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Exercise 1. For m,n ≥ 1, let [m,n] = lcm(m,n) be their least common
multiple, that is the smallest integer divisible by both m and n in the sense
that it divides any other integer with this property.

a) Show that [m,n] · (m,n) = mn, where (m,n) = gcd(m,n).

b) If f is a multiplicative function, show that for all m,n ≥ 1,

f([m,n])f((m,n)) = f(m)f(n)

c) Show that [m2, n2] = [m,n]2.

d) If D is squarefree, show that #{((m,n) : [m,n] = D} = 3ω(D) where
ω(D) is the number of distinct prime divisors of D.

Exercise 2. Let f(n) = n2.

a) Show that

(f ∗ µ)(n) = n2
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Exercise 3. Let τ(n) be the number of divisors of n. Show that∑
n≤x
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