)

t log t
dt

=

∫ δ log z

0

ev − 1

v
dv ≤ zδ − 1.

�

Proposition 2.2. Suppose h(n) is supported on square frees and given by

h(p) =
ω(p)

p(1− ω(p)
p )

where ω(n) satisfies (2) and ω(p) = 0 if p /∈ P. Then

Mh(x, z) ≥ (1− c(r))
∏
p≤z

(1 + h(p)) .

where z = x1/r and c(r) < 1 whenever r > 2(κ + logC) and for r >
4(κ+ logC + 1), c(r) < 4/5.

Proof. Let

E(x, z) =
∏
p≤z

(1 + h(p))−Mh(x, z)

It suffices to show that with z = x1/r we have for r > 2(κ+ logC)

E(x, z)
∏
p|P (z)

(1 + h(p))−1 ≤ c(r) < 1.
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We now apply “Rankin’s trick” (i.e. the condition n > x implies (n/x)ε > 1
for ε > 0)

E(x, z) =
∑
n≥x
n|P (z)

h(n)

≤ 1

xε

∑
n|P (z)

h(n)nε

=
1

xε

∏
p≤z

(1 + h(p)pε) .

Since

h(p) =
ω(p)

p(1− ω(p)
p )

we get ∏
p≤z

(1 + h(p))−1 =
∏
p|P (z)

(
1− ω(p)

p

)
.

Thus,

E(z)
∏
p≤z

(1 + h(p))−1 ≤ 1

xε

∏
p≤z

(1 + h(p)pε)

(
1− ω(p)

p

)

=
1

xε

∏
p≤z

(
1− ω(p)

p
+

(
1− ω(p)

p

)
h(p)pε

)

=
1

xε

∏
p≤z

(
1− ω(p)

p
+
ω(p)

p
pε
)

Now use the previous lemma to get that

E(x, z)
∏
p≤z

(1 + h(p))−1 ≤ 1

xε

∏
p≤z

(
1− ω(p)

p
(pε − 1)

)

≤ 1

xε
exp

∑
p≤z

ω(p)

p
(pε − 1)


≤ 1

xε
exp

(
(κ+ logC)(zε − 1)

)
.

For 0 ≤ t ≤ 1 one has et − 1 ≤ 2t so that for ε ≤ 1/ log z one has zε − 1 ≤
2ε log z. We deduce that for ε ≤ 1/ log z

E(x, z)
∏
p≤z

(1 + h(p))−1 ≤ exp((κ+ logC)2ε log z − ε log x) < 1

when z = x1/r and r > 2(κ + logC). If we choose ε = 1/ log z and if
r > 4(κ+ logC + 1) then the above quantity is < 4/5. �
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Before proving Theorem 1.1 we need one more technical lemma

Lemma 2.3. Suppose that ω(n) satisfies (3). Then∏
p≤z

(
1− ω(p)

p

)
∼ cω

e−γκ

(log z)κ
.

where

cω =
∏
p

(
1− ω(p)

p

)(
1− 1

p

)−κ
is a convergent product.

Proof (Sketch). Trivially one has∏
p≤z

(
1− ω(p)

p

)
=
∏
p≤z

(
1− 1

p

)κ∏
p≤z

(
1− 1

p

)−κ(
1− ω(p)

p

)
By Mertens’ theorem ∏

p≤z

(
1− 1

p

)κ
∼ e−γκ

(log z)κ

Thus, it suffices to show that∏
p>z

(
1− 1

p

)−κ(
1− ω(p)

p

)
∼ 1.

To see this we first make the following claims:

i) ∑
p≥z

ω(p)2

p2
= O

(
1

log z

)
ii) ∑

w<p≤z

ω(p)

p
= κ log

log z

logw
+O

(
1

logw

)
Both claims follow from partial summation. The first is less obvious so we
will sketch the argument. Applying (3) twice at z = p−1/2 and z = p+1/2
gives

ω(p) log p

p
� 1

Thus, ∑
p>z

ω2(p)

p2
�
∑
p>z

ω(p)

p log p
� 1

log z
.
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Now apply i), ii) and Mertens’ theorem to see that∏
z≤p≤N

(
1− 1

p

)−κ(
1− ω(p)

p

)
= exp

 ∑
z<p≤N

ω(p)

p
− κ

∑
z<p≤N

1

p
+O

(
1

log z

)
=1 +O

(
1

log z

)
Taking N →∞ completes the proof.

�

Proof of Theorem 1.1. Recall that

S(z) =
∑
n≤z
n|P (z)

h(n) = Mh(z, z)

where h is a multiplicative function supported on square frees and is given
by

h(p) =
ω(p)

p(1− ω(p)
p )

,

where ω(p) = 0 for p /∈ P. The upper bound for S(z) follows from Lemmas
2.3 and 1.5. Proposition 2.2 implies that for r > 3(κ+ logC)

Mh(x, x1/r)�
∏
p|P (z)

(1 + h(p)) =
∏

p≤x1/r
(1 + h(p)) =

∏
p≤x1/r

(
1− ω(p)

p

)−1
.

So by Lemma 2.3
Mh(x, x1/r)� (log x)κ.

To complete the proof note that

Mh(z, z) ≥Mh(z, z1/r)� (log z)κ.

�

2.1. More precise estimates. By more careful arguments it is possible
to give an asymptotic evaluation of S(z). We will state this result without
proof. The argument can be found in Halberstam and Richert’s book (see
Lemma 5.4 of [1])

Theorem 2.4. Suppose that ω(p) is a non-negative multiplicative function
supported on square frees and satisfies (3). Then

1

S(z)
=

Γ(κ+ 1)

(log z)κ

∏
p

(
1− ω(p)

p

)(
1− 1

p

)−κ(
1 +O

(
1

log z

))
.
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