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Abstract

We are concerned with the detection of associations betweenrandom vectors
of any dimension. Few tests of independence exist that are consistent against all
dependent alternatives. We propose a powerful test that is applicable in all dimen-
sions and is consistent against all alternatives. The test has a simple form and is
easy to implement. We demonstrate its good power propertiesin simulations and
on examples.

1 Introduction

In modern applications, there is need to test for independence between random vectors.
One example from genomics research is whether two groups of genes are associated.
Another application is functional magnetic resonance imaging research, where voxels
in the brain are measured over time under various experimental conditions, and it is of
interest to discover whether sets of voxels that comprise different areas in the brain are
functionally related.

Let X ∈ ℜp andY ∈ ℜq be random vectors, wherep andq are positive integers.
We are interested in testing whether there is a relationshipbetween the two vectorsX
andY . The null hypothesis states that the two vectors are independent,

H0 : FXY = FXFY ,

where the joint distribution of(X,Y ) is denoted byFXY , and the distributions ofX
andY , respectively, byFX andFY . We are interested in the general alternative that
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the vectors are dependent,
H1 : FXY 6= FXFY .

There areN independent copies(xi, yi), i = 1, . . . , N from the joint distribution ofX
andY for testingH0. The dimensions of the vectorsp andq may be much higher than
N .

The purpose of this paper is to provide a powerful test of independence that is
applicable in all dimensions, and is consistent against allalternatives. The test is
based on the pairwise distances between the sample values ofX and ofY respec-
tively, {dX(xi, xj) : i, j ∈ {1, . . . , N}}, {dY (yi, yj) : i, j ∈ {1, . . . , N}}. The only
restriction on the distance metricsdX(·, ·) anddY (·, ·) is that they are determined by
norms. The test statistic is a function of ranks of these distances, and it can be expressed
simply in closed form. It is proven to be consistent against all dependent alternatives.

Few multivariate tests of independence that are consistentagainst all alternatives
are available to date. Fukumizu et al. (2008) suggest a test based on normalized cross-
covariance operators on reproducing kernel Hilbert spaces. Bickel and Xu (2009) offer
a test based on an approximation of Renyi correlation, sincethere is no explicit formula
to compute the Renyi correlation. A very elegant test with a simple formula is provided
in Szekely et al. (2007), and has been further investigated in Szekely and Rizzo (2009)
and in the discussions that followed it. We revisit some of the examples of Szekely et al.
(2007), and add new examples. In the examples considered ournew test performs
remarkably well in comparison to the test of Szekely et al. (2007).

2 The new test of independence

This section develops the new test of independence. To motivate the test, note that
if X andY are dependent and have a continuous joint density, then there exists a
point (x0, y0) in the sample space of(X,Y ), and radiiRx andRy aroundx0 andy0,
respectively, such that the joint distribution ofX andY is different than the product of
the marginal distributions in the cartesian product of balls around(x0, y0). Consider
first an oracle that guesses such a point(x0, y0) and radiiRx andRy.

Let d(·, ·) be the norm distance between two sample points, either inX or in Y ,
so the distance between the vectorsxi andxj from the distribution ofX is d(xi, xj),
and similarly the distance between the vectorsyi andyj from the distribution ofY
is d(yi, yj). Technically, this distance may be different for the samples ofX and for
the samples ofY , but we omit this distinction for simplicity of notation. Consider the
following two dichotomous random variables:I{d(x0, X) ≤ Rx} andI{d(y0, Y ) ≤
Ry}, whereI(·) is the indicator function. We summarize the observed cross-classification
of these two dichotomous random variables for theN independent observationsk ∈
{1, . . . , N} in Table 1, whereA11 =

∑N

k=1
I{d(x0, xk) ≤ Rx}I{d(y0, yk) ≤ Ry},

A12, A21, A22, defined similarly, andAm·, A·m m = 1, 2, are the sum of the row or
column, respectively.

Evidence against independence may be quantified by Pearson’s chi-square test
statistic, or the likelihood ratio test statistic, for2 × 2 contingency tables. The test
based on such a statistic is consistent, and its power for finite sample size depends on
the choice of(x0, y0), Rx andRy.
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Table 1: The cross-classification ofI{d(x0, X) ≤ Rx} andI{d(y0, Y ) ≤ Ry}
d(y0, ·) ≤ Ry d(y0, ·) > Ry

d(x0, ·) ≤ Rx A11 A12 A1·

d(x0, ·) > Rx A21 A22 A2·

A·1 A·2 N

Table 2: The cross-classification ofI{d(xi, X) ≤ d(xi, xj)} and I{d(yi, Y ) ≤
d(yi, yj)}

d(yi, ·) ≤ d(yi, yj) d(yi, ·) > d(yi, yj)
d(xi, ·) ≤ d(xi, xj) A11(i, j) A12(i, j) A1·(i, j)
d(xi, ·) > d(xi, xj) A21(i, j) A22(i, j) A2·(i, j)

A·1(i, j) A·2(i, j) N − 2

Since we do not have an oracle that guesses well(x0, y0), Rx andRy, in the sense
that the test for independence by a2×2 contingency tables will be powerful, we let the
data guide us in these choices. For every sample pointi, we choose it in its turn to be
(x0, y0). For every sample pointj 6= i, we choose it in its turn to defineRx = d(xi, xj)
andRy = d(yi, yj). The2 × 2 tables now comprise the remainingN − 2 points. The
test aggregates the evidence against independence by summing over allN(N − 1) test
statistics from the2× 2 tables thus created.

Specifically, for fixed observationsi andj, consider the dichotomous random vari-
ables: I{d(xi, X) ≤ d(xi, xj)} andI{d(yi, Y ) ≤ d(yi, yj)}. Table 2 summarizes
the observed cross-classification of these two dichotomousrandom variables for the
N − 2 independent observationsk ∈ {1, . . . , N}, k 6= i, k 6= j, whereA11(i, j) =∑N

k=1,k 6=i,k 6=j I{d(xi, xk) ≤ d(xi, xj)}I(d(yi, yk) ≤ d{yi, yj)}, A12, A21, A22 de-
fined similarly, andAm·, A·m,m = 1, 2, are the sum of the row or column, respec-
tively.

Let

S(i, j) =
(N − 2){A12(i, j)A21(i, j)−A11(i, j)A22(i, j)}

2

A1·(i, j)A2·(i, j)A·1(i, j)A·2(i, j)
.

This is the classic test statistic for Pearson’s chi square test for2×2 contingency tables.
To test for independence between the two random vectorsX andY , we suggest as a

test statisticT =
∑N

i=1

∑N
j=1

j 6=i

S(i, j). For i andj with 0 in at least one of the margins,

we setS(i, j) = 0. Thep-value from the permutation test based on the statisticT is the
fraction of replicates ofT under random permutations of the indices of theY sample,
that are at least as large as the observed statistic.

We say a point(x0, y0) is a point of dependence if the joint density ofX andY
is different than the product of the marginal densities ofX andY at (x0, y0), defined
formally in equation (1) in the Appendix for the mixed case where the coordinates
may be both discrete and continuous. Theorem 2.1 states thatthe test is consistent
for discrete random vectors with countable support, as wellas for continuous random
vectors, and for random vectors where some of the coordinates are discrete and others
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continuous, if the density of the continuous random vectorsis continuous around a
point of dependence.

Theorem 2.1 For dependent random vectors(X,Y ),X ∈ ℜp andY ∈ ℜq, denote the
discrete and continuous coordinates ofX byu ⊆ {1, . . . , p} andv = uc, respectively,
and similarly the discrete and continuous coordinates ofY by s ⊆ {1, . . . , q} and
t = sc, respectively. The permutation test based on the statisticT , with distances
dX(·, ·) anddY (·, ·) determined by norms, is consistent if either

1. X andY are continuous, i.e.u ands are empty sets, and there exists a point of
dependence(x0, y0) for which the joint density is continuous.

2. At least one ofX or Y has discrete coordinates in addition to the continuous
coordinates, i.e. at least one ofu and s is non-empty and bothv and t are
non-empty, and there exists a point of dependence(x0, y0) for which (i) there
exists a ball around the atom{x0(u), y0(s)} that contains only this atom, and
(ii) the joint density of the continuous coordinates conditional on the discrete
coordinates is continuous.

3. BothX andY are discrete, i.e.v andt are empty sets.

4. X is discrete andY is continuous, i.e.v ands are empty sets, and there exists a
point of dependence(x0, y0) for which the conditional density ofY givenX is
continuous.

See Appendix for a proof of case 2. The proofs of the other cases are very similar yet
simpler, and they are given in the Supplementary Material.

2.1 Computational Complexity

For N sample points, the naive implementation of the test will require an order of
magnitude ofN3 operations. We provide an algorithm to efficiently calculate the score
T in order of magnitudeN2 logN . This is done by providing an algorithm which for
a giveni calculates{S(i, j) : j = 1, . . . , N, j 6= i} in order of magnitudeN logN .
We shall show that we can calculate{A11(i, j), A12(i, j), A21(i, j), A22(i, j) : j =
1, . . . , N, j 6= i} in O(N logN).

For fixedi, let us look at all the distances from samplei according toX and let us
sort the samples according to distance. Without loss of generality, renumber the indices
of theN−1 sample points other thani to be1, . . . , N−1, so that thejth observation is
thejth nearest toi in X . Denote the order of the distance fromi in Y byπ(1) · · ·π(N−
1). So thejth observation is theπ(j)th nearest toi in Y . π(·) is a permutation of
1, . . . , N−1. The entries in the above Table 2 may be expressed as a function of j, π(j)
andinv(j), whereinv(j) is defined as the number of inversions ofj in the permutation
π, i.e. inv(j) is the number indicesk ∈ {1, . . . , j − 1} such thatπ(k) ∈ {π(j) +
1, . . . , N − 1}. From the definition ofA12(i, j) it follows thatA12(i, j) = inv(j),
and similarlyA22(i, j) = N − π(j)− inv(j). SinceA1·(i, j) = j − 1, the remaining
counts of the2 × 2 contingency table forS(i, j) areA11 = j − 1 − inv(j), A21 =
π(j) + inv(j)− j− 1. Therefore, it is enough to show that each of the following steps
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Table 3: The power (SE × 100) for a test at level 0.05 from a sample of sizeN = 50
from unusual bivariate relations. The results are based on 1000 simulations for rows
1− 5 and on 50000 simulations for the null setting in row6.

Distribution Dcov new test
W 0.853 (1.1) 1.000 (0.0)

Diamond 0.037 (0.3) 0.662 (1.5)
Parabola 0.975 (0.5) 0.998 (0.1)

2 Parabolas 0.303 (1.4) 1.000 (0.0)
Circle 0.000 (0.0) 0.993 (0.3)

4 independent clouds 0.050 (0.1) 0.050 (0.1)

takes order of magnitudeN logN : (1) renumber the indices according to increasing
distance inX from i; (2) compute{π(j) : j = 1, . . . , N, j 6= i}; (3) compute{inv(j) :
j = 1, . . . , N, j 6= i}. Since sorting takes order of magnitudeN logN , steps (1)
and (2) are performed in the required computational time. Itremains to show that
(3) can be computed in order of magnitudeN logN . We show the algorithm in the
Supplementary Material.

3 Simulations

In the simulations, we compare the performance of our test and the dCov test of
Szekely and Rizzo (2009). We chose the latter test for two reasons. First, it is the only
consistent test of simple form that is available. Second, the superiority of the dCov
test over classical tests in Puri and Sen (1971) has been demonstrated in Szekely et al.
(2007). Moreover, our aim is to investigate the performanceof our test for non-
monotone relationships, and these classical tests, or related tests for higher dimensions
found in Taskinen et al. (2005), are ineffective for testingnon-monotone types of de-
pendence (Szekely et al., 2007).

In all simulations, the dCov test was applied by calling the functiondcov.test im-
plemented in the R packageenergy(Szekely and Rizzo, 2009) with 10000 permutation
samples. The Euclidean distance was used as a distance metric.

We consider first the six simulated examples of unusual bivariate distributions in
Newton (2009). These examples mimic those at thewikipedia.org page on Pear-
son correlation, see Supplementary Material for details. The example of 4 indepen-
dent clouds is an example of a null distribution. Table 3 shows the power comparison
between dCov and the new test forN = 50 sample points and a significance level
α = 0.05. Large differences are observed. The most pronounced difference is ob-
served for the circle relation, where the power of the new test is 0.993 yet dCov has
no power to detect the relation. For the diamond relation, the new test has a power
of 0.662 yet the power of dCov is 0.037. The tests based on Pearson and Spearman
correlations had a power of at most 0.16 in all examples.

Szekely et al. (2007) considered multivariate examples andcompared them to like-
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Table 4: The power (SE × 100) of a test at level0.05 per sample size from a
5 dimensional joint distribution, whereX ∼ N(0, I5×5) and Y = log(X2) or
Y = (Y1, . . . , Y5) has coordinatesYj = Xj · ǫj , whereǫj ∼ N(0, 1) independent
of Xj. The results are based on 1000 simulations.

Y = log(X2) Yj = Xj · ǫj
Sample size dCov new test dCov new test

N=20 0.172 (1.2) 0.299 (1.4) 0.335 (1.5) 0.554 (1.6)
N=30 0.290 (1.4) 0.595 (1.6) 0.384 (1.5) 0.792 (1.3)
N=40 0.436 (1.6) 0.819 (1.2) 0.417 (1.6) 0.920 (0.9)
N=50 0.629 (1.5) 0.945 (0.7) 0.443 (1.6) 0.968 (0.6)

Table 5: The power (SE × 100) of a test at level0.05 per sample size from a 5 di-
mensional joint distribution, whereYj = β1Xj + β2X

2

j + ǫj , j = 1, . . . ,m1 and
Yj = ǫj, j = m1 + 1, . . . , 5, with ǫj ∼ N(0, σ2) independent ofXj ∼ N(0, 1). The
results are based on 1000 simulations.

dCov new test
m1 β1 β2 σ2 N=20 N=30 N=20 N=30

0 0 0 1 0.040 (0.6) 0.047 (0.7) 0.051 (0.7) 0.047 (0.7)
2 1 4 9 0.501 (1.6) 0.637 (1.5) 0.669 (1.5) 0.984 (0.4)
2 3 2.5 9 0.841 (1.2) 0.963 (0.6) 0.706 (0.5) 0.998 (0.1)

lihood ratio type of tests. In the following two examples from Szekely et al. (2007),
none of the likelihood ratio type of tests considered performed well. Using our no-
tation, the distribution ofX = (X1, . . . , X5) is standard multivariate normal with 5
dimensions. First, letY be equal tolog(X2). Columns 2 and 3 of Table 4 shows the
power of a test at level0.05 for dCov as well as for the new test. The new test has a
power of 0.82 forN = 40 sample points, whereas the power of dCov is 0.436. Second,
letY = (Y1, . . . , Y5) have coordinatesYj = Xj ·ǫj, whereǫj are independent standard
normal variables and independent ofXj . Columns 4 and 5 of Table 4 show the power
of a test at level0.05 for dCov as well as for the new test. The new test has a power of
0.968 forN = 50 sample points, whereas the power of dCov is 0.443.

A more sophisticated scenario, which includes both a monotone and non-monotone
component, is the following:Yj = β1Xj+β2X

2

j +ǫj, j = 1, . . . ,m1 andYj = ǫj , j =

m1 + 1, . . . , 5, with ǫj ∼ N(0, σ2) andXj ∼ N(0, 1) for all j. Table 7 shows the
power of a test at level0.05 for dCov as well as for the new test for various values
of β1, β2, σ

2, m1 ∈ {0, 2}. Further results in100 dimensions are included in the
Supplementary Material. Whenβ2 is large relative toβ1, the power of the new test is
better than that of dCov.

Finally, we consider an example whereX andY are both of dimension 1000, from
a mixture distribution with 10 equally likely components. In theith component,i ∈
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Table 6: The power (SE × 100) of a test at level0.05 per sample size from the joint
distribution of 10 mixture components for random vectors ofdimension 1000, each
component is centered around a different mean and is either multivariate Cauchy or
multivariate t with 3 degrees of freedom. The results are based on 200 simulations.

t (3df) Cauchy
Sample size dCov new test dCov newtest

N=50 0.100 (2.1) 0.570 (3.5) 0.040 (1.4) 0.130 (2.4)
N=100 0.190 (2.8) 0.980 (1.0) 0.050 (1.5) 0.185 (2.7)
N=200 0.345 (3.4) 1.000 (0.0) 0.075 (1.9) 0.390 (3.5)
N=300 0.620 (3.2) 1.000 (0.0) 0.020 (1.0) 0.580 (3.5)

{1, . . . , 10}, (X,Y ) are the random variables{µx(i) + ǫ, µy(i) + η}, whereµx(i)
andµy(i) are sampled (once) from the 1000 dimensional multivariate standard normal
distribution, and(ǫ, η) are sampled independently from the multivariate Cauchy or
multivariatet with 3 degrees of freedom, with the identity correlation matrix. The
dependency ofX andY is through the fixed pairs{µx(i), µy(i)}, i = 1, . . . , 10 such
that the data consists of 10 clouds around these pairs. See Supplementary Material
for details. Table 6 shows the power of a test at level0.05 for dCov as well as for
the new test. The new test has a power of one forN = 200 sample points in the
multivariatet distribution, whereas the power of dCov is 0.23. For the multivariate
cauchy distribution, dCov has no power even atN = 300, as expected since dCov is
consistent only for distributions with finite first moments (Szekely et al., 2007). The
power of the new test is 0.58 forN = 300 sample points. Moreover, for the multivariate
normal distribution, the power for both tests is one forN = 50 sample points.

4 An example

In a homogeneous population, the dependence between singlenucleotide polymor-
physms (SNPs) on the same chromosome is weaker the farther the SNPs are from
each other due to recombination (Lander and Schork, 1994). Aquestion of interest is
whether SNPs across chromosomes are independent. To answerthis question we ex-
amined the DNA of a sample of 97 unrelated individuals of Han Chinese in Beijing,
China, available from the HapMap project (The International HapMap Consortium,
2003). This sample is regarded to be of relatively homogeneous ancestry, since donors
were required to have at least three Han Chinese grandparents. For the purpose of this
example, we limit ourselves to chromosomes 21 and 22 and ask whether the SNPs on
chromosome 21 are independent of the SNPs on chromosome 22. We first preprocessed
the data by removing subjects with more than 30% missing SNPson a chromosome,
SNPs with missing subjects, and SNPs with minor allele frequency below 0.05. After
preprocessing, 43 subjects remained. For each subject we had a vector of dimension
31,858 of SNPs from chromosome 21, and a vector of dimension 36,264 of SNPs from
chromosome 22. The Euclidean distance was used as a distancemetric. Our proposed
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test was highly significant, with ap-value below1 × 10−4. The dCov test was also
significant, with ap-value of6× 10−4.

5 Final remarks

Pearson’s chi-squared test statistic was originally proposed as an approximation to the
log-likelihood ratio statistic, in our context

SLR(i, j) = 2

2∑
k=1

2∑
l=1

Akl(i, j) log[Akl(i, j)/{
A·l(i, j)Ak·(i, j)

N − 2
}].

An alternative test statistic for independence may therefore beTLR =
∑N

i=1

∑N
j=1

j 6=i

SLR(i, j).

In the simulation results considered, the permutation testwith this test statistic had very
similar power to the power of the suggested test.

After discovering that the random vectors are dependent, a natural question to ask
is which sub-vectors are dependent. This can be done using multiple comparisons pro-
cedures, similar to post-hoc testing in the analysis of variance (Scheffe, 1959). More-
over, the larger the value ofS(i, j), the stronger the dependence between the variables
I{d(xi, X) ≤ d(xi, xj)} andI{d(yi, Y ) ≤ d(yi, yj)}. Informally, if S(i, j) is large
andd(xi, xj) andd(yi, yj) are small, this suggests that the random vectorsX andY
are dependent in balls of sized(xi, xj) andd(yi, yj) aroundxi andyi. We plan to
explore methods of localizing the dependency in future work.
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Supplementary material

Supplementary material includes the proofs of cases 3 and 4 of the theorem, the algo-
rithm for implementing the test in order of magnitudeN2 log(N), further simulations,
and an additional one-dimensional real data example.

Appendix

We shall prove Theorem 2.1 for the case where the index setsu, v, s, t are all non-
empty, since it is straightforward to adapt the proof to the cases whereu or s are empty
sets.
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From henceforth, for notational convenience we shall repress the conditioning event
and denote the joint and marginal densities conditional on the discrete coordinate
values ash{x(v), y(t)}, f{x(v)}, andg{y(t)} in place ofh{x(v), y(t) | X(u) =
x(u), Y (s) = y(s)}, f{x(v) | X(u) = x(u)}, andg{y(t) | Y (s) = y(s)}. More-
over, we denotep{x(u), y(s)} = Pr{X(u) = x(u), Y (s) = y(s)}, p{x(u)} =
Pr{X(u) = x(u)}, andp{y(s)} = Pr{Y (s) = y(s)}.

If H0 is false, and the point of dependence(x0, y0) satisfies properties (i) and (ii)
of Theorem 2.1. Without loss of generality, suppose

p{x0(u), y0(s)}h{x0(v), y0(t)} > p{x0(u)}f{x0(v)}p{y0(s)}g{y0(t)}. (1)

Let Rd be a positive constant smaller than both the radius of the ball aroundx0(u)
that contains onlyx0(u), and the radius of the ball aroundy0(s) that contains only
the pointy0(s). Then the set{(x, y) : d(x, x0) < Rd, d(y, y0) < Rd} contains only
points with discrete coordinatesx(u) = x0(u), y(s) = y0(s). Moreover, since the
joint density conditional on{x0(u), y0(s)} is continuous, there exists a radiusRc such
thatp{x0(u), y0(s)}h{x(v), y(t)} > p{x0(u)}f{x(v)}p{y0(s)}g{y(t)} for all points
(x, y) in the set{(x, y) : d(x, x0) < Rc, d(y, y0) < Rc, x(u) = x0(u), y(s) = y0(s)}.
Let R = min{Rd, Rc} andA = {(x, y) : d(x, x0) < R, d(y, y0) < R}. Then the
setA has positive probability, for all points(x, y) ∈ A the discrete coordinates are
x(u) = x0(u) andy(s) = y0(s), and moreover

min
A

[p{x(u), y(s)}h{x(v), y(t)} − p{x(u)}f{x(v)}p{y(s)}g{y(t)}] > 0.

Denote this minimum by the positive constantc.
Clearly the following two subsets ofA have positive probability as well:

A1 = {(x, y) : d(x, x0) < R/8, d(y, y0) < R/8}

and
A2 = {(x, y) : 3R/8 < d(x, x0) < R/2, 3R/8 < d(y, y0) < R/2}.

Denote the probabilities ofA1 andA2 by f1 andf2 respectively. Therefore, we expect
(Nf1)(Nf2) pairs of sample pointsi andj such that(xi, yi) ∈ A1 and(xj , yj) ∈ A2.
For these sample pointsi andj,

3R/8 ≤ d(xj , x0) ≤ d(xj , xi) + d(xi, x0) ≤ d(xj , xi) +R/8 (2)

where the second inequality is the triangle inequality, andthe first and third inequalities
follow since(xj , yj) ∈ A2 and(xi, yi) ∈ A1. It follows from (2) that

d(xi, xj) ≥ R/4, d(yi, yj) ≥ R/4. (3)

Moreover, if a sample pointk is closer toi than toj both in theX vector and in the
Y vector, then it is within thex andy spheres of radiusR:

Lemma .1 If d(xk, xi) < d(xi, xj), thend(xk, x0) ≤ R. Similarly, if d(yk, yi) <
d(yi, yj), thend(yk, y0) ≤ R.
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Proof: Since the proof follows the same steps forxk andyk, we only show it for thex
coordinates. The result follows by applying the triangle inequality several times,

d(xk, x0) ≤ d(xk, xi) + d(xi, x0) ≤ d(xj , xi) + d(xi, x0)

≤ d(xj , x0) + 2d(xi, x0) ≤ R/2 + 2R/8 = 6R/8 ≤ R.

The consequence of Lemma .1 is that for all such samplesk, (xk, yk) ∈ A.
Moreover, all points that are within thex andy spheres of radiusR/8 are closer to

i than the pointj:

Lemma .2 If d(xk, x0) < R/8, thend(xk, xi) < d(xi, xj). Similarly, if d(yk, y0) <
R/8, thend(yk, yi) < d(yi, yj).

Proof: Since the proof follows the same steps forxk andyk, we only show it for the
x coordinates. Applying the triangle inequality,d(xk, xi) ≤ d(xk, x0) + d(xi, x0) ≤
R/8 + R/8 = R/4. The result follows from (3). Therefore, if(xk, yk) ∈ A1, thenk
is closer toi than toj in bothX andY .

By the law of large numbers, almost surely

lim
N→∞

A11(i, j)

N − 2
= p{x0(u), y0(s)}

∫
A3

h{x(v), y(t)}dx(v)dy(t) (4)

lim
N→∞

A1·(i, j)

N − 2
= p{x0(u)}

∫
A4

f{x(v)}dx(v) (5)

lim
N→∞

A·1(i, j)

N − 2
= p{y0(s)}

∫
A5

g{y(t)}dy(t) (6)

whereA3 = {(x, y) : d(x, xi) < d(xi, xj), d(y, yi) < d(yi, yj)}, A4 = {x :
d(x, xi) < d(xi, xj)}, andA5 = {y : d(y, yi) < d(yi, yj)} .

Recall thatS(i, j) =
∑

2

k=1

∑
2

l=1
{Ak,l(i, j)−Ak·(i, j)A·l(i, j)/(N − 2)}2/{Ak·(i, j)A·l(i, j)/(N−

2)}. It is enough to look at the term withl = 1 andk = 1 in S(i, j), i.e. the term

S1(i, j) =
{A11(i, j)−A1·(i, j)A·1(i, j)/(N − 2)}2

A1·(i, j)A·1(i, j)/(N − 2)
.

It follows thatS(i, j) ≥ S1(i, j), and therefore that our test statisticT ≥
∑N

i=1

∑N
j 6=i
j=1

S1(i, j).

By Slutzky’s theorem and the continuous mapping theorem, almost surely

lim
N→∞

S1(i, j)

N − 2
= lim

N→∞

1

N − 2

{A11(i, j)−A1·(i, j)A·1(i, j)/(N − 2)}2

A1·(i, j)A·1(i, j)/(N − 2)

=
(
∫
A3

[p{x0(u), y0(s)}h{x(v), y(t)} − p{x0(u)}f{x(v)}p{y0(s)}g{y(t)}]dx(v)dy(t))
2∫

A3

[p{x0(u)}f{x(v)}p{y0(s)}g{y(t)}]dx(v)dy(t)
.(7)

We shall show that this limit can be bound from below by a positive constant that
depends on(x0, y0) but not oni andj. From Lemma .1 it follows thatA3 ⊆ A, and
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from Lemma .2 it follows thatA1 ⊆ A3, and therefore a positive lower bound on the
numerator of (7) can be obtained:

∫
A3

[p{x0(u), y0(s)}h{x(v), y(t)} − p{x0(u)}f{x(v)}p{y0(s)}g{y(t)}]dx(v)dy(t)

≥ c

∫
A3

dx(v)dy(t) ≥ c

∫
A1

dx(v)dy(t).

Moreover,
∫
A3

{p{x0(u)}f{x(v)}p{y0(s)}g{y(t)}}dx(v)dy(t) ≤ 1. Therefore, de-
noting the lower bound byc′ = {c

∫
A1

dx(v)dy(t)}2, it follows thatS1(i, j)/(N − 2)

converges almost surely to a constant larger thanc′ > 0. Therefore,S1(i, j) >
(N − 2)c′/2 with probability going to 1 asN → ∞. Since, moreover, the num-
ber of pairs of pointsi andj such that(xi, yi) ∈ A1 and(xj , yj) ∈ A2, divided by
f1f2N

2, converges almost surely to 1, it follows that there exists aconstantδ such that
limN→∞ Pr(T > δN3) = 1.

Under the null hypothesis, for large enough sample sizeN , S(i, j) is distributedχ2

with 1 degree of freedom. Therefore, the null expectation ofT is approximatelyN(N−
1), and the null variance is bounded above by a term of orderN4 (more precisely, by
{N(N − 1)}22). Since

∑N

i=1

∑N
j=1

j 6=i

S(i, j) is of order of magnitude ofN3, it follows

thatT will be rejected with probability 1.
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A Supplementary Material

A.1 Proofs

The proof of case 1 is omitted, since it is very similar to the more complex case 2. The
proofs of the countable case 3, and the mixed case where one random vector is discrete
and the other continuous, are given, respectively, in Sections A.1.1 and A.1.2 below.

A.1.1 Proof of the countable case 3

SupposeX ∈ ℜp andY ∈ ℜq are both discrete with countable support.H0 is false
implies that there exists at least one pair of atoms(x0, y0) such thatPr(X = x0, Y =
y0) > Pr(X = x0)Pr(Y = y0). We expectNPr(X = x0, Y = y0) points to have
values(x0, y0). Let i andj be two such points. By the law of large numbers, almost
surely

lim
N→∞

A11(i, j)

N − 2
= Pr(X = x0, Y = y0), lim

N→∞

A1·(i, j)

N − 2
= Pr(X = x0), lim

N→∞

A·1(i, j)

N − 2
= Pr(Y = y0).

Recall that

S(i, j) =

2∑
k=1

2∑
l=1

{Ak,l(i, j)−Ak·(i, j)A·l(i, j)/(N − 2)}2/{Ak·(i, j)A·l(i, j)/(N−2)}.

It is enough to look at the term withl = 1 andk = 1 in S(i, j), i.e. the term

S1(i, j) =
{A11(i, j)−A1·(i, j)A·1(i, j)/(N − 2)}2

A1·(i, j)A·1(i, j)/(N − 2)
.

It follows thatS(i, j) ≥ S1(i, j), and therefore that our test statisticT ≥
∑N

i=1

∑N
j 6=i
j=1

S1(i, j).

By Slutzky’s theorem, almost surely

lim
N→∞

S1(i, j)

N − 2
= lim

N→∞

1

N − 2

{A11(i, j)−A1·(i, j)A·1(i, j)/(N − 2)}2

A1·(i, j)A·1(i, j)/(N − 2)

=
{Pr(X = x0, Y = y0)− Pr(X = x0)Pr(Y = y0)}2

Pr(X = x0)Pr(Y = y0)
.

It follows that S1(i, j)/(N − 2) converges almost surely to a positive constant
c′ > 0. Therefore,S1(i, j) > (N − 2)c′/2 with probability going to 1 asN →
∞. Since we have order of magnitude ofN2 pairs of pointsi andj that satisfy the
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inequalityS1(i, j) > (N − 2)c′/2, it follows that there exists a constantδ such that
limN→∞ Pr(T > δN3) = 1. By the same argument as in the last paragraph of the
Appendix in the main text, it therefore follows thatT will be rejected with probability
1.

A.1.2 Proof of mixed case 4

SupposeX ∈ ℜp is discrete with countable support, andY ∈ ℜq has a continuous
density givenX , denoted byh(y | X = x), and a marginal densityg(y). H0 is false
implies that there exists at least one pair of pointsx0, y0 such thatPr(X = x0)h(Y =
y0 | X = x0) > Pr(X = x0)g(Y = y0). Sinceh(· | X = x0) is continuous, there
exists a radiusR such thatPr(X = x0)h(Y = y | X = x0) > Pr(X = x0)g(Y = y)
for (x, y) ∈ A = {(x, y) : x = x0, d(y, y0) < R}. The setA has positive probability,
and moreover

min
A

{Pr(X = x0)h(Y = y | X = x0)− Pr(X = x0)g(Y = y)} > 0.

Denote this minimum by the positive constantc.
Clearly the following two subsets ofA have positive probability as well:

A1 = {(x, y) : x = x0, d(y, y0) < R/8}

and
A2 = {(x, y) : x = x0, 3R/8 < d(y, y0) < R/2}.

Denote the probabilities ofA1 andA2 by f1 andf2 respectively. Therefore, we expect
(Nf1)(Nf2) pairs of sample pointsi andj such that(xi, yi) ∈ A1 and(xj , yj) ∈ A2.

For these sample pointsi andj, d(yi, yj) ≥ R/4. From Lemma 1 in the Appendix,
if d(yk, yi) < d(yi, yj), thend(yk, y0) ≤ R. From Lemma 2 in the Appendix, if
d(yk, y0) < R/8, thend(yk, yi) < d(yi, yj). Therefore, if(xk, yk) ∈ A1, thenk is
closer toi than toj in Y .

By the law of large numbers, almost surely

lim
N→∞

A11(i, j)

N − 2
= Pr(X = x0)

∫
A3

h(y | X = x0)dy (8)

lim
N→∞

A1·(i, j)

N − 2
= Pr(X = x0) (9)

lim
N→∞

A·1(i, j)

N − 2
=

∫
A4

g(y)dy (10)

whereA3 = {(x, y) : x = x0, d(y, yi) < d(yi, yj)}, , andA4 = {y : d(y, yi) <
d(yi, yj)} .

Recall that

S(i, j) =

2∑
k=1

2∑
l=1

{Ak,l(i, j)−Ak·(i, j)A·l(i, j)/(N − 2)}2/{Ak·(i, j)A·l(i, j)/(N−2)}.
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It is enough to look at the term withl = 1 andk = 1 in S(i, j), i.e. the term

S1(i, j) =
{A11(i, j)−A1·(i, j)A·1(i, j)/(N − 2)}2

A1·(i, j)A·1(i, j)/(N − 2)
.

It follows thatS(i, j) ≥ S1(i, j), and therefore that our test statisticT ≥
∑N

i=1

∑N
j 6=i
j=1

S1(i, j).

By Slutzky’s theorem and the continuous mapping theorem, almost surely

lim
N→∞

S1(i, j)

N − 2
= lim

N→∞

1

N − 2

{A11(i, j)−A1·(i, j)A·1(i, j)/(N − 2)}2

A1·(i, j)A·1(i, j)/(N − 2)

=
Pr(X = x0)[

∫
A3

{h(y | X = x0)dy − g(y)}dy]2∫
A4

g(y)dy

It follows thatS1(i, j)/(N − 2) converges almost surely to a positive constantc′ >
0. Therefore,S1(i, j) > (N−2)c′/2 with probability going to 1 asN → ∞. Since we
expect(Nf1)(Nf2) pairs of sample pointsi andj that satisfy the inequalityS1(i, j) >
(N − 2)c′/2, it follows that there exists a constantδ such thatlimN→∞ Pr(T >
δN3) = 1. By the same argument as in the last paragraph in the Appendixof the main
text, it therefore follows thatT will be rejected with probability 1.

A.2 Computational Complexity

In this Section we give aC implementation of the computation of{inv(j) : j =
1, . . . , N, j 6= i} in order of magnitudeN logN . The algorithm uses an adaptation
of the classic merge sort algorithm. The basic idea is to split the array in half and
sort each half while counting the number of inversions for each element in each half.
In the merging stage of both halves, if an element in the rightside is smaller than an
element in the left side, it means that the number of inversions for the smaller element
should be updated by adding to it the number of elements on theleft side which are
larger than it. The complexity of this algorithmT (N) respects the recursionT (N) =
2T (N/2)+O(N) and therefore it isT (N) = O(N logN). The C code is given below.

int Inversions(int *permutation, int *source, int

*inversion_count,int dim) {
if (dim==1)

return 0;
else{

Inversions(permutation, source, inversion_count, dim/2);
Inversions(&permutation[dim/2], &source[dim/2], inversion_count,dim/2);
Merge(permutation, source, inversion_count, dim);

}
return 0;

}

int Merge(int *permutation, int *source, int *inversion_count, int
dim) {

int i;
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int left[MAX_DIM], right[MAX_DIM], left_source[MAX_DIM], right_source[MAX_DIM];
int left_index=0, right_index=0;
for (i=0;i<dim/2;i++){

left[i]=permutation[i];
left_source[i]=source[i];

}
for(i=0;i<dim/2;i++){

right[i]=permutation[i+dim/2];
right_source[i]=source[i+dim/2];

}
for(i=0;i<dim;i++){

if ( (left_index<dim/2) && (right_index<dim/2)){
if (left[left_index]<right[right_index]){

permutation[i]=left[left_index];
source[i]=left_source[left_index];
left_index++;

}
else{

permutation[i]=right[right_index];
source[i]=right_source[right_index];
printf("adding %d invs to %d\n", dim/2-left_index, source[i]);
inversion_count[source[i]]+=(dim/2-left_index);
right_index++;

}
}
else{

if (left_index<dim/2){
permutation[i]=left[left_index];
source[i]=left_source[left_index];
left_index++;

}
if (right_index<dim/2){

permutation[i]=right[right_index];
source[i]=right_source[right_index];
right_index++;

}

}
}
return 0;

}

A.3 Simulations

In the simulations presented in the main text, we first considered the six simulated
examples of unusual bivariate distributions. Figure 1 shows the scatter plots for a
sample of sizeN = 50 from each of these distributions.

In the simulations presented in the main text, the last example was of a mixture
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Figure 1: Six simulated examples of unusual bivariate distributions; a sample of size
N=50 from each distribution.
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Figure 2: A scatter plot of the first coordinate in the mixturedistribution of 10 compo-
nents, where each coordinate has a t distribution with 3df around a different center. Left
panel, noise 10 times smaller than generated; Right panel, noise used in the simulation.

distribution in 1000 dimensions. Figure 2 shows the first coordinate ofX andY in
a setting where the standard deviation of the noise is 10 times smaller than actually
generated (Left), as well as with the actual noise used in thesimulation (Right panel),
for the multivariatet distribution with 3df.

A more sophisticated scenario in 100 dimensions, which includes both a monotone
and non-monotone component, is the following:Yj = β1Xj + β2X

2

j + ǫj , j ∈ I1
andYj = ǫj, j ∈ {1, . . . , 100}\I1, with ǫj ∼ N(0,ΣX) andX ∼ N(0,ΣX). The
covariance matrixΣX is block diagonal, with symmetric correlation of 0.9 in the first
block, 0.8 in the second block, etc. The last block has 0 correlation, and the diagonal
entries ofΣX are 1. In the null setting whereI1 = ∅, the empirical power for the
new test, based on 1000 simulations, was 0.046, 0.043, and 0.051 forN = 30, 40,
and50, respectively. Table 7 shows the power of a test at level0.05 for dCov as well
as for the new test forβ1 = 1, β2 = 4, σ2 = 9, and two configurations ofI1. The
power of the new test is better than that of dCov in the settings considered, in which
the non-monotone part of the relationship has a stronger effect than the monotone part
of the relationship. Moreover, the power of both tests is larger in the first setting, of
strong dependence between the coordinates ofX , than in the second setting, where the
dependence across coordinates is weaker, since in the first setting the highly associ-
ated components ofX cause dependence between each coordinate ofY with several
coordinates ofX .

A.4 A univariate example

Szekely and Rizzo (2009) examined the Saviotti aircraft data of Saviotti (1996), that
records six characteristics of aircraft designs during thetwentieth century. They con-
sider two variables, wing span (m) and speed (km/h) for the 230 designs of the third
(of three) periods. This example and the data (aircraft) arefrom Bowman and Azzalini
(1997). They showed that the dCov test of independence of log(Speed) and log(Span)
in period 3 is significant (p-value≤ 0.00001), while the Pearson correlation test is not
significant (p-value = 0.8001). Our proposed test is also highly significant (p-value
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Table 7: The power of a test at level0.05 per sample size from a 100 dimensional joint
distribution, whereYj = Xj + 4X2

j + ǫj , j ∈ I1 andYj = ǫj , j ∈ {1, . . . , 100}\I1,
with ǫj ∼ N(0, 9). The results are based on 1000 simulations.

I1 Sample size dCov new test
{1, . . . , 10, 51, . . . , 55} N = 30 0.382 0.629

N = 40 0.456 0.782
N = 50 0.541 0.879

{41, . . . , 50, 91, . . . , 100} N = 30 0.246 0.243
N = 40 0.271 0.340
N = 50 0.293 0.474
N = 60 0.359 0.553
N = 70 0.369 0.626
N = 80 0.433 0.673

≤ 0.00001). Moreover, if we take a random sample of 30 observations andapply the
dCov test and the proposed test to this small random sample, then we typically get
smallerp-values using our proposed test than using thedCov test. Specifically, repeat-
ing the testing of a random sample of 30 observations 100 times, the p-value of our
proposed test was below 0.05 for 58/100 simulation runs, whereas for dCov only for
18/100 simulation runs. Figure 3 shows the scatter plot of wing span vs. speed on the
log scale for a sample of 30 points. The relationship appearsfan-like. For this partic-
ular sample, thep-value from thedCov test and our proposed test were 0.21 and 0.03,
respectively. Figure 4 shows the distribution of the 100p-values for each of the tests.
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