SQUAREFREE VALUES OF QUADRATIC POLYNOMIALS COURSE NOTES, 2015

ZEÉV RUDNICK

1. Squarefree values of polynomials: History

In this section we study the problem of representing square-free integers by integer polynomials. It is conjectured that a separable polynomial (that is, without repeated roots) $f \in \mathbb{Z}[x]$ takes infinitely many square-free values, barring some simple exceptional cases, in fact that the integers *a* for which f(a) is square-free have a positive density. A clear necessary condition is that the sequence f(n) has no fixed square divisor; the conjecture is that this is the only obstruction:

Conjecture 1. Let $f(x) \in \mathbb{Z}[x]$ be a separable polynomial (i.e. with no repeated roots) of positive degree. Assume that $gcd\{f(n) : n \in \mathbb{Z}\}$ is square-free¹. Then there are infinitely many square-free values taken by f(n), in fact that a positive proportion of the values are square-free:

$$\#\{1 \le n \le X : f(n) \text{ is square-free }\} \sim c_f X, \quad \text{as } X \to \infty,$$

with

(1.1)
$$c_f = \prod_p (1 - \frac{\rho_f(p^2)}{p^2}) ,$$

where

(1.2)
$$\rho_f(D) = \#\{c \mod D : f(C) = 0 \mod D\}$$

The problem is most difficult when f is irreducible. Nagell ([6] 1922) showed the infinitude of squarefree values in the quadratic case. Estermann ([2] 1931) gave positive density for the case $f(x) = x^2 + k$. The general quadratic case was solved by Ricci in 1933 [7]. For cubics, Erdös ([1], 1953) showed that there are infinitely many square-free values, and Hooley ([4], 1967) gave the result about positive density. Beyond that nothing seems known unconditionally for irreducible f, for instance it is still not known that $a^4 + 2$ is infinitely often square-free.

Date: March 29, 2015.

¹In fact one can even allow fixed, square divisors of f(n), provided we divide them out in advance, by replacing f(n) by f(n)/B', where B' is the smallest divisor of B := $gcd\{f(n) : n \in \mathbb{Z}\}$ so that B/B' is square-free, and if we replace c_f by $\prod_p (1 - \frac{\omega_f(p)}{p^{2+q_p}})$, where for each prime p, we denote by p^{q_p} the largest power of p dividing B', and by $\omega_f(p)$ the number of $a \mod p^{2+q_p}$ for which $f(a)/B' = 0 \mod p^2$.

ZEÉV RUDNICK

A problem which has recently been solved is to ask how often an irreducible polynomial $f \in \mathbb{Z}[x]$ of degree d attains values which are free of (d-1)-th powers, either when evaluated at integers or at primes, see [8].

1.1. The ABC conjecture. Granville [3] showed that the ABC conjecture completely solves the conjecture 1.

The ABC conjecture states that for every $\varepsilon > 0$, there exist only finitely many triples (a, b, c) of positive coprime integers, with a + b = c, such that

$$c > \operatorname{rad}(abc)^{1+\varepsilon}$$

Here the radical of an integer is the product of all distinct primes dividing it: rad $(N) := \prod_{p|N} p$. Equivalently, for every $\varepsilon > 0$, there exists a constant K_{ε} such that for all triples (a, b, c) of coprime positive integers, with a + b = c, we have

$$c < K_{\varepsilon} \cdot \operatorname{rad}(abc)^{1+\varepsilon}$$

2. The density c_f

We pause to analyze the conjectural density c_f of squarefree values of f, given by (1.1).

Exercise 1. Assume that f(n) admits no common square factor. Show that $c_f > 0$, i.e. that $\rho_f(p^2) < p^2$ for all primes p.

By the Chinese remainder theorem, $D \mapsto \rho_f(D)$ is a multiplicative function.

2.1. The split quadratic case f(x) = x(x+1).

Lemma 2.1. Suppose f(x) = x(x+1). Then for all prime p, and $k \ge 1$, $\rho(p^k) = 2$.

Proof. We want to count solutions modulo p^k of $c(c+1) = 0 \mod p^k$. But since p is prime, and c, c+1 have no common factors, this means that either $c = 0 \mod p^k$ or $c+1 = 0 \mod p^k$ and each case has exactly one solution. Thus $\rho_f(p^k) = 2$.

2.2. The irreducible quadratic case $f(x) = x^2 + 1$.

Lemma 2.2. Suppose $f(x) = x^2 + 1$. *i)* If $p \neq 2$ then $\rho(p^k) = \rho(p)$ for all $k \ge 1$. *iii)* For $p \neq 2$,

$$\rho(p) = \begin{cases} 2, & p = 1 \mod 4\\ 0, & p = 3 \mod 4 \end{cases}$$

iii) $\rho(4) = 0$.

Proof. Part (i) follows from Hensel's Lemma, and is valid for any polynomial $f \in \mathbb{Z}[x]$, for $p \nmid \operatorname{disc}(f)$. Part (ii) is specific to $f(x) = x^2 + 1$ and is due to Fermat. Part (iii) is a direct computation.

Note: The above shows that for $f(x) = x^2 + 1$, our density c_f is

(2.1)
$$c_f = \prod_p (1 - \frac{\rho(p^2)}{p^2}) = \prod_{p \neq 2} (1 - \frac{1 + \left(\frac{-1}{p}\right)}{p^2}) = 0.894\dots$$

3. The quadratic case

Our goal here is to treat the quadratic case, in fact below we will specialize to the simple cases of f(x) = x(x+1) (the split case) and $f(x) = x^2 + 1$ (the irreducible case). For $X \gg 1$, we set

$$\mathcal{N}(X) := \{ n \le X : f(n) \text{ squarefree} \}$$

and $N(X) := \# \mathcal{N}(X)$.

Theorem 3.1. Let f(x) = x(x+1) or $f(x) = x^2 + 1$. Then

$$N(X) = c_f X + O(X^{2/3} \log X), \quad as \ X \to \infty$$

with $c_f = C_{\text{split}} = \prod_p (1 - \frac{2}{p^2})$ in the split case f(x) = x(x+1), and $c_f = \prod_{p \neq 2} (1 - \frac{1 + (\frac{-1}{p})}{p^2}) = 0.894...$ in the irreducible case $f(x) = x^2 + 1$.

Note that in the split case, since n(n+1) is squarefree if and only if both n and n+1 are squarefree (because n, n+1 are coprime), the result says that the probability that both n and n+1 are squarefree is $C_{\text{split}} = \prod_p (1 - \frac{2}{p^2}) = 0.322635...$, which is smaller than $1/\zeta(2)^2 = \prod_p (1 - 2/p^2 + 1/p^4) = 0.369576...$, which would be the case if these were independent events.

3.1. **The strategy.** We use the sieve of Eratosthenes and Legendre: Recall that the indicator function of the squarefrees is

$$\mathbf{1}_{\rm SF}(m) = \sum_{d^2|m} \mu(d)$$

Hence

$$N(X) = \sum_{n \le X} \mathbf{1}_{SF}(f(n)) = \sum_{n \le X} \sum_{d^2 \mid f(n)} \mu(d) = \sum_{d \ll X} \mu(d) \#\{n \le X : d^2 \mid f(n)\}$$

Note that we can constrain $d \leq X$ because d^2 divides the quadratic polynomial f(n), which is $\ll X^2$ if $n \leq X$.

We pick a parameter Y (eventually taken to be $Y = X^{1/3}$) and decompose the sum into two parts, a sum N'(X) over "small" divisors d < Y, and a sum N''(X) over "large" divisors Y < d < X:

$$N(X) = N'(X) + N''(X) ,$$

$$N'(X) = \sum_{d \le Y} \mu(d) \#\{n \le X : d^2 \mid f(n)\}$$

and

$$N''(X) = \sum_{Y < d \le X} \mu(d) \# \{ n \le X : d^2 \mid f(n) \}$$

We will show that

(3.1)
$$N'(X) = c_f X + O(\frac{X}{Y} \log Y + Y \log Y)$$

and

$$(3.2) N''(X) \ll \frac{X^2}{Y^2}$$

Taking $Y = X^{1/3}$ we obtain

$$N(X) = c_f X + O(X^{2/3} \log X)$$

giving Theorem 3.1.

4. The main term: small divisors

We will estimate $N^\prime(X)$ (the main term) by using inclusion-exclusion. Recall

$$N'(X) = \sum_{d \le Y} \mu(d) \# \{ n \le X : d^2 \mid f(n) \} .$$

Lemma 4.1.

$$#\{n \le X : D \mid f(n)\} = \frac{X\rho(D)}{D} + O(\rho(D)).$$

Proof. We decompose

$$\#\{n \le X : D \mid f(n)\} = \sum_{\substack{C \mod D \\ f(C) = 0 \mod D}} \#\{n \le X : n = C \mod D\}.$$

Using

$$\#\{n \le X : n = C \mod D\} = \frac{X}{D} + O(1)$$

we get

$$\#\{n \le X : D \mid f(n)\} = \sum_{\substack{C \mod D \\ f(C) = 0 \mod D}} \frac{X}{D} + O(1)$$
$$= \frac{X\rho(D)}{D} + \rho(D) .$$

Hence we obtain

(4.1)
$$N'(X) = \sum_{d \le Y} \mu(d) \left(\frac{X\rho(d^2)}{d^2} + O(\rho(d^2)) \right)$$
$$= X \sum_{d \le Y} \frac{\mu(d)\rho(d^2)}{d^2} + O\left(\sum_{d \le Y} |\mu(d)|\rho(d^2)\right).$$

4

We have

$$\sum_{d \le Y} \frac{\mu(d)\rho(d^2)}{d^2} = \sum_{d=1}^{\infty} \frac{\mu(d)\rho(d^2)}{d^2} + O\Big(\sum_{d>Y} \frac{|\mu(d)|\rho(d^2)}{d^2}\Big)$$

Using multiplicativity of ρ (and of μ) gives

$$\sum_{d=1}^{\infty} \frac{\mu(d)\rho(d^2)}{d^2} = \prod_p (1 - \frac{\rho(p^2)}{p^2}) = c_f \; .$$

By Lemmas 2.1 and 2.2, $\rho(p^2) \leq 2$ for p prime, and thus for d squarefree

$$\rho(d^2) = \prod_{p|d} \rho(p^2) \le \prod_{p|d} 2 = \tau(d)$$

where τ is the divisor function. Hence the tail of the sum is bounded by

$$\sum_{d>Y} \frac{|\mu(d)|\rho(d^2)}{d^2} \le \sum_{d>Y} \frac{\tau(d)}{d^2} \ll \frac{\log Y}{Y}$$

and the remainder in (4.1) is bounded by

$$\sum_{d \le Y} |\mu(d)| \rho(d^2) \le \sum_{d \le Y} \tau(d) \sim Y \log Y .$$

Therefore

$$N'(X) = c_f X + O(\frac{X}{Y}\log Y) + O(Y\log Y)$$

as claimed.

Exercise 2. Using $\sum_{n \le x} \tau(n) = x(\log x + C) + O(x^{1/2})$, show that $\tau(n) = \log V + C + 2$.

$$\sum_{n>Y} \frac{\tau(n)}{n^2} = \frac{\log Y + C + 2}{Y} + O(\frac{1}{Y^{3/2}})$$

5. Bounding the contribution of large divisors

We write the condition $d^2 \mid f(n)$ as $f(n) = d^2D$ for some integer $D \ge 1$. Then

$$N''(X) = \sum_{\substack{n \le X \\ d > Y}} \sum_{\substack{d^2 | f(n) \\ d > Y}} \mu(d) \le \sum_{\substack{d > Y}} \#\{n \le X : f(n) = d^2D\} .$$

We now interchange the roles of d and D: If d > Y then $D = f(n)/d^2 \le X^2/Y^2$. Hence ignoring the size and squarefreeness restriction on d,

(5.1)
$$N''(X) \le \sum_{1 \le D \le X^2/Y^2} \#\{u, v \le X : f(u) = v^2 D\}.$$

Now take $f(x) = x^2 + 1$. Then the equation $f(u) = Dv^2$ becomes

$$u^2 - Dv^2 = -1$$

which is a Pellian equation.

ZEÉV RUDNICK

The main new arithmetic ingredient we need now is a bound on the number of solutions of the Pellian equation $x^2 - Dy^2 = -1$ lying in a box of side X: Let

(5.2)
$$S_D(X) := \#\{(x,y) \in [1,X]^2 : x^2 - Dy^2 = -1\}$$

Proposition 5.1. Suppose 1 < D < X is not a perfect square. Then

$$S_D(X) \ll \frac{\log X}{\log D}$$

If $D = \Box$ is a perfect square, then there are no solutions of $x^2 - Dy^2 = -1$ if D > 1, while for D = 1 there are 2 solutions.

Proof. Suppose D > 1 is not a perfect square. By the theory of Pell's equation, if the equation $x^2 - Dy^2 = -1$ is solvable in integers, then all integer solutions (x, y) are of the form $x + \sqrt{D}y = \pm \epsilon_D^{2n+1}$, $n \in \mathbb{Z}$, where $\epsilon_D = x_1 + y_1\sqrt{D}$ is the fundamental solution, with $x_1, y_1 \ge 1$. Hence if $1 \le x, y \le X$ then $x + y\sqrt{D} = \epsilon_D^{2n+1}$ for some $n \ge 0$ and then

$$0 \le n \le \frac{\log(x + \sqrt{D}y)}{2\log \epsilon_D} = \frac{\log(x + \sqrt{x^2 + 1})}{2\log \epsilon_D} \le \frac{\log X}{\log \epsilon_D}$$

Since $\epsilon_D = x_1 + y_1 \sqrt{D} > \sqrt{D}$, we obtain

$$S_D(X) \ll \frac{\log X}{\log D}$$

For $D = C^2$ a perfect square, the equation $x^2 - Cy^2 = -1$ becomes $x^2 - (Cy)^2 = -1$ or (Cy-x)(Cy+x) = 1, which forces $Cy-x = Cy+x = \pm 1$, so that x = 0, and then $C^2y^2 = 1$ is solvable only for C = 1 in which case there are two solutions.

Inserting Proposition 5.1 into the bound (5.1) for N_2 gives

$$N_2 \ll \sum_{1 \le D < X^2/Y^2} S_D(X) \ll 1 + \sum_{1 < D < X^2/Y^2} \frac{\log X}{\log D} \ll \frac{X^2}{Y^2}$$

as claimed, on using

$$\sum_{1 < D < Z} \frac{1}{\log D} \ll \int_2^Z \frac{1}{\log t} dt \sim \frac{Z}{\log Z}$$

5.1. Other quadratic polynomials. The considerations above extend to the case when $f(x) = Ax^2 + Bx + C \in \mathbb{Z}[x]$ is any quadratic polynomial, say f(x) = x(x+1) (the split case). All we have to do is rewrite the equation $f(u) = Dv^2$: Multiplying by 4A and completing the square gives

$$4ADv^2 = (2Au + B)^2 - \Delta_f$$

where $\Delta_f = B^2 - 4AC$ is the discriminant of f, which is nonzero if and only if f has no repeated roots. Thus the equation $f(u) = Dv^2$ becomes

$$(2Au+B)^2 - AD(2v)^2 = \Delta_f$$

and we need to bound the number of solutions of

$$U^2 - (AD)V^2 = \Delta_f$$

with $U, V \ll X$.

For instance, in the split case $f(x) = x^2 + x$ we get $\Delta = +1$ and the equation becomes $U^2 - DV^2 = 1$, to which we apply a version of Proposition 5.1.

Remark. When $|\Delta| > 1$ there may be more than one orbit of the unit group $\{\pm \epsilon_D^n\}$ and one has to account for that.

References

- P. Erdös. Arithmetical properties of polynomials. J. London Math. Soc. 28, (1953). 416–425.
- [2] T. Estermann, Einige Sätze über quadratfreie Zahlen. Math. Ann. 105 (1931), 653– 662.
- [3] A. Granville, ABC allows us to count square-frees. Internat. Math. Res. Notices 1998, no. 19, 991–1009.
- [4] C. Hooley, On the power free values of polynomials. Mathematika 14 1967 21-26.
- [5] C. Hooley, On the square-free values of cubic polynomials. Journal f
 ür die reine und angewandte Mathematik (Crelles Journal). (1968), 229, 147–154.
- [6] T. Nagell, Zur Arithmetik der Polynome, Abhandl. Math. Sem. Hamburg 1 (1922), 179–194.
- [7] G. Ricci, Ricerche aritmetiche sui polinomi. Rend. Circ. Mat. Palermo 57 (1933), 433–475.
- [8] T. Reuss, Power-Free Values of Polynomials, Bull. London Math. Soc. (2015) doi: 10.1112/blms/bdu116. arXiv:1307.2802 [math.NT]