SIEVE THEORY 2015

ASSIGNMENT 3

DUE DATE: WEDNESDAY, MAY 27, 2015

Exercise 1. For $m, n \geq 1$, let $[m, n]=\operatorname{lcm}(m, n)$ be their least common multiple, that is the smallest integer divisible by both m and n in the sense that it divides any other integer with this property.
a) Show that $[m, n] \cdot(m, n)=m n$, where $(m, n)=\operatorname{gcd}(m, n)$.
b) If f is a multiplicative function, show that for all $m, n \geq 1$,

$$
f([m, n]) f((m, n))=f(m) f(n)
$$

c) Show that $\left[m^{2}, n^{2}\right]=[m, n]^{2}$.
d) If D is squarefree, show that $\#\left\{((m, n):[m, n]=D\}=3^{\omega(D)}\right.$ where $\omega(D)$ is the number of distinct prime divisors of D.

Exercise 2. Let $f(n)=n^{2}$.
a) Show that

$$
(f * \mu)(n)=n^{2} \prod_{p \mid n}\left(1-\frac{1}{p^{2}}\right)
$$

b) Show that

$$
\sum_{n \leq z} \frac{\mu(n)^{2}}{(\mu * f)(n)} \geq \zeta(2)+O\left(\frac{1}{z}\right)
$$

Exercise 3. Let $\tau(n)$ be the number of divisors of n. Show that

$$
\sum_{\substack{n \leq x \\ \operatorname{gcc}(3, n)=1}} \frac{\tau(n)}{n}=\frac{2}{9}(\log x)^{2}+O(\log x)
$$

