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ZEÉV RUDNICK

1. The sieve of Eratosthenes

Sieve methods are techniques for estimating sets of primes (or integers)
based on restrictions on their divisibility properties, starting from the sieve
of Eratosthenes. My goal in this lecture is to explain how to use sieve
methods to obtain upper bounds on various prime counting functions.

For instance, let’s try to bound the number π(x) of primes p ≤ x, which
the PNT says is ∼ x/ log x. We have previously seen Chebyshev’s method,
but here we argue differently so will not rely on those results. As substitutes,
we will need some very weak bounds on quantities related to the number of
primes, much weaker than Chebyshev’s theorem.

Lemma 1.1. i) Let P (z) :=
∏
p≤z p be the product of all primes up to z.

Then P (z) ≤ zz.
ii) ∏

p≤z
(1− 1

p
)−1 � log z .

iii) ∑
p≤z

1

p
� log log z .

Of course, we have seen stronger statements before (Merten’s theorems)
but the proof we gave for those relied on Chebychev’s bounds.

Proof. 1) We trivially have

P (z) =
∏
p≤z

p ≤
∏
n≤z

z = zz .

2) Using the geometric series, we have∏
p≤z

(1− 1

p
)−1 =

∏
p≤z

(1 +
1

p
+

1

p2
+ . . . ) =

∑
p|n⇒p≤z

1

n
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by unique factorization into primes. Omitting all terms bigger than z leaves
us with ∏

p≤z
(1− 1

p
)−1 ≥

∑
n≤z

1

n
∼ log z

as claimed.
3) We have, on using log(1− y)−1 = y +O(y2) for 0 < y < 1,

log
∏
p≤z

(1− 1

p
)−1 =

∑
p≤z

log(1− 1

p
)−1 =

∑
p≤z

1

p
+O(

1

p2
) =

∑
p≤z

1

p
+O(1)

On the other hand, we saw
∏
p≤z(1−

1
p)−1 � log z which gives

log
∏
p≤z

(1− 1

p
)−1 � log log z

as required. �

We first estimate π(x) − π(z) =number of primes z < p ≤ x, by the
number of integers n ≤ x which are not divisible by any “small” prime
p ≤ z, that is are co-prime with P (z) :=

∏
p≤z p :

π(x)− π(z) ≤ S(x, z) := #{n ≤ x : gcd(n, P (z)) = 1}
In fact if z =

√
x then we would have equality

π(x)− π(
√
x) = S(x,

√
x)

so below we would like to take z as large as
√
x (but will fail badly!).

We now proceed: We have

S(x, z) =
∑
n≤x

δ(gcd(n, P (z))

where

δ(m) =

{
1, m = 1

0, m > 1
.

We use Möbius inversion:

δ(gcd(a, b)) =
∑

d|gcd(a,b)

µ(d) =
∑
d|a
d|b

µ(d) .

Hence

S(x, z) =
∑
n≤x

∑
d|n

d|P (z)

µ(d) =
∑
d|P (z)
d≤x

µ(d)
∑
n≤x
d|n

1

=
∑
d|P (z)
d≤x

x

d
+O(1) .

To proceed further we want to eliminate the condition d ≤ x in the sum
over d, leaving only the requirement that d | P (z). We can achieve this if we
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require that z is sufficiently large so that P (z) ≤ x, which requires knowing
there are not too many primes (hence might be begging the question, since
we are trying to give an upper bound for π(x)!). We saw that P (z) ≤ zz, so
we choose

z ≤ log x

log log x

This implies that

logP (z) ≤ log zz = z log z ≤ log x

log log x
log

log x

log log x
≤ log x

log log x
log

log x

1
= log x

and hence we are guaranteed that if z ≤ log x
log log x , then P (z) ≤ x. Thus with

this restriction on z, we

S(x, z) ≤ x
∑
d|P (z)

µ(d)

d
+O(

∑
d|P (z)

1)

Since we saw that for any multiplicative function α, we have∑
d|D

α(d) =
∏
p|D

(
1 + α(p) + · · ·+ α(pj)

)
,

we have ∑
d|P (z)

µ(d)

d
=
∏
p≤z

(1− 1

p
).

Moreover, the number of divisors d | P (z) is 2π(z) ≤ 2z. Hence

S(x, z) ≤ x
∏
p≤z

prime

(1− 1

p
) +O(2z)

Since we have π(x) ≤ S(x, z) + π(z), we obtain

(1) π(x)� x

log z
+ 2z + π(z)� x

log z
+ 2z .

We now pick z so as to minimize the RHS of (1) (subject to z ≤ log x
log log x).

Because of the remainder term of 2z we cannot do better than z = log x, in
fact should take z = log x/ log log x, and then we get

π(x)� x

log log x
.

This falls far short of the expected answer of x/ log x!
Note that even if we could take z of size

√
x, the main term given by

Merten’s theorem
∏
p≤z(1−

1
p) ∼ e−γ

log z will have the wrong constant e−γ 6= 1!
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2. Selberg’s sieve

Recall that

S(x, z) =
∑
n≤x

δ
(

gcd(n, P (z))
)

Selberg’s idea was to replace the δ
(

gcd(n, P (z))
)

by a system of inequalities:

Given parameters {λd} such that

• λd real
• λ1 = 1

then

(2) δ(m) =

{
1, m = 1

0, m > 1

}
≤
(∑
d|m

λd

)2
.

Indeed, when m = 1 then both sides are equal, otherwise the LHS is zero
while the RHS, being real, is non-negative.

Using (2) to bound the number S(x, z) of integers n ≤ x not divisible by
small primes p ≤ z gives

(3) S(x, z) =
∑
n≤x

δ
(

gcd(n, P (z))
)
≤
∑
n≤x

( ∑
d|n

d|P (z)

λd

)2
.

The RHS of (3) is a quadratic form in the variables {λd}. Selberg succeeded
in minimizing it.

To do so, we take λd supported on integers d ≤ z, that is assume λd = 0
if d > z. Then

S(x, z) ≤
∑
n≤x

( ∑
d|n

d|P (z)

λd

)2

=
∑

d1,d2≤z
squarefree

λd1λd2#{n ≤ x : d1 | n, d2 | n}

Now the two conditions d1 | n, d2 | n are equivalent to n being divisible by
the least common multiple [d1, d2] = lcm(d1, d2), hence

#{n ≤ x : d1 | n, d2 | n} = #{n ≤ x : [d1, d2] | n} = b x

[d1, d2]
c

Using byc = y +O(1) gives

(4) S(x, z) ≤ x
∑

d1,d2≤z

λd1λd2
[d1, d2]

+O
( ∑
d1,d2

|λd1 ||λd2 |
)

The goal is now to minimize the quadratic form

Q(λ) =
∑

d1,d2≤z
squarefree

λd1λd2
[d1, d2]
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subject to the constraint λ1 = 1. Selberg did this in an ingenious elementary
fashion, by explicitly diagonalizing Q, obtaining

min
d1,d2≤z squarefree

λ1=1

Q(λ) =
1

S(z)
, S(z) =

∑
d≤z

d squarefree

1

φ(d)

where φ(d) = #{1 ≤ a ≤ d : gcd(a, d) = 1} is Euler’s totient function. Along
the way he obtained that the minimizing vector has |λd| ≤ 1. Inserting into
(4) gives

S(x, z) ≤ x

S(z)
+ z2

Note that the remainder term here is z2 rather than 2z in the sieve of
Eratosthenes. One then shows that

(5) S(z) =
∑
d≤z

d squarefree

1

φ(d)
& log z

to deduce that
S(x, z) .

x

log z
+ z2

This is an exponential improvement on the error term in comparison with
the upper bound of x/ log z+2z in the sieve of Eratostenes (1). We can now
write

π(x) ≤ S(x, z) + π(z) .
x

log z
+ z2

and pick z ≈ x1/2−o(1) to find

π(x) . 2
x

log x

which is the expected upper bound (up to a constant)!
It remains to show (5), that is that

S(z) :=
∑
d≤z

d squarefree

1

φ(d)
& log z

Since φ(d) ≤ d, S(z) ≥
∑

d≤z, squarefree 1/d. Since squarefree integers have a

positive density 1/ζ(2), it is easy to see using summation by parts that the
latter sum is & 1

ζ(2) log z. A more careful analysis of the original sum S(z)

gives a constant of 1.


