SIEVE THEORY 2015 ASSIGNMENT 2 DUE DATE: WEDNESDAY, APRIL 15, 2015

Exercise 1. Let $\omega(n)$ the number of distinct prime divisors of an integer n, so for instance $\omega(12) = 2$. Show that $\omega(n) \ll \log n / \log \log n$.

Exercise 2. Let $\Omega(n)$ be the number of prime divisors of n, counted with multiplicity, i.e. the number of prime powers dividing n, so for instance $\Omega(12) = 3$. Show that the mean value of $\Omega(n)$ is $\log \log n$:

$$\frac{1}{N}\sum_{n\leq N}\Omega(n) = \log\log N + O(1) \; .$$

Exercise 3. Let $\tau(n) = \sum_{d|n} 1$ be the divisor function. Using $\sum_{n \le x} \tau(n) = x(\log x + C) + O(x^{1/2})$, show that

$$\sum_{n>Y} \frac{\tau(n)}{n^2} = \frac{\log Y + C + 2}{Y} + O(\frac{1}{Y^{3/2}})$$

Exercise 4. Let a > 0, b be coprime integers. Find the density of integers n for which an + b is squarefree.

Exercise 5. Let $f(x) \in \mathbb{Z}[x]$ be a separable polynomial (i.e. with no repeated roots) of positive degree. Set $B := \gcd\{f(n) : n \in \mathbb{Z}\}$ and let B' be the smallest divisor of B so that B/B' is square-free. For each prime p, we denote by p^{q_p} the largest power of p dividing B', and by $r_f(p)$ the number of $a \mod p^{2+q_p}$ for which $f(a)/B' = 0 \mod p^2$. We set

$$c_f = \prod_p \left(1 - \frac{r_f(p)}{p^{2+q_p}} \right)$$

which is the conjectural density of integers n for which f(n)/B' is squarefree.

For f(x) = x(x+1)(x+2)(x+3), find B_f and B'_f , and show that $r_f(p) = 4$ for $p \neq 2, 3$.

Hence $c_f = R \prod_{p \neq 2,3} (1 - \frac{4}{p^2})$ for some rational number. Find R.

Exercise 6. Assume that B' = 1. Show that $c_f > 0$, i.e. that $r_f(p) < p^2$ for all primes p.