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1. The von Mangoldt function is defined as A(n) = logp, if n = p* is
a power of a prime p (k > 1), and A(n) = 0 otherwise. Show that

a) The Dirichlet convolution of A with the constant function 1 is
A x1 = log.

b) The Dirichlet series associated to —A is the logarithmic derivative
of the zeta function: For Re(s) > 1,
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2. The Euler totient function ¢(n) is the number of integers 0 < a < n
which are coprime to n. It is a consequence of the Chinese Remainder
Theorem that it is a multiplicative function. Show that
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3. The indicator function of the squarefree integers is 1sp(n) = |u(n)|.
Show that the associated Dirichlet series is
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4. The Mobius function is defined for square-free integers n = py-- - --pg

as p(n) = (=1)* (p; are distinct primes) and p(n) = 0 otherwise. The
summatory function of p(n) is M(z) := ), ., p(n). Show that if we
are given 0 < § < 1 so that M(x) = O(z°) for all z >> 1, then ((s) # 0
for all s in the half-plane Re(s) > 9.

5. a) Use partial summation to show that if Re(s) > 1 and « > 1, then
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where {z} = = — |z] and the floor function |[z]| equals the largest
integer < x. Explain why this implies that for Re(s) > 0 and > 1
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b) Use the equation above to show that for ¢t > 2
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where the implied constant depends on o.



