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1. SQUAREFREE VALUES OF POLYNOMIALS: HISTORY

In this section we study the problem of representing square-free integers
by integer polynomials. It is conjectured that a separable polynomial (that
is, without repeated roots) f € Z[x] takes infinitely many square-free values,
barring some simple exceptional cases, in fact that the integers a for which
f(a) is square-free have a positive density. A clear necessary condition is
that the sequence f(n) has no fixed square divisor; the conjecture is that
this is the only obstruction:

Conjecture 1. Let f(x) € Z[x] be a separable polynomial (i.e. with no
repeated roots) of positive degree. Assume that ged{f(n) : n € Z} is square-
free! . Then there are infinitely many square-free values taken by f(n), in
fact that a positive proportion of the values are square-free:

#{1 <n < X : f(n) is square-free } ~ ¢y X, as X — o0,

with
2
(1) s =[la- 242,
where
(1.2) p#(D) =#{cmod D : f(C)=0mod D} .

The problem is most difficult when f is irreducible. Nagell ([6] 1922)
showed the infinitude of squarefree values in the quadratic case. Estermann
([2] 1931) gave positive density for the case f(x) = x? + k. The general
quadratic case was solved by Ricci in 1933 [7]. For cubics, Erdés ([1], 1953)
showed that there are infinitely many square-free values, and Hooley ([4],
1967) gave the result about positive density. Beyond that nothing seems
known unconditionally for irreducible f, for instance it is still not known
that a* + 2 is infinitely often square-free.
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1 fact one can even allow fixed, square divisors of f(n), provided we divide them
out in advance, by replacing f(n) by f(n)/B’, where B’ is the smallest divisor of B :=

ged{f(n) : n € Z} so that B/B’ is square-free, and if we replace c; by [, (1 — :2f+<5: ),

where for each prime p, we denote by p? the largest power of p dividing B’, and by w¢(p)
the number of a mod p**% for which f(a)/B’ = 0 mod p*.
1
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A problem which has recently been solved is to ask how often an irre-
ducible polynomial f € Z[z] of degree d attains values which are free of
(d — 1)-th powers, either when evaluated at integers or at primes, see [8].

1.1. The ABC conjecture. Granville [3] showed that the ABC conjecture
completely solves the conjecture 1.

The ABC conjecture states that for every € > 0, there exist only finitely
many triples (a, b, c) of positive coprime integers, with a + b = ¢, such that

¢ > rad(abe)t*e .

Here the radical of an integer is the product of all distinct primes dividing it:
rad(N) := le ~ p- Equivalently, for every € > 0, there exists a constant K.
such that for all triples (a, b, c) of coprime positive integers, with a + b = c,
we have

¢ < K. -rad(abec)' e .

2. THE DENSITY cy

We pause to analyze the conjectural density cy of squarefree values of f,
given by (1.1).

Exercise 1. Assume that f(n) admits no common square factor. Show that
cr > 0, i.e. that ps(p?) < p? for all primes p.
By the Chinese remainder theorem, D + p¢(D) is a multiplicative func-
tion.
2.1. The split quadratic case f(z) = z(z + 1).
Lemma 2.1. Suppose f(x) = x(x + 1). Then for all prime p, and k > 1,
k
p(p") = 2.

Proof. We want to count solutions modulo p* of ¢(c + 1) = 0 mod p*. But
since p is prime, and ¢, ¢+ 1 have no common factors, this means that either
¢ =0 modpF or ¢+ 1 = 0mod p* and each case has exactly one solution.
Thus ps(p*) = 2. O

2.2. The irreducible quadratic case f(r) = 2% + 1.

Lemma 2.2. Suppose f(z) = x> + 1.
i) If p # 2 then p(p*) = p(p) for all k > 1.

i11) For p # 2,
(p) = 2, p=1mod4
PP = 0, p=3mod4
iii) p(4) = 0.
Proof. Part (i) follows from Hensel’s Lemma, and is valid for any polynomial

f € Z[z], for p{ disc(f). Part (ii) is specific to f(z) = 22 + 1 and is due to
Fermat. Part (iii) is a direct computation. O
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Note: The above shows that for f(z) = 2% + 1, our density c; is

-1
(2.1) cfZH(l—p(pg)):H(l—Hm):o.sgzl...

2
P p#£2 p
3. THE QUADRATIC CASE

Our goal here is to treat the quadratic case, in fact below we will specialize
to the simple cases of f(z) = z(x 4 1) (the split case) and f(z) = 22 + 1
(the irreducible case). For X > 1, we set

N(X) :={n < X : f(n) squarefree}
and N(X) := #N(X).
Theorem 3.1. Let f(x) = x(x + 1) or f(x) =22 + 1. Then
N(X)=c¢;X +O0(X*log X), as X — oo
with ¢y = Cspiiy = [],(1 — 1%) in the split case f(x) = x(x + 1), and ¢y =

-1
IT,0(1 —

Note that in the split case, since n(n + 1) is squarefree if and only if both
n and n + 1 are squarefree (because n, n + 1 are coprime), the result says
that the probability that both n and n+ 1 are squarefree is Cypjiy = ]_[p(l —
I%) = 0.322635. . ., which is smaller than 1/¢(2)* = [[,(1 - 2/p* + 1/p") =
0.369576 . . ., which would be the case if these were independent events.

= 0.894... in the irreducible case f(x) = 2% + 1.
)

3.1. The strategy. We use the sieve of Eratosthenes and Legendre: Recall
that the indicator function of the squarefrees is

sp(m) = > u(d)

d2|lm

= 1sp(f(n) =) Z =) pd)#n<X:d?| f(n)}

n<X n<X d2|f(n d<X

Hence

Note that we can constrain d < X because d? divides the quadratic polyno-
mial f(n), which is < X? if n < X.

We pick a parameter Y (eventually taken to be Y = X/3) and decompose
the sum into two parts, a sum N’(X) over “small” divisors d < Y, and a
sum N”(X) over “large” divisors Y < d < X:

N(X) = N'(X) + N"(X),,
N'(X) =" u(d)#{n < X : d*| f(n)}
A<y

and

N'(X)= > wld)#{n < X:d?| f(n)}

Y <d<X
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‘We will show that

(3.1) N'(X) :chX—i—O(;logY—i-YlogY)
and

" X2
(3.2) N'(X) < vz

Taking Y = X3 we obtain
N(X)=¢; X + O(X*log X)
giving Theorem 3.1.

4. THE MAIN TERM: SMALL DIVISORS

We will estimate N'(X) (the main term) by using inclusion-exclusion.
Recall

N'(X) =Y pd#{n<X:d*| f(n)}.

d<y

Lemma 4.1.

X’;gm + o(p(D)) .

#{n<X:D|f(n)}=
Proof. We decompose
#n<X:D[f(n)}= >  #{n<X:n=C modD}.

C mod D
f(C)=0 mod D
Using
X
#n<X:n=C modD}:ﬁ—i—O(l)
we get

#n<X:DIfm)= Y Zron

C mod D
f(C)=0 mod D

Hence we obtain

2
N = 3 ) (K 1 o))

d<Y

—Xziu d2d2 (Z!u !pd2>

d<Y d<Y

(4.1)
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We have

d;/u iu (g;lu )

Using multiplicativity of p (and of u) gives
(d?)

2
p(d)p( p(p”)
Z 2 H(l -5 =c¢r
By Lemmas 2.1 and 2.2, p(p?) < 2 for p prime, and thus for d squarefree

@) =[[r* < [[2="7(a)

pld pld

where 7 is the divisor function. Hence the tail of the sum is bounded by

|u(d)|p(d?) Ipd2 < logY
> Z UL 4

d>Y

and the remainder in (4.1) is bounded by

> ud)lp(d?) < 7(d) ~ YiogY .

d<y d<y
Therefore
N'(X)=csX + O(% logY)+ O(YlogY)
as claimed.
Exercise 2. Using }_, ., 7(n) = z(logz + C) + O(z'/?), show that
;rg) _ logY—}i—/C—i-Q +O(y§/2)

5. BOUNDING THE CONTRIBUTION OF LARGE DIVISORS

We write the condition d? | f(n) as f(n) = d2D for some integer D > 1.

Then
N'(X)=>" Z <Y #{n<X:f(n)=dD}.
n<X @2|f(n d>Y
d>Y

We now interchange the roles of d and D: If d > Y then D = f(n)/d* <
X?2/Y?2. Hence ignoring the size and squarefreeness restriction on d,

(5.1) N'(xX)< > #{uv<X:f(u) =D}
1<D<X2/y?
Now take f(x) = 22 4+ 1. Then the equation f(u) = Dv? becomes
u? — Dv? = —1

which is a Pellian equation.
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The main new arithmetic ingredient we need now is a bound on the num-

ber of solutions of the Pellian equation 2% — Dy? = —1 lying in a box of side

X: Let

(5.2) Sp(X) :=#{(z,y) € [1,X)?: 2> — Dy* = -1}

Proposition 5.1. Suppose 1 < D < X is not a perfect square. Then
Sp(X) <« iig )

If D = O is a perfect square, then there are are no solutions of x>—Dy? = —1

if D > 1, while for D =1 there are 2 solutions.

Proof. Suppose D > 1 is not a perfect square. By the theory of Pell’s
equation, if the equation 22 — Dy? = —1 is solvable in integers, then all
integer solutions (z,y) are of the form x 4+ v/ Dy = j:e%lﬂ, n € 7, where
€p = T1 + ylx/ﬁ is the fundamental solution, with x1,y; > 1. Hence if
1<z,y <X then x + y\/f? = e%”l for some n > 0 and then

log(z +vDy) _ log(z + Va2 + 1) < log X

0<n<

2logep 2logep ~ logep
Since ep = x1 + y1\/5 > /D, we obtain
log X
Sp(X .
p(X) <« og D
For D = C? a perfect square, the equation 2> — Cy?> = —1 becomes

22—(Cy)? = —1or (Cy—z)(Cy+x) = 1, which forces Cy—z = Cy+x = +1,
so that x = 0, and then C?y? = 1 is solvable only for C' = 1 in which case
there are two solutions. O

Inserting Proposition 5.1 into the bound (5.1) for Ny gives

log X X?

N Sp(X 1 —

) K E p(X) <1+ E 1ogD<<Y2
1<D<X2/Y?2 1<D<X2/Y?

o <</Zldt Z
1<D<Z10gD 5 logt log Z

as claimed, on using

5.1. Other quadratic polynomials. The considerations above extend to
the case when f(z) = Ax?+ Bx+C € Z[z] is any quadratic polynomial, say
f(x) = z(x + 1) (the split case). All we have to do is rewrite the equation
f(u) = Dv?: Multiplying by 44 and completing the square gives

4ADV? = (2Au + B)* — A;

where Ay = B? —4AC is the discriminant of f, which is nonzero if and only
if f has no repeated roots. Thus the equation f(u) = Dv? becomes

(24u + B)? — AD(2v)? = A;
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and we need to bound the number of solutions of
U? — (AD)V? = A;
with U,V <« X.

For instance, in the split case f(z) = 2%+ 2 we get A = +1 and the equa-
tion becomes U? — DV? = 1, to which we apply a version of Proposition 5.1.

Remark. When |A| > 1 there may be more than one orbit of the unit group
{*€},} and one has to account for that.
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