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1. Squarefree values of polynomials: History

In this section we study the problem of representing square-free integers
by integer polynomials. It is conjectured that a separable polynomial (that
is, without repeated roots) f ∈ Z[x] takes infinitely many square-free values,
barring some simple exceptional cases, in fact that the integers a for which
f(a) is square-free have a positive density. A clear necessary condition is
that the sequence f(n) has no fixed square divisor; the conjecture is that
this is the only obstruction:

Conjecture 1. Let f(x) ∈ Z[x] be a separable polynomial (i.e. with no
repeated roots) of positive degree. Assume that gcd{f(n) : n ∈ Z} is square-
free1 . Then there are infinitely many square-free values taken by f(n), in
fact that a positive proportion of the values are square-free:

#{1 ≤ n ≤ X : f(n) is square-free } ∼ cfX, as X →∞ ,

with

(1.1) cf =
∏
p

(1−
ρf (p2)

p2
) ,

where

(1.2) ρf (D) = #{c mod D : f(C) = 0 mod D} .

The problem is most difficult when f is irreducible. Nagell ([6] 1922)
showed the infinitude of squarefree values in the quadratic case. Estermann
([2] 1931) gave positive density for the case f(x) = x2 + k. The general
quadratic case was solved by Ricci in 1933 [7]. For cubics, Erdös ([1], 1953)
showed that there are infinitely many square-free values, and Hooley ([4],
1967) gave the result about positive density. Beyond that nothing seems
known unconditionally for irreducible f , for instance it is still not known
that a4 + 2 is infinitely often square-free.
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1In fact one can even allow fixed, square divisors of f(n), provided we divide them

out in advance, by replacing f(n) by f(n)/B′, where B′ is the smallest divisor of B :=

gcd{f(n) : n ∈ Z} so that B/B′ is square-free, and if we replace cf by
∏

p(1 − ωf (p)

p2+qp
),

where for each prime p, we denote by pqp the largest power of p dividing B′, and by ωf (p)
the number of a mod p2+qp for which f(a)/B′ = 0 mod p2.
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A problem which has recently been solved is to ask how often an irre-
ducible polynomial f ∈ Z[x] of degree d attains values which are free of
(d− 1)-th powers, either when evaluated at integers or at primes, see [8].

1.1. The ABC conjecture. Granville [3] showed that the ABC conjecture
completely solves the conjecture 1.

The ABC conjecture states that for every ε > 0, there exist only finitely
many triples (a, b, c) of positive coprime integers, with a+ b = c, such that

c > rad(abc)1+ε .

Here the radical of an integer is the product of all distinct primes dividing it:
rad(N) :=

∏
p|N p. Equivalently, for every ε > 0, there exists a constant Kε

such that for all triples (a, b, c) of coprime positive integers, with a+ b = c,
we have

c < Kε · rad(abc)1+ε .

2. The density cf

We pause to analyze the conjectural density cf of squarefree values of f ,
given by (1.1).

Exercise 1. Assume that f(n) admits no common square factor. Show that
cf > 0, i.e. that ρf (p2) < p2 for all primes p.

By the Chinese remainder theorem, D 7→ ρf (D) is a multiplicative func-
tion.

2.1. The split quadratic case f(x) = x(x+ 1).

Lemma 2.1. Suppose f(x) = x(x + 1). Then for all prime p, and k ≥ 1,
ρ(pk) = 2.

Proof. We want to count solutions modulo pk of c(c + 1) = 0 mod pk. But
since p is prime, and c, c+1 have no common factors, this means that either
c = 0 mod pk or c + 1 = 0 mod pk and each case has exactly one solution.
Thus ρf (pk) = 2. �

2.2. The irreducible quadratic case f(x) = x2 + 1.

Lemma 2.2. Suppose f(x) = x2 + 1.
i) If p 6= 2 then ρ(pk) = ρ(p) for all k ≥ 1.
iii) For p 6= 2,

ρ(p) =

{
2, p = 1 mod 4

0, p = 3 mod 4

iii) ρ(4) = 0.

Proof. Part (i) follows from Hensel’s Lemma, and is valid for any polynomial
f ∈ Z[x], for p - disc(f). Part (ii) is specific to f(x) = x2 + 1 and is due to
Fermat. Part (iii) is a direct computation. �
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Note: The above shows that for f(x) = x2 + 1, our density cf is

(2.1) cf =
∏
p

(1− ρ(p2)

p2
) =

∏
p 6=2

(1−
1 +

(
−1
p

)
p2

) = 0.894 . . .

3. The quadratic case

Our goal here is to treat the quadratic case, in fact below we will specialize
to the simple cases of f(x) = x(x + 1) (the split case) and f(x) = x2 + 1
(the irreducible case). For X � 1, we set

N (X) := {n ≤ X : f(n) squarefree}
and N(X) := #N (X).

Theorem 3.1. Let f(x) = x(x+ 1) or f(x) = x2 + 1. Then

N(X) = cfX +O(X2/3 logX), as X →∞
with cf = Csplit =

∏
p(1 −

2
p2

) in the split case f(x) = x(x + 1), and cf =∏
p 6=2(1−

1+(−1
p

)

p2
) = 0.894 . . . in the irreducible case f(x) = x2 + 1.

Note that in the split case, since n(n+ 1) is squarefree if and only if both
n and n + 1 are squarefree (because n, n + 1 are coprime), the result says
that the probability that both n and n+ 1 are squarefree is Csplit =

∏
p(1−

2
p2

) = 0.322635 . . ., which is smaller than 1/ζ(2)2 =
∏

p(1− 2/p2 + 1/p4) =

0.369576 . . ., which would be the case if these were independent events.

3.1. The strategy. We use the sieve of Eratosthenes and Legendre: Recall
that the indicator function of the squarefrees is

1SF(m) =
∑
d2|m

µ(d) .

Hence

N(X) =
∑
n≤X

1SF(f(n)) =
∑
n≤X

∑
d2|f(n)

µ(d) =
∑
d�X

µ(d)#{n ≤ X : d2 | f(n)}

Note that we can constrain d ≤ X because d2 divides the quadratic polyno-
mial f(n), which is � X2 if n ≤ X.

We pick a parameter Y (eventually taken to be Y = X1/3) and decompose
the sum into two parts, a sum N ′(X) over “small” divisors d < Y , and a
sum N ′′(X) over “large” divisors Y < d < X:

N(X) = N ′(X) +N ′′(X) ,

N ′(X) =
∑
d≤Y

µ(d)#{n ≤ X : d2 | f(n)}

and
N ′′(X) =

∑
Y <d≤X

µ(d)#{n ≤ X : d2 | f(n)}
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We will show that

(3.1) N ′(X) = cfX +O(
X

Y
log Y + Y log Y )

and

(3.2) N ′′(X)� X2

Y 2

Taking Y = X1/3 we obtain

N(X) = cfX +O(X2/3 logX)

giving Theorem 3.1.

4. The main term: small divisors

We will estimate N ′(X) (the main term) by using inclusion-exclusion.
Recall

N ′(X) =
∑
d≤Y

µ(d)#{n ≤ X : d2 | f(n)} .

Lemma 4.1.

#{n ≤ X : D | f(n)} =
Xρ(D)

D
+O

(
ρ(D)

)
.

Proof. We decompose

#{n ≤ X : D | f(n)} =
∑

C modD
f(C)=0 modD

#{n ≤ X : n = C modD} .

Using

#{n ≤ X : n = C modD} =
X

D
+O(1)

we get

#{n ≤ X : D | f(n)} =
∑

C mod D
f(C)=0 mod D

X

D
+O(1)

=
Xρ(D)

D
+ ρ(D) .

�

Hence we obtain

N ′(X) =
∑
d≤Y

µ(d)
(Xρ(d2)

d2
+O(ρ(d2))

)
= X

∑
d≤Y

µ(d)ρ(d2)

d2
+O

(∑
d≤Y
|µ(d)|ρ(d2)

)
.

(4.1)
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We have∑
d≤Y

µ(d)ρ(d2)

d2
=
∞∑
d=1

µ(d)ρ(d2)

d2
+O

(∑
d>Y

|µ(d)|ρ(d2)

d2

)
Using multiplicativity of ρ (and of µ) gives

∞∑
d=1

µ(d)ρ(d2)

d2
=
∏
p

(1− ρ(p2)

p2
) = cf .

By Lemmas 2.1 and 2.2, ρ(p2) ≤ 2 for p prime, and thus for d squarefree

ρ(d2) =
∏
p|d

ρ(p2) ≤
∏
p|d

2 = τ(d)

where τ is the divisor function. Hence the tail of the sum is bounded by∑
d>Y

|µ(d)|ρ(d2)

d2
≤
∑
d>Y

τ(d)

d2
� log Y

Y

and the remainder in (4.1) is bounded by∑
d≤Y
|µ(d)|ρ(d2) ≤

∑
d≤Y

τ(d) ∼ Y log Y .

Therefore

N ′(X) = cfX +O(
X

Y
log Y ) +O(Y log Y )

as claimed.

Exercise 2. Using
∑

n≤x τ(n) = x(log x+ C) +O(x1/2), show that∑
n>Y

τ(n)

n2
=

log Y + C + 2

Y
+O(

1

Y 3/2
)

5. Bounding the contribution of large divisors

We write the condition d2 | f(n) as f(n) = d2D for some integer D ≥ 1.
Then

N ′′(X) =
∑
n≤X

∑
d2|f(n)
d>Y

µ(d) ≤
∑
d>Y

#{n ≤ X : f(n) = d2D} .

We now interchange the roles of d and D: If d > Y then D = f(n)/d2 ≤
X2/Y 2. Hence ignoring the size and squarefreeness restriction on d,

(5.1) N ′′(X) ≤
∑

1≤D≤X2/Y 2

#{u, v ≤ X : f(u) = v2D} .

Now take f(x) = x2 + 1. Then the equation f(u) = Dv2 becomes

u2 −Dv2 = −1

which is a Pellian equation.
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The main new arithmetic ingredient we need now is a bound on the num-
ber of solutions of the Pellian equation x2−Dy2 = −1 lying in a box of side
X: Let

(5.2) SD(X) := #{(x, y) ∈ [1, X]2 : x2 −Dy2 = −1}

Proposition 5.1. Suppose 1 < D < X is not a perfect square. Then

SD(X)� logX

logD
.

If D = � is a perfect square, then there are are no solutions of x2−Dy2 = −1
if D > 1, while for D = 1 there are 2 solutions.

Proof. Suppose D > 1 is not a perfect square. By the theory of Pell’s
equation, if the equation x2 − Dy2 = −1 is solvable in integers, then all
integer solutions (x, y) are of the form x +

√
Dy = ±ε2n+1

D , n ∈ Z, where

εD = x1 + y1

√
D is the fundamental solution, with x1, y1 ≥ 1. Hence if

1 ≤ x, y ≤ X then x+ y
√
D = ε2n+1

D for some n ≥ 0 and then

0 ≤ n ≤ log(x+
√
Dy)

2 log εD
=

log(x+
√
x2 + 1)

2 log εD
≤ logX

log εD
.

Since εD = x1 + y1

√
D >

√
D, we obtain

SD(X)� logX

logD
.

For D = C2 a perfect square, the equation x2 − Cy2 = −1 becomes
x2−(Cy)2 = −1 or (Cy−x)(Cy+x) = 1, which forces Cy−x = Cy+x = ±1,
so that x = 0, and then C2y2 = 1 is solvable only for C = 1 in which case
there are two solutions. �

Inserting Proposition 5.1 into the bound (5.1) for N2 gives

N2 �
∑

1≤D<X2/Y 2

SD(X)� 1 +
∑

1<D<X2/Y 2

logX

logD
� X2

Y 2

as claimed, on using∑
1<D<Z

1

logD
�
∫ Z

2

1

log t
dt ∼ Z

logZ
.

5.1. Other quadratic polynomials. The considerations above extend to
the case when f(x) = Ax2 +Bx+C ∈ Z[x] is any quadratic polynomial, say
f(x) = x(x + 1) (the split case). All we have to do is rewrite the equation
f(u) = Dv2: Multiplying by 4A and completing the square gives

4ADv2 = (2Au+B)2 −∆f

where ∆f = B2−4AC is the discriminant of f , which is nonzero if and only
if f has no repeated roots. Thus the equation f(u) = Dv2 becomes

(2Au+B)2 −AD(2v)2 = ∆f
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and we need to bound the number of solutions of

U2 − (AD)V 2 = ∆f

with U, V � X.
For instance, in the split case f(x) = x2 +x we get ∆ = +1 and the equa-

tion becomes U2−DV 2 = 1, to which we apply a version of Proposition 5.1.

Remark. When |∆| > 1 there may be more than one orbit of the unit group
{±εnD} and one has to account for that.
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