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Abstract. We consider the problem of identifying whether findings replicate from one

study of high dimension to another, when the primary study guides the selection of hy-

potheses to be examined in the follow-up study as well as when there is no division of roles

into the primary and the follow-up study. We show that existing meta-analysis methods

are not appropriate for this problem, and suggest novel methods instead. We prove that

our multiple testing procedures control for appropriate error-rates. The suggested FWER

controlling procedure is valid for arbitrary dependence among the test statistics within

each study. A more powerful procedure is suggested for FDR control. We prove that this

procedure controls the FDR if the test statistics are independent within the primary study,

and independent or have dependence of type PRDS in the follow-up study. For arbitrary

dependence within the primary study, and either arbitrary dependence or dependence of

type PRDS in the follow-up study, simple conservative modifications of the procedure

control the FDR. We demonstrate the usefulness of these procedures via simulations and

real data examples.
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1 Introduction

In genomics research, it is customary that a primary study is followed by an inde-

pendent study. Reporting results from the primary study, and then reporting the

evidence from the follow-up study that supports these results, gives a sense of the

replicability of the results. For example, findings are informally regarded as replicated

if the p-value for testing a null hypothesis is small in the primary study, and then for

the same hypothesis the p-value is fairly small in the follow-up study.

Many approaches are available for analyzing two or more studies, where the follow-up

studies simply serve to add power. See Hedges and Olkin (1985), Benjamini and Yekutieli

(2005), Skol et al. (2006), and Zeggini et al. (2007), among others. In this work, we

focus on analyzing two studies, where the follow-up study serves to confirm the find-

ings that were identified in the primary study. A formal statistical approach is pro-

posed for evaluating whether results from a primary study were indeed replicated in

a follow-up study.

In observational studies, an association may fail to replicate because the discovered as-

sociation was not the actual effect of a treatment but rather that of bias (Rosenbaum,

2001). However, if the finding is replicated in a different cohort, using different diag-

nostic or laboratory methods, then the association between effect and outcome may

be more convincingly causal. Rosenbaum (2001) gives the example of radiation and

leukemia. Suppose higher rates of leukemia are discovered in a primary study among

radiologists, and in a follow-up study among survivors at Hiroshima and Nagasaki.

Radiation is more convincingly causal if the association discovered was replicated in

the follow-up study, since if radiation was not a cause of leukemia, then higher rates

of leukemia among radiologists would not lead us to expect higher rates of leukemia

among survivors at Hiroshima and Nagasaki. Another example comes from the field of
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genomic research. Genome-wide association studies (GWAS) are observational stud-

ies, and therefore there is always a danger that bias may explain away the discoveries.

Kraft et al. (2009) note that for common variants, the anticipated effects are modest

and very similar in magnitude to the subtle biases that may affect genetic association

studies - most notably population stratification bias. For this reason, they argue that

it is important to see the association in other studies conducted using a similar, but

not identical, study base.

It is common practice that interesting findings in a primary GWA study are inves-

tigated in another study, and the interesting results of both studies are reported

(Lander and Kruglyak, 1995). For example, to discover association between single-

nucleotide polymorphisms (SNPs) and hippocampal volume, Bis et al. (2012) tested

2.5× 106 SNPs in a primary study, and only a handful of SNPs in promising loci in a

follow-up study. Bis et al. (2012) forwarded a SNP for replication if the SNP p-value

in the primary study was below 4×10−7, corresponding to one expected false positive

if all SNPs are not associated with hippocampal volume. They viewed the SNP as

containing evidence of replication if its p-value in the follow-up study was below 0.01,

which is the Bonferroni threshold when 5 hypotheses are simultaneously tested at the

0.05 family-wise error rate (FWER). Their approach selects hypotheses for follow-up

based on suggestive evidence (Lander and Kruglyak, 1995), and corrects for multi-

plicity only in the follow-up study when discussing evidence of replicability. Another

naive approach is the following: apply a multiple testing procedure within each study

separately, and declare as replicated the common findings. This approach will lead

to declaring SNPs that were found to be associated with the disease in the primary

study as well as in the follow-up study as the discoveries of interest. If there was

no danger that a multiple testing procedure produces false positives, then this naive

approach would have been appropriate. However, multiple testing procedures have a

non-zero probability of producing false positives, unless they have no power. There-
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fore, an approach that provides control over false positives in each study separately,

does not guarantee control over false positives for evaluating whether the results were

replicated. Figure 3, left panel, shows that the FDR level can be as high as one when

naively declaring results as replicated if they were discovered by applying an FDR

controlling procedure at the nominal 0.05 level separately in each study. Moreover,

reducing the nominal 0.05 level does not resolve the problem, see Remark 3.1.

The paper is organized as follows. Section 2 gives the notation and review. Section 3

suggests novel multiple testing procedures for replicability analysis, when the primary

study guides the selection of hypotheses to be examined in a follow-up study. Section

4 considers the setting where there is no division of roles into a primary and a follow-

up study. In Section 5, we revisit the example of Bis et al. (2012). We also analyze

an additional GWAS study, and show additional examples from the GWAS simulator

HAPGEN2 (Su et al., 2011). Section 6 describes a simulation study, and Section 7

gives some final remarks.

2 Notation, Goal, and Review

Consider a family of m elementary null hypotheses H1, . . . , Hm. These elementary

null hypotheses, or a subset thereof, are tested in each of two independent studies.

Let hij be the indicator of whether Hj is false in study i. The pair of indicators

(h1j , h2j) identifies four possible settings for each j,

(h1j , h2j) =






(0, 0) if Hj is true in both studies,

(1, 0) if Hj is false in the primary study but true in the follow-up study,

(0, 1) if Hj is true in the primary study but false in the follow-up study,

(1, 1) if Hj is false in both studies.
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The set of indices {1, . . . , m} of the elementary null hypotheses may be divided into

four (unknown) subsets I00 ∪ I10 ∪ I01 ∪ I11 = {1, . . . , m}, where each index j is in

exactly one of the four subsets, defined as follows: I00 = {j : (h1j , h2j) = (0, 0), j ∈

{1, . . . , m}}; I10 = {j : (h1j , h2j) = (1, 0), j ∈ {1, . . . , m}}; I01 = {j : (h1j, h2j) =

(0, 1), j ∈ {1, . . . , m}}; I11 = {j : (h1j , h2j) = (1, 1), j ∈ {1, . . . , m}}.

Definition 2.1. The no replicability null hypothesis for elementary hypothesis Hj is

HNR,j : (h1j , h2j) ∈ {(0, 0), (0, 1), (1, 0)}.

By definition, HNR,j is false if and only if the elementary null hypothesis Hj is

false in both studies considered. In the family of m composite null hypotheses

HNR,1, . . . , HNR,m, the sets of indices of true and false null hypotheses are I00∪I01∪I10
and I11 respectively. Our goal is to discover as many indices from I11 as possible, i.e.

true positives, while controlling for the number of discoveries from I00 ∪ I01 ∪ I10, i.e.

false positives.

Let pij be the p-value for the jth SNP in study i, for i = 1, 2. Since the studies are in-

dependent, the p-values are independent across studies. However, the p-values within

each study may be dependent. Inequality x ≥ y for vectors x and y is understood

componentwise.

Remark 2.1. In a typical meta-analysis (Hedges and Olkin, 1985), the goal is to

discover as many indices from I01 ∪ I10 ∪ I11 as possible, while controlling for the

number of discoveries from I00. Had we known, and had it been true, that I01 = ∅ and

I10 = ∅, then the typical methods for meta-analysis could serve to discover replicable

findings. However, it is not known in practice whether I01 and I10 are empty sets, and

they need not be empty when the follow-up study is different, in at least one aspect

of design, from the primary study. Therefore, typical meta-analysis methods are not

4



appropriate when the aim is to discover hypotheses with indices in I11, treating all

discoveries from I01 and I10, in addition to I00, as false discoveries.

2.1 The partial conjunction approach

In Benjamini et al. (2009) the partial conjunction approach (Benjamini and Heller,

2008) has been suggested for replicability analysis when n ≥ 2 studies are available

that examine the same problem. When exactly two studies are available, the pro-

cedure in Benjamini et al. (2009) amounts to applying the Benjamini-Hochberg false

discovery rate (FDR) controlling procedure (Benjamini and Hochberg, 1995), hence-

forth referred to as the BH procedure, on the maximum of the two study p-values.

However, this procedure may be too conservative, making it practically very difficult

to discover false no replicability null hypotheses.

As an example, suppose there is an original GWA study that examines the association

of 106 SNPs with a phenotype. Now suppose 200 promising SNPs were selected to

be examined in a follow-up study. If a SNP has a p-value of 0.025/106 in the first

study, and of 0.025/200 in the second study, then the maximum p-value is 0.025/200.

The BH procedure will, most probably, not reject the no replicability null hypothesis

for a SNP with maximum p-value of 0.025/200, since this maximum p-value is not

strong enough evidence when faced with 106 hypotheses, out of which most of the

hypotheses are true no replicability null hypotheses. The alternative procedures we

suggest in Sections 3 and 4 will view the evidence from this SNP as strong enough

for it to be considered a replicated finding.
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3 Replicability analysis with a primary and a follow-

up study

For the family of m no replicability null hypotheses HNR,1, . . . , HNR,m, we consider

two relevant error measures: the probability that at least one no replicability null

hypothesis is falsely rejected, i.e. the FWER, and the expected fraction of false

rejections out of all rejections of no replicability null hypotheses, that is the FDR.

Procedure 3.1. The two stage FWER controlling procedure for testing the family of

no replicability null hypotheses with parameters (α1, α), where 0 < α1 < α < 1:

1. Let R1 be the set of indices of elementary hypotheses that are selected for testing

in a follow-up study based on the data from the primary study.

2. Apply a FWER controlling procedure at level α1, using the data from the pri-

mary study only, on the family of null hypotheses H1, . . . , Hm, and let Rp ⊆

{1, . . . , m} be the set of indices of rejected hypotheses. Apply a FWER con-

trolling procedure at level α− α1, using the data from the follow-up study only,

on the family of selected null hypotheses {Hj : j ∈ R1}, and let Rf ⊆ R1 be

the set of indices of rejected hypotheses. Then the set of indices of rejected no

replicability null hypotheses is Rf ∩Rp.

Theorem 3.1. For two independent studies, Procedure 3.1 controls the FWER at

level α for the family of no replicability null hypotheses HNR,1, . . . , HNR,m.

Proof. Let Vp =
∑

j∈Rp
(1 − h1j) and Vf =

∑
j∈Rf

(1 − h2j) be the number of true

elementary null hypotheses rejected, respectively, in the primary study and in the

follow-up study. Then

FWER ≤ E(I[Vp + Vf > 0]) ≤ E(I[Vp > 0]) + E(E(I[Vf > 0]|p1)) ≤ α1 + α− α1 = α,
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where the last inequality follows from the fact that Vf is independent of the data

from the primary study, and that in both studies a FWER controlling procedure is

applied.

Using Bonferroni in Procedure 3.1 amounts to rejectingHNR,j if (p1j, p2j) ≤ (α1/m, (α−

α1)/|R1|), for j ∈ R1. Alternatively, the results can be reported in terms of Bonferroni-

replicability adjusted p-values pBonf−REPadj
j = max (mp1j/c, |R1|p2j/(1− c)), where

c = α1/α. Procedure 3.1 using Bonferroni is equivalent to rejecting all hypotheses

with Bonferroni-replicability adjusted p-values at most α.

The selection rule affects the power of Procedure 3.1. A natural choice for a selection

rule is the set of rejected hypotheses by the FWER controlling procedure at level

α1 on the primary study p-values, since the set of indices of rejected no replicability

null hypotheses is a subset of this set. A rule that selects by the FWER controlling

procedure at level α is not as good, since any additional hypotheses selected will not

be rejected but will result in a more severe multiple testing problem for the follow-up

study. The choice of α1 also affects the power of Procedure 3.1. We observed in

simulations (Supplementary Material) that although the optimal α1 varies with effect

size, the power function is quite flat as long as α1/α is not too close to zero or one.

In many modern applications, controlling the FWER is unnecessary and results in

overly conservative inferences. In genomics research, it is often enough to guaran-

tee FDR control, see Storey and Tibshirani (2003) and Reiner et al. (2003), among

others.

Procedure 3.2. The two stage FDR controlling procedure for testing a family of no

replicability null hypotheses with parameters (q1, q), where 0 < q1 < q < 1:

1. Let R1 be the set of indices of elementary hypotheses that are selected for testing

in a follow-up study based on the data from the primary study. Let R1 = |R1|
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be the cardinality of this set.

2. Let

R2 , max

{
r :
∑

j∈R1

I

[
(p1j, p2j) ≤

(
rq1
m

,
r(q − q1)

R1

)]
= r

}
.

Then the set of indices of rejected no replicability null hypotheses is

R2 =

{
j : (p1j , p2j) ≤

(
R2q1
m

,
R2(q − q1)

R1

)
, j ∈ R1

}
.

The results of Procedure 3.2 can be reported in terms of FDR-replicability adjusted

p-values. Let c = q1/q,

Zj = max

(
mp1j
c

,
R1p2j
1− c

)
, j ∈ R1, (3.1)

and let Z(1) ≤ . . . ≤ Z(R1) be the sorted Z-values. Then the ith largest FDR-

replicability adjusted p-value is

pREPadj
(i) = min

j≥i

Z(j)

j
. (3.2)

Procedure 3.2 with parameters (q1, q) = (cq, q) is equivalent to rejecting all no repli-

cability null hypotheses with FDR-replicability adjusted p-values at most q.

Definition 3.1. A valid selection rule for step 1 of Procedure 3.2 satisfies the follow-

ing condition: for any j ∈ R1, fixing all the p-values except for p1j and changing p1j

so that H1j is still selected, will not change the set R1.

It is easy to see that this condition is satisfied if R1 contains the smallest fixed

number of p-values, all hypotheses with p-value below a given threshold, or if R1

contains the rejected indices from a BH procedure on the p-values from the pri-

mary study. Adaptive FDR procedures on the p-values from the primary study, e.g.
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Benjamini and Hochberg (2000), Storey et al. (2004), Benjamini et al. (2006), and

Blanchard and Roquain (2009), are non-valid selection rules.

Theorem 3.2. If all the p-values are jointly independent and the selection rule in

step 1 of Procedure 3.2 is a valid selection rule, then Procedure 3.2 controls the FDR

at level q for the family of no replicability null hypotheses HNR,1, . . . , HNR,m.

See Appendix A for the proof.

The selection rule and the choice of q1 affect the power of Procedure 3.2. A natural

choice for a selection rule is the set of rejected hypotheses by the BH procedure at level

q1 on the primary study p-values, since the set of indices of rejected no replicability

null hypotheses is a subset of this set. A rule that selects by the BH procedure at

level q is not as good as the rule at level q1, since any additional hypotheses selected

will not be rejected, but will result in more severe thresholds on the follow-up study

p-values. In Figure 4 we showed in a simulated example that the BH procedure at

level q1 was very close to selecting the optimal number of hypotheses for follow-up.

We recommend using it when there are no additional constraints that require choosing

only a small number of hypotheses for follow-up. The optimal choice of q1 depends

on |I00|, |I01|, |I10|, |I11|, and the non-null distribution of the p-values, and therefore

guidelines for choosing q1 are application specific. In simulated GWAS in Section 5

the choice of q1 had little effect on the average number of discoveries.

Theorem 3.2 assumes independence of the p-values within each study as well as across

the studies. However, the assumption of independence among the p-values within

each study may not be realistic in many applications. Particularly, in GWAS there

is dependency across the SNPs, therefore the p-values within each study may be

dependent. Benjamini and Yekutieli (2001) proved that the BH procedure controls

the FDR when the p-values have a special dependency called PRDS.
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Definition 3.2. (Benjamini and Yekutieli, 2001) The set of p-values P1, . . . , PM has

property PRDS if for any increasing set D, and for each true null hypothesis i,

Pr((P1, . . . , PM) ∈ D|Pi = p) is nondecreasing in p .

If the p-values are independent in the primary study, yet have property PRDS in

the follow-up study, Theorem S3.1 in the Supplementary Material shows that the

result in Theorem 3.2 holds. For arbitrary dependence among the p-values in the

primary study, a modification of the cut-off level of Procedure 3.2 will guarantee that

the FDR is controlled at the nominal level. The most severe modification, that will

guarantee FDR control for any valid selection rule, is to apply Procedure 3.2 with

the modification in item 1 of Theorem 3.3 below. However, in item 2 of Theorem

3.3 we show that the modification factor may be smaller than
∑m

i=1 1/i ≈ logm if

the selected hypotheses for follow-up are a subset of the hypotheses with primary

study p-values below a fixed cut-off t. For example, in GWAS it is common to

select hypotheses with primary study p-values below 1/m, where m is the number

of hypotheses in the primary study (Lander and Kruglyak, 1995). If t ≥ q1
1+

∑m−1
i=1

1
i

,

then the modification in item 1 of Theorem 3.3 cannot be improved. However, if

t < q1
1+

∑m−1
i=1

1
i

, then the modification in item 2 of Theorem 3.3 is less conservative

than the modification in item 1. For typical values of q1 (e.g. q1 ∈ [0.005, 0.045]) and

large m, the threshold t will often be below q1
1+

∑m−1
i=1

1
i

, and therefore item 2 may be

useful in applications. Note, moreover, that if t ≤ q1/m, then item 2 of Theorem 3.3

states that no modification is required, so for a valid selection rule which selects a

subset of the set of hypotheses with primary study p-values below t, where t ≤ q1/m,

Procedure 3.2 is valid for any form of dependency among the p-values in the primary

study.

Theorem 3.3. Assume that the follow-up study p-values have property PRDS, and

are independent of the p-values in the primary study. Then Procedure 3.2 controls
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the FDR at level q for the family of no replicability null hypotheses HNR,1, . . . , HNR,m

if the selection rule used in step 1 of Procedure 3.2 is a valid selection rule, and the

expressions in step 2 of Procedure 3.2 are modified as follows:

1. In the terms rq1/m and R2q1/m only, q1 is replaced by q̃1 = q1/(
∑m

i=1 1/i).

2. In the terms rq1/m and R2q1/m only, q1 is replaced by q̃1, where

q̃1 = max{x : x(1 +

⌈tm/x−1⌉∑

i=1

1/i) = q1},

if only hypotheses with primary study p-values at most a fixed threshold t are

considered for follow-up, i.e. R1 ⊆ {j ∈ {1, . . . , m} : P1j ≤ t}, where t <

q1
1+

∑m−1
i=1

1
i

.

See Supplementary Material for the proof, as well as for additional results under

dependency. Specifically, Theorem S3.2 in the Supplementary Material shows that in

the more general setting of arbitrary dependence among the follow-up study p-values,

it is also necessary to replace (q−q1) with (q−q1)/(
∑R1

i=1 1/i) in the terms r(q−q1)/R1

and R2(q − q1)/R1 in expression 2 of Procedure 3.2. These results are similar to the

result in Benjamini and Yekutieli (2001) for the BH procedure in their Theorem 1.3.

Remark 3.1. Benjamini and Yekutieli (2005) proved in their Proposition 3 that the

procedure that applies the BH procedure at level q1 on the primary study p-values, and

the BH procedure at level q − q1 on the follow-up study p-values, controls the FDR

at level q1(q − q1) < q on the family of global null hypotheses, HG1, . . . , HGm, where

HGj : (h1j , h2j) = (0, 0). However, on the family of no replicability null hypotheses,

HNR,1, . . . , HNR,m, the FDR of this procedure may be higher than the nominal level

q. The key difference between Procedure 3.2 and such a two stage procedure, is the

requirement that the two p-values from a selected hypothesis have to simultaneously
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be smaller than two thresholds. In an extreme scenario where all hypotheses are

from I10 or I01, and the p-values from false null hypotheses are zero, the two stage

procedure may have an FDR of one, as follows. The BH procedure on the primary

study p-values will reject all hypotheses from I10 but also few from I01 (when |I01|

and |I10| are large enough), and the hypotheses from I01 will be rejected by the BH

procedure on the follow-up study p-values, resulting in an FDR of one. However,

Procedure 3.2 will have an FDR level below q. To see this, note that in order to

reject a no replicability null hypothesis by Procedure 3.2, the p-value of the Simes test

(Simes, 1986) for the intersection of the elementary hypotheses indexed by I01, using

the data from the primary study, has to be below q1, or the Simes test p-value for

the intersection of elementary hypotheses indexed by I10 ∩ R1, using the data from

the follow-up study, has to be below q − q1. Therefore, the probability of rejecting at

least one no replicability null hypothesis, which coincides with the FDR since all no

replicability null hypotheses are true, is at most q. See Figure 3, right panel, for a

more realistic simulated example.

4 Replicability analysis with no division into pri-

mary and follow-up studies

Consider now a situation where both studies are available before the analysis. If

some of the elementary hypotheses are examined in only one of the studies, then

these hypotheses are not considered for replicability analysis. In this setting, there

is no primary study and follow-up study. We propose the following generalization of

Procedure 3.2, that can be tuned to treat the two studies symmetrically. Without

loss of generality, we label the studies as study one and study two.

Procedure 4.1. The generalized two stage procedure for testing a family of no

12



replicability null hypotheses with parameters (w1, q1, q), where 0 ≤ w1 ≤ 1 and

0 < q1 < q < 1:

1. Apply Procedure 3.2 with parameters (w1q1, w1q) with study one as the primary

study and study two as the follow-up study. Denote the set of indices of rejected

no replicability null hypotheses by R12,w1q.

2. Reverse the roles of study one and study two. Apply Procedure 3.2 with parame-

ters ((1−w1)q1, (1−w1)q). Denote the set of indices of rejected no replicability

null hypotheses by R21,(1−w1)q.

3. The set of indices of rejected no replicability null hypotheses isR12,w1q∪R21,(1−w1)q.

Theorem 4.1. Procedure 4.1 controls the FDR at level q for the family of no repli-

cability null hypotheses HNR,1, . . . , HNR,m if all p-values are jointly independent and

the selection rule in step 1 of Procedure 3.2 is a valid selection rule.

See Appendix C for the proof.

Choosing w1 = 1 results in Procedure 3.2, where study one has the role of the primary

study and study two has the role of the follow-up study. Similarly, choosing w1 = 0

results in Procedure 3.2 with the roles of study one and study two reversed. The

choice 0 < w1 < 1 reflects the similarity of Procedure 4.1 to Procedure 3.2 in the

following way: when w1 is close to one (zero), Procedure 4.1 gives similar results to

Procedure 3.2 with study one (two) as the primary study. The choice w1 = 0.5 results

in a variant of Procedure 3.2 that is symmetric with respect to both studies.
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Table 1: The p-values of SNPs from the primary and follow-up studies, from Table
1 of Bis et al. (2012) (columns 3-4), and the FDR-replicability adjusted p-values for
various choices of c = q1/q (columns 5-7).

Locus Gene Primary Follow-up Bonferroni-replicability adjusted p-values
study study c = 0.2 c = 0.5 c = 0.8

2q24 DPP4 5.2× 10−8 0.7 1.0000 1.0000 1.0000
9q33 ASTN2 1.0× 10−7 0.2 1.0000 0.5000 0.3125
12q14 MSRB3 5.5× 10−9 0.002 0.06875 0.0275 0.0172

WIF1 2.2× 10−8 0.0007 0.2750 0.1100 0.0688
12q24 HRK 4.8× 10−8 5.8× 10−5 0.6000 0.2400 0.1500

5 GWAS examples

In this section we demonstrate the suggested methods on two real data examples

and on a GWAS simulation. A replicability analysis with FWER control is carried

out for the first example, that has only five hypotheses in the follow-up study. A

replicability analysis with FDR control is carried out for the second example, that

has 126 hypotheses in the follow-up study. Finally, in order to examine the robustness

of procedure 3.2 for GWAS type dependency, examples were simulated that retained

the dependencies in the data that occur in GWAS.

Example 1. We reproduce in Table 1, columns 1-4, a subset of the columns of

Table 1 of results of Bis et al. (2012). We added in columns 5-7 the Bonferroni-

replicability adjusted p-values for c = q1/q ∈ {0.2, 0.5, 0.8}. Procedure 3.1 with

parameters (q1, q) = (0.025, 0.05) or (q1, q) = (0.04, 0.05) identified the SNP near

MSRB3 as having replicated association with the phenotype. The choice of c should

be made prior to analysis, and the choice c = 0.8 may be preferred over c ≤ 0.5 when

it is believed that the power to detect an association in the primary study using a

threshold of order 1/(2.5× 106) is smaller than the power to detect an association in

the follow-up study using a threshold of order 1/5.
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Example 2. To discover associations between SNPs and Crohn’s disease (CD),

Barrett et al. (2008) examined 635,547 SNPs on 3230 cases and 4829 controls of

European descent, collected in three separate studies: NIDDK4, WTCCC5, and a

Belgian-French study. The primary study p-values in this example are the meta-

analysis p-values from the combined data from the three studies. Only hypotheses

with primary study p-values below 5× 10−5 were considered for follow-up. Although

526 SNPs met the selection criterion, only a subset of 126 SNPs were followed up.

These 126 p-values were the smallest two p-values in 63 distinct regions, so the selec-

tion rule is a valid selection rule. Procedure 3.2 with (q1, q) = (0.04, 0.01) identified

36 SNPs. In Appendix D, Table 5 shows the p-values from the primary and follow-up

studies, as well as the FDR-replicability adjusted p-values for the choice c = 0.8, for

these 36 replicability discoveries. Since the p-values are not independent within each

study, a more conservative analysis approach is to modify the cut-offs as suggested

by Theorem 3.3. Assuming PRDS type dependency in the follow-up study, item 1 of

Theorem 3.3 suggests using q̃1 = 0.04/(
∑635,547

i=1 1/i) = 0.0029 for the primary study

cut-offs, while the follow-up study cut-offs remain unchanged. The modified proce-

dure identified 21 SNPs. Column 7 of Table 5 shows the FDR-replicability adjusted

p-values for the choice c = 0.8, where the adjustment is made as described in expres-

sions (3.1) and (3.2), with p1j replaced by p̃1j = (
∑635,547

i=1 1/i)p1j = 13.94 × p1j , j =

1, . . . , 635, 547. Since the SNPs considered for follow-up were only SNPs with pri-

mary study p-values below 5 × 10−5, one could use a less conservative procedure

suggested in item 2 of Theorem 3.3, with q̃1 = 0.0038, where 0.0038 is the solution

to 0.04 = x(
∑⌈635,547×5×10−5/x−1⌉

i=1 1/i+ 1). This procedure resulted in 23 replicability

discoveries. The latter procedure is the recommended procedure, if the investigator

is not willing to assume that Procedure 3.2 is robust to deviations from independence

within the primary study. However, simulations in the next example suggest that for

the type of dependencies that occur in GWAS, Procedure 3.2 may actually be con-
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servative. We come back to the issue of robustness of Procedure 3.2 in the Discussion

Section 7.

GWAS simulation example. We simulated two GWAS from the simulator HAP-

GEN2 (Su et al., 2011). The two studies were generated from two samples of the

HapMap project (The International HapMap Consortium, 2003), a sample of 165

Utah residents with Northern and Western European ancestry (CEU), and a sample

of 109 Chinese in Metropolitan Denver, Colorado (CHD). In the CEU and CHD pop-

ulations, respectively, 34 and 38 SNPs were set as disease SNPs with an increased

multiplicative relative risk of 1.2, and 18 of the disease SNPs were common to both

populations. Each study contained 4500 cases and 4500 referents. The linkage dise-

quilibrium (LD) across SNPs, as measured for the samples in the HapMap project,

was retained. Due to LD, the number of SNPs associated with the phenotype in each

study was larger than the number of disease SNPs. In order to identify the SNPs in

each study that are truly associated with the phenotype, the simulation of 4500 cases

and 4500 controls from the population was repeated 11 times, and 11 p-values were

produced per SNP. SNPs with Fisher’s combined p-value (Loughin, 2004) below the

Bonferroni threshold were considered to be truly associated with the disease. Our

ground truth included 1355 and 1010 SNPs associated with the disease in the CEU

and in the CHD population, respectively, out of which 274 SNPs were associated with

the disease in both populations.

As a standard preprocessing step, we removed SNPs with minor allele frequency

below 0.05, and thus the number of SNPs in the analysis was reduced from 1,387,466

to 887,362, on average, for the 11 pairs of studies. Our selection rule for Procedure

4.1 with parameters (w1, q1, q) was the BH procedure at level w1q1 when the primary

study was the CEU study, and at level (1 − w1)q1 when the primary study was the

CHD study, since the potential set of SNPs to be discovered as having replicated
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associations is at most the set of SNPs that are discovered by the BH procedure (as

discussed in Section 3). Table 2 presents the average number of replicated findings, as

well as the average false discovery proportion (FDP) for the methods compared. The

standard error (SE) is presented in parentheses. From rows 1 and 2 we see that if there

is no division into primary and follow-up studies, then the symmetric Procedure 4.1

discovers more SNPs with replicated associations than the BH procedure on maximum

p-values, while maintaining a low FDP. From rows 3-5, and 6-8, we see that the choice

of which study was the primary study had a large effect on the average number of

discoveries, and the choice of q1 mattered little.

Table 2: For 4500 cases and 4500 referents in both studies, the average number of
associated and disease SNPs discovered (SE), and the average FDP (SE), for different
procedures. The selection rule for Procedure 4.1 was the BH procedure at level w1q1
when the CEU study was the primary study, and at level (1− w1)q1 when the CHD
study was the primary study.

Procedure # Replicated findings FDP
associated SNPs (SE) disease SNPs (SE) (SE)

BH on maximum p-values 29.182 (3.205) 7.364 (0.432) 0.000 (0.000)
4.1 with w1 = 0.5, q1 = 0.025, q = 0.05 77.727 (6.378) 11.455 (0.366) 0.011 (0.005)
4.1 with w1 = 1, q1 = 0.01, q = 0.05 74.091 (6.748) 10.364 (0.310) 0.012 (0.006)
4.1 with w1 = 1, q1 = 0.025, q = 0.05 76.091 (6.221) 10.727 (0.359) 0.012 (0.005)
4.1 with w1 = 1, q1 = 0.04, q = 0.05 69.545 (5.745) 10.818 (0.352) 0.009 (0.005)
4.1 with w1 = 0, q1 = 0.01, q = 0.05 35.545 (4.575) 7.364 (0.607) 0.008 (0.008)
4.1 with w1 = 0, q1 = 0.025, q = 0.05 41.455 (5.294) 8.273 (0.469) 0.007 (0.007)
4.1 with w1 = 0, q1 = 0.04, q = 0.05 42.273 (4.158) 8.545 (0.312) 0.000 (0.000)

From the last column in Table 2 we see that the average FDP was far below 0.05,

suggesting that the procedures are conservative. This conservatism can be alleviated if

the following oracle information were known: the fraction of SNPs with no association

with the phenotype in both studies, f00, and with association with the phenotype only

in the follow-up study, f01. Then it was possible to perform Procedure 4.1 at level

(w1, q
′, 2q′), where q′ is the solution to f00(q

′)2+(f01+1)q′ = q for w1 ∈ {0, 1}, and the

solution to f00(0.5q
′)2 + (f01 + 1)0.5q′ = 0.5q for w1 = 0.5, with the same guarantee

17



of FDR control at level q, as follows from Appendix B. Specifically, in our simulation

f00 = 0.9990, f01 = 0.00036 on average, after preprocessing. For FDR control at level

q = 0.05, on average q′ = 0.048 for w1 = 0, 1 and q′ = 0.049 for w1 = 0.5. Table 3

shows the average FDP and average number of rejections for Procedure 4.1 with and

without the oracle. Although the average FDP is higher with the oracle, it is still

below the nominal 0.05 level for two main reasons. First, our simulation preserves the

LD pattern of the SNPs, and thus the p-values within each study are not independent.

Second, the upper bound of f00(q
′)2 + (f01 + 1)q′ is not a tight upper bound for the

actual FDR level. A tighter oracle upper bound requires knowing the expectation

of |R1 ∩ I10|/|R1|, and this bound is tight if the non-null effect sizes in I10 ∪ I01 are

extremely large.

Table 3: The average FDP and average number of rejections for Procedure 4.1 with
and without the oracle, for FDR control at level 0.05.

FDP # Replicated findings
Oracle (q1, q) = (0.025, 0.05) Oracle (q1, q) = (0.025, 0.05)

w1 = 0.5 0.023 0.011 90 78
w1 = 1 0.023 0.012 85 76
w1 = 0 0.029 0.007 50 41

For the two studies from the CEU and CHD populations, a meta-analysis was per-

formed by first combining the SNP p-values using Fisher’s combining method, and

then applying the BH procedure at level 0.05 on the combined p-values. The average

number of SNPs associated with the disease in at least one study was 393, while less

than 80 SNPs were discovered to have replicated associations (Table 2). The two

main reasons for discovering more SNPs in a typical meta analysis are as follows.

First, the simulation setting contained five times more associated SNPs than SNPs

with replicated associations. Second, for a SNP with a replicated association, the

power to detect that the association is replicated is lower than the power to detect
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that there is an association in at least one study. The discovered SNPs with replicated

associations were a subset of the discovered associated SNPs, but their meta-analysis

p-values were not ranked smallest among all meta-analysis p-values (not shown). Im-

portantly, the discoveries from the meta-analysis could not serve as evidence towards

replicability, since while the average fraction of SNPs with no association in both

studies among the meta-analysis discoveries was 0.06, the average fraction of SNPs

with no replicated association among the meta-analysis discoveries was 0.78.

6 A simulation study

The goal of the simulations was threefold. First, to investigate the effect of the

choice of q1 and w1 on the power of Procedures 3.2 and 4.1. Second, to compare

these procedures to the alternative of applying BH on the maximum p-values, i.e.

the partial conjunction approach when exactly two studies are analyzed. Third, to

investigate the effect of the selection rule on the power of the procedures.

The procedures compared were (1) the BH procedure at level 0.05 on maximum p-

values; (2) Procedure 4.1 with w1 ∈ {0, 0.5, 1}, c = q1/q ∈ {0.1, 0.2, . . . , 0.9}, and

q = 0.05; and (3) the naive (BH-i, BH-j) procedure, i, j ∈ {1, 2}, i 6= j, which

applies the BH procedure at level 0.05 on the p-values of study i, and separately on

the p-values of study j for the hypotheses that were rejected in study i, and declares

hypotheses rejected in both studies as false no replicability null hypotheses; (4) the

oracle Procedure 3.2 with parameters (q1, q) = (q′, 2q′), where q′ was the solution to

|I00|
m

(q′)2+
(

|I01|
m

+ 1
)
q′ = 0.05. This oracle procedure controls the FDR at level 0.05,

see Appendix B for a proof.

The p-values were generated independently as follows. For Hj , j = 1, . . . , m, P1j =

1 − Φ
(

X1j

σ1

)
and P2j = 1 − Φ

(
X2j

σ2

)
, where X1j ∼ N(µ1j, σ

2
1) and X2j ∼ N(µ2j , σ

2
2).
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We let µij = 0 · (1 − hij) + µi · hij , where i ∈ {1, 2}, and µi ∈ {0.5, 1, . . . , 5}. We

set m = 1000, and fij = |Iij|/m for i, j ∈ {0, 1} as follows: f00 = 0.9, f11 = 0.1;

f00 = 0.9, f01 = f10 = 0.025, f11 = 0.05; f01 = f10 = 0.5; f00 = 0.8, f01 = f10 = 0.1.

The standard deviations σ1 and σ2 were either fixed values σi ∈ {0.3, 1}, i ∈ {1, 2},

or reflected the fraction of sample size allocated to the first study: σ1 = σ/
√
ζN ,

σ2 = σ/
√
(1− ζ)N , σ = 10, ζ ∈ {0.1, 0.2, . . . , 0.9}, N = 1000.

The simulation results were based on 1000 repetitions. The FDR was estimated

by averaging the FDP. The average power was estimated by the average number of

rejected false no replicability null hypotheses, divided by mf11.

6.1 Simulation results

As expected from our theoretical results, in all the settings considered the estimated

FDR was below 0.05 for all procedures but the naive (BH-i, BH-j) procedure. The

SE of the estimated FDR and power were of the order of 10−3 for all procedures under

all configurations considered.

Figure 1 compares the power of the BH procedure on maximum p-values, (1) above,

and Procedure 4.1 with w1 ∈ {0, 0.5, 1}, q1 ∈ {0.01, 0.025, 0.04}, (2) above, in a

configuration with parameters σ1 = 0.3, σ2 = 1, f00 = 0.9, f01 = f10 = 0.025, f11 =

0.05. The oracle Procedure 3.2, where the primary study is study one with σ1 = 0.3,

is also examined. For each procedure the estimated power and FDR is shown as a

function of the common expectation under the alternative, µ = µ1 = µ2. Procedure

4.1 with w1 = 1 is more powerful than with w1 = 0.5 or w1 = 0, while the choice

w1 = 0 is the worst in terms of power of Procedure 4.1. Moreover, Procedure 4.1

with w1 ∈ {0.5, 1} is more powerful than the BH procedure on maximum p-values.

These findings were consistent across all configurations of f00, f10, f01, f11 examined,
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when σ1 = 0.3 and σ2 = 1. Since the oracle Procedure 3.2 and the BH procedure on

maximum p-values do not depend on q1, their power curves are the same in figures

(a), (b), and (c). We see that Procedure 4.1 with w1 = 1 is a close second to the oracle

when q1 is 0.01 but is farther from the oracle as q1 increases. Similarly, the power of

Procedure 4.1 with w1 = 0.5 decreases as q1 increases. However, Procedure 4.1 with

w1 = 0 has largest power for q1 = 0.04, and the least power for q1 = 0.01. These

results are reasonable since the p-values of study one tend to be much smaller than

the p-values of study two when the no replicability null hypotheses are false. In Table

4 we see that if the p-value distribution of false no replicability null hypotheses is the

same across studies, then the optimal choice of q1 is q1 > q/2. For example, when

µ = µ1 = µ2 = 2 (row 2), the power is 0.65 with q1 = 0.005, 0.77 with q1 = 0.045,

and the maximum power is 0.81 with q1 = 0.035.

Table 4: The power of Procedure 3.2 with parameters (0.05c, 0.05) and the BH se-
lection rule at level 0.05c, for different values of µ = µ1 = µ2, with σ1 = σ2 = 0.5,
f00 = 0.9, f01 = f10 = 0.025, f11 = 0.05. The optimal value of c is in bold.

c = q1/0.05
µ 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9
1.5 0.143 0.195 0.224 0.245 0.257 0.258 0.248 0.226 0.181
2.0 0.646 0.718 0.755 0.778 0.794 0.803 0.805 0.800 0.769
2.5 0.934 0.955 0.965 0.971 0.975 0.977 0.978 0.978 0.974

Figure 2 compares the procedures (1) and (2) above for the same configuration of

fij , but for fixed µ = µ1 = µ2 and varying sample size of the two studies. The

varying power is described by the fraction ζ of sample allocated to the first study.

For the symmetric procedures, we see that for ζ = 0.1 the power is the lowest, and

it increases to reach its maximum for equal allocation ζ = 0.5. Procedure 4.1 with

w1 = 0.5 dominates the BH procedure on the maximum two study p-values. For

Procedure 4.1 with w1 = 1, the maximum is reached for ζ > 0.5. It is the most

powerful of the three procedures examined for ζ > 0.6.
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In Figure 3 we consider the FDR level of Procedure 4.1 with w1 ∈ {0, 0.5, 1}, as well

as of the naive procedure in the null setting, where all no replicability null hypotheses

are true (i.e. f11 = 0). The estimated FDR of (BH-i, BH-j) procedure exceeds 0.05 in

the settings where f10 = f01 = 0.5 and f00 = 0.8, f10 = f01 = 0.1. In these settings the

estimated FDR of both (BH-1, BH-2) and (BH-2, BH-1) procedures are increasing

functions of µ = µ1 = µ2, reaching one in the setting where f10 = f01 = 0.5 (left), and

0.4 in the setting where f00 = 0.8, f10 = f01 = 0.1 (right). Clearly, procedure (BH-i,

BH-j) is not valid since it may be far too liberal in terms of FDR level.

Finally, we examined how the selection rule affects the power. In Figure 4 we show the

power as a function of µ1 for Procedure 4.1 with parameters w1 = 0.5, q1 = 0.025, q =

0.05, for the following selection rules: BH at level 0.0125; the rule that selects the

hypotheses with k smallest primary study p-values, where k ∈ {25, 30, . . . , 100}. The

remaining parameters were: f00 = 0.9, f01 = f10 = 0.025, f11 = 0.05, σ1 = 0.5, σ2 =

1, µ2 = 3. For different values of µ1 the optimal k is different, and using the BH

procedure for selection is optimal for the entire range of µ1.

7 Discussion

In many research areas first a primary study is analyzed, then a follow-up study is

analyzed with the goal to corroborate the findings, or at least a subset of the findings,

of the primary study. We suggested novel testing procedures for corroborating the

evidence from a primary study in a follow-up study. We demonstrated their usefulness

on a GWAS application. In the setting where there is no division of roles to a primary

and a follow-up study, the simulations suggested that our novel Procedure 4.1 with

w1 = 0.5 is more powerful than the BH procedure on maximum p-values.

We proved that Procedures 3.2 and 4.1 control the FDR when the p-values are inde-
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(a) q1=0.01

0 0.5 1 1.5 2 2.5 3 3.5 4 4.5 5
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

mu

P
o

w
e

r

 

 

(b) q1=0.025
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(c) q1=0.04

Figure 1: Power as a function of µ = µ1 = µ2, for q1 of (a) 0.01, (b) 0.025, and (c)
0.04, using the following procedures: the oracle Procedure 3.2 (solid with circles); the
BH procedure at level 0.05 applied on maximum p-values (dash-dotted); Procedure
4.1 at level 0.05 with w1 = 0 (dashed), w1 = 0.5 (dotted), and w1 = 1 (solid), where
the selection rule in steps 1 and 2 is the BH procedure at levels w1q1 and (1−w1)q1,
respectively. The remaining parameters were f00 = 0.9, f01 = 0.025, f10 = 0.025, f11 =
0.05, µ1 = µ2 = µ, σ1 = 0.3 and σ2 = 1.
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(b) µ = 3

Figure 2: Power as a function of fraction ζ of sample size allocated to the primary
study, for (a) µ1 = µ2 = 2, and (b) µ1 = µ2 = 3, for Procedure 4.1 with w1 = 1
(solid), with w1 = 0.5 (dotted), and for the BH procedure on the maximum of two
studies p-values (dash-dotted) at level q = 0.05. The remaining parameters were
f00 = 0.9, f01 = 0.025, f10 = 0.025, f11 = 0.05, sample size N = 1000, standard
deviation σ = 10.
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Figure 3: FDR versus µ = µ1 = µ2 for f01 = f10 = 0.5 (left) and f00 = 0.8, f01 =
f10 = 0.1 (right), for the following procedures at level q = 0.05: BH-1, BH-2 (solid
with circles); BH-2, BH-1 (dashed with circles); Procedure 4.1 with q1 = 0.025 and
w1 of 1 (solid), 0.5 (dotted), or 0 (dashed). The standard deviations were σ1 = 0.3
and σ2 = 1.
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Figure 4: Power as a function of µ1 for Procedure 4.1 with parameters w1 = 0.5, q1 =
0.025, q = 0.05 for the following selection rules: BH at level 0.0125 (solid black curve);
selection of the hypotheses with k smallest primary study p-values, where k = 25
(dashed green curve), k = 75 (dashed red curve), k ∈ {30, 35, . . . , 100} (dashed
grey curves). The remaining parameters were: f00 = 0.9, f01 = f10 = 0.025, f11 =
0.05, σ1 = 0.5, σ2 = 1, µ2 = 3.
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pendent within each study and the selection rule is valid. However, the assumption of

independence may not be realistic. Extensive simulations demonstrated that the BH

procedure controls the FDR for many types of dependence encountered in practice

(Yekutieli, 2008). We conjecture that this robustness property carries over to Proce-

dures 3.2 and 4.1, since Procedure 3.2 can be viewed as two-dimensional variant of

the BH procedure. For simulated GWAS examples the average false discovery pro-

portion was below the nominal FDR level, suggesting that the procedures are indeed

valid for the type of dependency that occurs in GWAS. More conservative variants

of Procedure 3.2 were given in Theorem 3.3 and in Section 3 of the Supplementary

Material, that guarantee that the FDR is controlled for arbitrary dependence among

the primary study p-values, and dependence of type PRDS or arbitrary dependence

among the follow-up study p-values. We demonstrated the usefulness of the variants

suggested in Theorem 3.3 in Example 2 of Section 5. Out of the 36 replicability dis-

coveries with Procedure 3.2, 23 discoveries passed the more stringent requirement that

came with the added guarantee that the FDR is controlled for arbitrary dependence

among the 635,547 p-values in the primary study.

Replicability analysis, as suggested in this paper, requires that the investigators make

several key design choices in addition to the error level q: the selection rule, q1, and

w1 if two studies are available without division into primary and follow-up. The

power of the procedure for replicability analysis varies with these choices. From our

investigations, it appears reasonable in Procedure 3.2 to select hypotheses by BH at

level q1, and to set w1 = 0.5 in Procedure 4.1 if the p-value distributions for false null

hypotheses may be assumed to be similar in both studies. We gave some guidelines

for choosing q1 in specific settings, and more general guidelines are a topic for future

research.

In replicability analysis, the primary study guides the design of the follow-up study
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by supplying the subset of hypotheses to be followed-up. Since the primary study also

yields information on effect sizes, if it is assumed that the effect sizes are the same

across studies, then this information may be used in order to determine the sample

size needed to obtain good power in the follow-up study. However, this assumption

may be unrealistic in applications such as GWAS, where the LD pattern varies across

populations.

Finally, we saw that although Procedure 4.1 with parameters (w1, q1, q) is far less

conservative than the BH procedure at level q on maximum p-values, it is still con-

servative. We proved that Procedure 4.1 with less conservative parameters q′1 > q1

and q′ > q, still controls the FDR at level q on the family of no replicability null hy-

potheses, if |I00| and |I01| were known. In future research we will consider estimates

of these unknown parameters.
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A Proof of Theorem 3.2

Let q2 = q − q1, and for each j ∈ {1, . . . , m}, let P
(j)
1 and P

(j)
2 denote the vectors

P1 = (P11, . . . , P1m) and P2 = (P21, . . . , P2m) with, respectively, P1j and P2j excluded.

For j ∈ {1, . . . , m} arbitrary fixed, let R(j)
1 (P

(j)
1 ) ⊆ {1, . . . , j − 1, j + 1, . . . , m} be

the subset of indices selected along with index j. Note that since the selection rule

is valid, this subset is well defined. For any j ∈ {1, . . . , m} and given P
(j)
1 , for

i ∈ 1, . . . , j − 1, j + 1, . . . , m we define

Ti =





max

(
mP1i

q1
,

(|R
(j)
1 (P

(j)
1 )|+1)P2i

q2

)
if i ∈ R(j)

1 (P
(j)
1 ),

∞ otherwise.

Let T(1) ≤ . . . ≤ T(m−1) be the sorted T -values, and T(0) = 0. For r = 1, . . . , m, we

define C
(j)
r as the event in which if HNR,j is rejected by Procedure 3.2, r hypotheses

are rejected including HNR,j :

C(j)
r = {(P (j)

1 , P
(j)
2 ) : T(r−1) ≤ r, T(r) > r + 1, T(r+1) > r + 2, . . . , T(m−1) > m}.

Note that given P1, for r > |R1|, C(j)
r = ∅, since exactly |R1| − 1 Ti’s are finite.

Obviously, C
(j)
r and C

(j)
r′ are disjoint events for any r 6= r′, and ∪m

r=1C
(j)
r is the

entire space of (P
(j)
1 , P

(j)
2 ). Let I0 = I01 ∪ I00, Rj be the indicator of whether HNR,j

was rejected for j = 1, . . . , m, and R =
∑m

j=1Rj. The FDR for the family of no

replicability null hypotheses is

FDR = E

( ∑
j∈I0

Rj

max(R, 1)

)
+ E

(∑
j∈I10

Rj

max(R, 1)

)
(A.1)
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First, we find an upper bound for the first term of the sum in (A.1).

E

( ∑
j∈I0

Rj

max(R, 1)

)
=
∑

j∈I0

m∑

r=1

1

r
Pr

(
j ∈ R1, P1j ≤

rq1
m

,P2j ≤
r(q − q1)

|R1|
, C(j)

r

)

≤
∑

j∈I0

m∑

r=1

1

r
Pr
(
P1j ≤

rq1
m

,C(j)
r

)
=
∑

j∈I0

m∑

r=1

1

r
Pr
(
P1j ≤

rq1
m

)
Pr
(
C(j)

r

)
(A.2)

≤ q1
m

∑

j∈I0

m∑

r=1

Pr
(
C(j)

r

)
=

|I0|
m

q1 (A.3)

The equality in (A.2) follows from the independence of the p-values. The inequality

in (A.3) follows from the fact that for each j ∈ I0, Pr(P1j ≤ x) ≤ x for all x ∈ [0, 1].

Finally, the equality in (A.3) follows from the fact that ∪m
r=1C

(j)
r is the entire sample

space of (P
(j)
1 , P

(j)
2 ), represented as a union of disjoint events.

Next, we find an upper bound for the second term of the sum in (A.1). Let R1(p1)

be the set of selected indices using P1 = p1. Then E
(∑

j∈I10
Rj/max(R, 1) |P1 = p1

)

equals to:

∑

j∈I10∩R1(p1)

|R1(p1)|∑

r=1

1

r
I
[
p1j ≤

rq1
m

]
Pr

(
P2j ≤

rq2
|R1(p1)|

, C(j)
r |P1 = p1

)

≤
∑

j∈I10∩R1(p1)

|R1(p1)|∑

r=1

1

r
Pr

(
P2j ≤

rq2
|R1(p1)|

, C(j)
r |P1 = p1

)
(A.4)

=
∑

j∈I10∩R1(p1)

|R1(p1)|∑

r=1

1

r
Pr

(
P2j ≤

rq2
|R1(p1)|

|P1 = p1

)
Pr
(
C(j)

r |P1 = p1
)

(A.5)

≤ q2
|R1(p1)|

∑

j∈I10∩R1(p1)

|R1(p1)|∑

r=1

Pr
(
C(j)

r |P1 = p1
)
=

q2
|R1(p1)|

|I10 ∩ R1(p1)|. (A.6)

The equality in (A.5) follows from the fact that P2j , P
(j)
2 , P1 are independent, since

then C
(j)
r and the event {P2j ≤ rq2/|R1(p1)|} are conditionally independent. The

inequality in (A.6) follows from the independence of the p-values across the studies
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and the fact that for each j ∈ I10, Pr(P2j ≤ x) ≤ x for all x ∈ [0, 1]. The equality

in (A.6) follows from the fact that ∪|R1(p1)|
r=1 C

(j)
r is a union of disjoint events, and

Pr
(
∪|R1(p1)|
r=1 C

(j)
r |P1 = p1

)
= 1.

It follows from (A.6) that E
(∑

j∈I10
Rj/max(R, 1)

)
≤ q2. Using this fact and the

bound (A.3) for the first term of (A.1), we obtain:

FDR ≤ |I0|
m

q1 + (q − q1) ≤ q1 + (q − q1) = q.

B Proof for FDR control of the oracle Procedure

3.2

Let us now prove that under the assumption that the p-values are independent, Pro-

cedure 3.2 at levels (q′, 2q′) controls the FDR at level |I00| (q′)2 /m+ (|I01|/m+ 1) q′.

Returning to the proof of Theorem 3.2, note that (A.1) can be rewritten as follows.

FDR = E

(∑
j∈I00

Rj

max(R, 1)

)
+ E

(∑
j∈I01

Rj

max(R, 1)

)
+ E

(∑
j∈I10

Rj

max(R, 1)

)
. (B.1)

We will now give an upper bound for each term of the sum in (B.1). First,

E

(∑
j∈I00

Rj

max(R, 1)

)
=
∑

j∈I00

m∑

r=1

1

r
Pr

(
j ∈ R1, P1j ≤

rq′

m
,P2j ≤

rq′

|R1|
, C(j)

r

)

≤
∑

j∈I00

m∑

r=1

1

r
Pr

(
P1j ≤

rq′

m
,P2j ≤ q′, C(j)

r

)
≤ (q′)2

m

∑

j∈I00

m∑

r=1

Pr
(
C(j)

r

)
=

|I00|
m

(q′)2

(B.2)

The second inequality in (B.2) follows from the facts that for each j ∈ I00, P1j and

P2j are independent, and Pr(Pij ≤ x) ≤ x for all x ∈ [0, 1] and i = 1, 2. The equality

in (B.2) follows from the explanation of the equality in (A.3).
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Second, replacing I0 by I01 and |I0| by |I01| in the arguments that led to (A.3), we

obtain:

E

(∑
j∈I01

Rj

max(R, 1)

)
≤ |I01|

m
q′. (B.3)

Finally, using (A.6) in the proof of Theorem 3.2 we obtain that the third term of the

sum in (B.1) is bounded by q2 = 2q′− q′ = q′. Using this upper bound, together with

the bounds for the first two terms derived in (B.2) and (B.3), we obtain:

FDR ≤ |I00|
m

(q′)2 +
|I01|
m

q′ + q′ =
|I00|
m

(q′)2 +

( |I01|
m

+ 1

)
q′.

It follows that if |I00| and |I01| were known, one could guarantee FDR control at level

q on the family of no replicability null hypotheses by applying Procedure 3.2 at levels

(q′, 2q′), where q′ is the solution to |I00| (q′)2 /m+ (|I01|/m+ 1) q′ = q.

C Proof of Theorem 4.1

Let V12 =
∑

j∈I00∪I01∪I10
I [j ∈ R12,w1q] and R12 = |R12,w1q| denote the number of

erroneously rejected and the total number of rejected no replicability null hypothe-

ses by Procedure 3.2 at level w1q with study one as the primary study and study

two as the follow-up study. Similarly, let V21 =
∑

j∈I00∪I01∪I10
I
[
j ∈ R21,(1−w1)q

]
and

R21 = |R21,(1−w1)q| denote the number of erroneously rejected and the total num-

ber of rejected no replicability null hypotheses by Procedure 3.2 at level (1 − w1)q

with study two as the primary study and study one as the follow-up study. Define

Rs = R12,w1q ∪R21,(1−w1)q, the indices of the no replicability null hypotheses rejected

by Procedure 4.1. Let Vs =
∑

j∈I00∪I01∪I10
I [j ∈ Rs] and Rs = |Rs|, the number of

erroneously rejected and the total number of rejected no replicability null hypotheses
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by Procedure 4.1.

Note that Vs ≤ V12 + V21. Therefore,

FDR = E

(
Vs

max(Rs, 1)

)
≤ E

(
V12

max(Rs, 1)

)
+ E

(
V21

max(Rs, 1)

)
. (C.1)

In addition, note that max(Rs, 1) ≥ max(R12, 1) and max(Rs, 1) ≥ max(R21, 1).Using

these facts and (C.1) we obtain

FDR = E

(
Vs

max(Rs, 1)

)
≤ E

(
V12

max(R12, 1)

)
+ E

(
V21

max(R21, 1)

)
≤ w1q + (1− w1)q = q,

where the last inequality follows from Theorem 3.2.

D Table of results for GWAS of Crohn’s disease
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Table 5: Replicability analysis for Example 2 in Section 5: GWAS of Crohns disease.
The number of SNPs in the primary study was 635,547, and 126 SNPs were followed-
up. The 36 discoveries by Procedure 3.2 with parameters (q1, q) = (0.04, 0.05) are
listed according to the adjusted p-values. The primary and follow-up studies p-values
are given in columns 4 and 5; the adjusted p-values for c = 0.8 are given in column 6
for Procedure 3.2, and in column 7 for the modification of item 1 in Theorem 3.3.

Index Chromosome Position p1 p2 pREPadj
FDR p̃REPadj

FDR

1 1 67417979 3.19e-34 1.5e-36 2.53e-28 3.53e-27
2 1 67414547 5.05e-36 3.1e-29 9.69e-27 9.69e-27
3 1 67387537 1.35e-24 5.62e-17 1.17e-14 1.17e-14
4 2 233962410 5.66e-21 7.67e-14 1.2e-11 1.2e-11
5 10 64108492 9.51e-12 1.61e-10 1.51e-06 1.5e-05
6 5 40428485 2.51e-22 2.79e-08 2.84e-06 3.31e-06
7 5 40437266 2.26e-22 3.18e-08 2.84e-06 3.31e-06
8 10 101281583 8.53e-11 1.69e-07 1.32e-05 7.74e-05
9 18 12769947 5.95e-12 2.41e-07 1.61e-05 1.88e-05
10 5 150239060 3.18e-11 2.57e-07 1.61e-05 3.91e-05
11 10 101282445 9.09e-11 3.1e-07 1.76e-05 7.74e-05
12 5 150203580 4.09e-11 7.47e-07 3.89e-05 4.67e-05
13 18 12799340 3.27e-11 1.23e-06 5.91e-05 6.99e-05
14 5 131798704 2.29e-09 3.52e-11 0.00013 0.00169
15 5 158747111 4.4e-09 3.66e-06 0.000233 0.00305
16 2 233965368 1.28e-21 3.66e-05 0.00143 0.00163
17 13 43355925 8.04e-08 1.33e-07 0.00376 0.0469
18 12 39104262 8.95e-08 6.55e-05 0.00395 0.0496
19 3 49676987 9.47e-08 2.24e-06 0.00396 0.0499
20 3 49696536 1.08e-07 5.64e-07 0.00429 0.0544
21 12 38888207 6.64e-08 0.000165 0.00491 0.0433
22 6 167408399 1.65e-07 3.26e-07 0.00596 0.0731
23 9 114645994 1.96e-07 6.58e-05 0.00677 0.0768
24 6 20836710 1.26e-07 0.000278 0.00724 0.0607
25 1 169593891 2.01e-07 0.000321 0.00802 0.0768
26 1 197667523 3.41e-07 2.34e-06 0.01 0.111
27 9 4971602 3.4e-07 0.00043 0.01 0.111
28 1 157665119 1.75e-07 0.000481 0.0107 0.0745
29 11 75978964 7.16e-08 0.000732 0.0158 0.044
30 20 61798026 7.6e-07 0.000138 0.0201 0.234
31 6 167405736 1.65e-07 0.00121 0.0241 0.0731
32 1 197691964 9.69e-07 1e-04 0.0241 0.29
33 17 35294289 1.06e-06 0.000292 0.0255 0.308
34 8 126603853 1.9e-06 0.000182 0.0431 0.457
35 6 106541962 1.85e-06 7.7e-06 0.0431 0.457
36 9 4978761 1.96e-06 0.00162 0.0433 0.462
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E A computational example with FWER control

When the FWER controlling procedure applied in each stage of Procedure 3.1 is

Bonferroni, then HNR,j is rejected if p1j ≤ α1/m and p2j ≤ (α − α1)/
∑m

i=1 I[p1j ≤

α1/m], where I[·] is the indicator function. An alternative to Procedure 3.1 is to apply

a FWER controlling procedure, such as Bonferroni, on the maximum of p-values from

the two studies. This alternative procedure also controls the FWER on the family
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of no replicability null hypotheses. In the alternative procedure, Hj is rejected if

p1j ≤ α/m and p2j ≤ α/m. The two procedures differ in the thresholds used in each

of the studies. The cut-off for p1j is larger in the alternative procedure, since α1 < α.

However, the cut-off for p2j may be substantially smaller in the alternative procedure,

since (α−α1)/
∑m

i=1 I[p1j ≤ α1/m] may be significantly larger than α/m. This is so in

the common setting where signal is sparse in the primary study, i.e.
∑m

j=1 h1j ≪ m.

Example E.1. Suppose we have m independent normal outcomes in each of the two

studies T1j , T2j, j = 1 . . . , m . In this example, E(T11) = µ11, E(T21) = µ21, V ar(T11) =

V ar(T21) = 1, and outcomes j = 2, . . . , m have expectation 0 and variance 1. Con-

sider first the power of the alternative procedure that applies Bonferroni on the max-

imum of the two study p-values for FWER control at level α = 0.05:

π1 =
∼

Φ (z1−α/m − µ11)×
∼

Φ (z1−α/m − µ21),

where
∼

Φ (·) is the right tail of the standard normal distribution. Next, we compute

the power of Procedure 3.1 with Bonferroni as the FWER controlling procedure. The

probability of correctly selecting (PCS) the non-null hypothesis in the first study as

well as k − 1 null hypotheses along with it is

PCS(k) =
∼

Φ (z1−α1/m − µ11)

(
m− 1

k − 1

)
(α1/m)k−1(1− α1/m)m−k,

so the power is

π2 =
m∑

k=1

PCS(k)×
∼

Φ (z1−(α−α1)/k − µ21).

Figure 5 shows the power of the Bonferroni on maximum p-values procedure (left

panel) and the power of Procedure 3.1 (right panel) for different configurations of

(µ11, µ21), where (α1, α) = (0.025, 0.05). In most configurations of µ11 and µ21,

Procedure 3.1 is more powerful than the Bonferroni on maximum p-values proce-
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Figure 5: The power as function of the expectation in the first study (x-axis) and the
expectation in the second study (y-axis), for the false no replicability null hypothesis,
in a setting where one no replicability null hypothesis is false out of 100 no replicability
null hypotheses. Left panel: Procedure that applies a Bonferroni correction on the
maximum two study p-values for FWER control at level 0.05. Right panel: Procedure
3.1 with (α1, α) = (0.025, 0.05) and Bonferroni as the FWER controlling procedure.

dure. Moreover, for fixed µ1 > µ2, the power of the two stage procedure is larger if

(µ11, µ21) = (µ1, µ2) than if (µ11, µ21) = (µ2, µ1).

Figure 6 shows the difference in power of Procedure 3.1 using Bonferroni with c =

α1/α ∈ {0.2, 0.5, 0.8}, as well as the Bonferroni procedure on maximum p-values,

from the power of Procedure 3.1 with optimal choice of c. Clearly, Procedure 3.1

with optimal choice of c can be much more powerful than the Bonferroni procedure

on maximum p-values. Moreover, for the three choices c = 0.2, c = 0.5 and c = 0.8,

the difference in power from the optimal power is fairly small, especially when the

optimal power is above 0.9 (right panel). Figure 7 shows the power as a function of c

for three configurations of (µ11, µ21), for which the power using the optimal c is 0.9.

The power function is quite flat. The optimal c is below 0.5 in the top left panel, and

above 0.5 in the top right and bottom panel. However, the difference in power between

Procedure 3.1 with c = 0.5 and Procedure 3.1 with optimal c is small.
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Figure 6: The difference in power of Procedure 3.1 using Bonferroni with c = α1/α ∈
{0.2, 0.5, 0.8}, as well as the Bonferroni procedure on maximum p-values, from the
power of Procedure 3.1 with optimal c. Left panel: for all pairs of configurations
where µ11 ∈ {0, 0.5, 1.0, . . . , 10} and µ21 ∈ {0, 0.5, 1.0, . . . , 10}. Right panel: Subset
of configurations of (µ11, µ21) for which the power with optimal choice c is above 0.90.

F Proof of Theorem 3.3

We use the notation given in the first two paragraphs of Appendix A of the main

manuscript, including: q2 = q− q1; Rj is the indicator of whether HNR,j was rejected

for j = 1, . . . , m, and R =
∑m

j=1Rj . In addition we define: I0 = I00 ∪ I01; p1 =

(p11, . . . , p1m); R1(p1) is the set of hypotheses selected for follow-up based on p1,

R1(p1) = |R1(p1)|.

Lemma F.1. Assume that the p-values across studies are independent, and the set of

p-values within the follow-up study has property PRDS. Then for any valid selection

rule, the following results hold:

1. Given p1, for j ∈ I10 ∩ R1(p1),

R1(p1)∑

r=1

Pr

(
C(j)

r |P2j ≤
rq2

R1(p1)
, P1 = p1

)
≤ 1.
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Figure 7: The power of Procedure 3.1 using Bonferroni as function of c = α1/α for
the false no replicability null hypothesis, for the following configurations of (µ11, µ21):
(5.5, 3.0) in the top left panel; (4.5, 4.5) in the top right panel; (4.5, 5.0) in the
bottom panel. The power of the Bonferroni procedure on maximum p-values is the
dotted horizontal line.
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2. For Procedure 3.2 with parameters (q1, q),

E

(∑
j∈I10

Rj

max(R, 1)

)
≤ q2.

3. Item 2 holds if in the terms rq1/m and R2q1/m in step 2 of Procedure 3.2, q1

is replaced by q′1, for any value of q′1.

See Section F.1 for a proof.

Proof of item 1 of Theorem 3.3. We will first show that the first term of

the sum in (A.1) is bounded by |I0| q1/m. We will use the technique developed in

Benjamini and Yekutieli (2001) in the proof of their Theorem 1.3. For each j ∈

I0, r ∈ {1, . . . , m}, and l ∈ {1, . . . , m}, let us define:

pjrl = Pr

(
P1j ∈

(
(l − 1)q1
m
∑m

s=1
1
s

,
lq1

m
∑m

s=1
1
s

]
, C(j)

r

)
.

Since ∪m
r=1C

(j)
r is the entire sample space represented as a union of disjoint events, we

obtain for each j ∈ I0 and l ∈ {1, . . . , m}:

m∑

r=1

pjrl = Pr

(
P1j ∈

(
(l − 1)q1
m
∑m

s=1
1
s

,
lq1

m
∑m

s=1
1
s

]
, ∪m

r=1C
(j)
r

)

= Pr

(
P1j ∈

(
(l − 1)q1
m
∑m

s=1
1
s

,
lq1

m
∑m

s=1
1
s

])
. (F.1)

Note that for j ∈ I0, Pr (P1j ≤ x) ≤ x for all x ≥ 0, in particular Pr (P1j = 0) = 0.

Therefore, for each j ∈ I0 and r ∈ {1, . . . , m},

Pr

(
P1j ≤

rq1
m
∑m

s=1
1
s

, C(j)
r

)
=

r∑

l=1

pjrl. (F.2)
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The upper bound on the first term of the sum in (A.1) is derived as follows.

E

( ∑
j∈I0

Rj

max(R, 1)

)
=
∑

j∈I0

m∑

r=1

1

r
Pr

(
j ∈ R1, P1j ≤

rq1
m
∑m

s=1
1
s

, P2j ≤
r(q − q1)

|R1|
, C(j)

r

)

≤
∑

j∈I0

m∑

r=1

1

r
Pr

(
P1j ≤

rq1
m
∑m

s=1
1
s

, C(j)
r

)
(F.3)

=
∑

j∈I0

m∑

r=1

r∑

l=1

1

r
pjrl =

∑

j∈I0

m∑

l=1

m∑

r=l

1

r
pjrl (F.4)

≤
∑

j∈I0

m∑

l=1

m∑

r=l

1

l
pjrl ≤

∑

j∈I0

m∑

l=1

1

l

m∑

r=1

pjrl

=
∑

j∈I0

m∑

l=1

1

l
Pr

(
P1j ∈

(
(l − 1)q1
m
∑m

s=1
1
s

,
lq1

m
∑m

s=1
1
s

])
, (F.5)

where the first equality in (F.4) follows from (F.2), and the equality in (F.5) follows

from (F.1). Note that for each j ∈ I0,

m∑

l=1

1

l
Pr

(
P1j ∈

(
(l − 1)q1
m
∑m

s=1
1
s

,
lq1

m
∑m

s=1
1
s

])

=
m∑

l=1

1

l

[
Pr

(
P1j ≤

lq1
m
∑m

s=1 1/s

)
− Pr

(
P1j ≤

(l − 1)q1
m
∑m

s=1 1/s

)]

=
m∑

l=1

1

l
Pr

(
P1j ≤

lq1
m
∑m

s=1 1/s

)
−

m−1∑

l=0

1

l + 1
Pr

(
P1j ≤

lq1
m
∑m

s=1 1/s

)

=
m−1∑

l=1

(
1

l
− 1

l + 1

)
Pr

(
P1j ≤

lq1
m
∑m

s=1 1/s

)
+

1

m
Pr

(
P1j ≤

q1∑m
s=1 1/s

)

≤
m−1∑

l=1

1

l + 1

(
q1

m
∑m

s=1 1/s

)
+

q1
m
∑m

s=1 1/s
(F.6)

=

(
q1

m
∑m

s=1 1/s

) m∑

l=1

1

l
=

q1
m
. (F.7)

The inequality in (F.6) follows from the fact that for j ∈ I0, Pr(P1j ≤ x) ≤ x for all

x ≥ 0. Combining (F.7) with (F.5) we obtain an upper bound for the first term of
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the sum in (A.1):

E

( ∑
j∈I0

Rj

max(R, 1)

)
≤
∑

j∈I0

q1
m

=
|I0| q1
m

. (F.8)

It follows from Lemma F.1, item 3, that the second term of the sum in (A.1) is

bounded by q2, hence

FDR ≤ |I0| q1
m

+ q2 =
|I0| q1
m

+ q − q1 ≤ q.

Proof of item 2 of Theorem 3.3. We will first prove that the first term of the

sum in (A.1) is bounded by q1. For q̃1 as defined in item 2 of Theorem 3.3, we denote

k = ⌈tm/q̃1 − 1⌉ . The first term of the sum in (A.1) is upper bounded by two terms:

E

( ∑
j∈I0

Rj

max(R, 1)

)
=
∑

j∈I0

m∑

r=1

1

r
Pr

(
j ∈ R1, P1j ≤

rq̃1
m

,P2j ≤
r(q − q1)

|R1|
, C(j)

r

)

≤
∑

j∈I0

m∑

r=1

1

r
Pr

(
P1j ≤ min

(
rq̃1
m

, t

)
, C(j)

r

)
(F.9)

=
∑

j∈I0

k∑

r=1

1

r
Pr

(
P1j ≤

rq̃1
m

, C(j)
r

)
+
∑

j∈I0

m∑

r=k+1

1

r
Pr
(
P1j ≤ t, C(j)

r

)
,

(F.10)

where the inequality in (F.9) follows from the fact that j ∈ R1 yields that P1j ≤ t.

We will now find an upper bound for each of the two terms in (F.10) separately. The

derivation of the upper bound for the first term is along the lines of the derivation in

the proof of item 1. We give it below for completeness.

For each j ∈ I0, r ∈ {1, . . . , m}, and l ∈ {1, . . . , m}, let us define:

p̃jrl = Pr

(
P1j ∈

(
(l − 1)q̃1

m
,
lq̃1
m

]
, C(j)

r

)
. (F.11)
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As in expression (F.2), for each j ∈ I0 and r ∈ {1, . . . , k} one has:

Pr

(
P1j ≤

rq̃1
m

, C(j)
r

)
=

r∑

l=1

p̃jrl.

Using this equality we obtain:

∑

j∈I0

k∑

r=1

1

r
Pr

(
P1j ≤

rq̃1
m

, C(j)
r

)
=
∑

j∈I0

k∑

r=1

r∑

l=1

1

r
p̃jrl =

∑

j∈I0

k∑

l=1

k∑

r=l

1

r
p̃jrl

≤
∑

j∈I0

k∑

l=1

k∑

r=l

1

l
p̃jrl ≤

∑

j∈I0

k∑

l=1

1

l

k∑

r=1

p̃jrl. (F.12)

Since ∪k
r=1C

(j)
r is a union of disjoint events, we obtain for each j ∈ I0 and l ∈

{1, . . . , k}:

k∑

r=1

p̃jrl = Pr

(
P1j ∈

(
(l − 1)q̃1

m
,
lq̃1
m

]
, ∪k

r=1C
(j)
r

)

≤ Pr

(
P1j ∈

(
(l − 1)q̃1

m
,
lq̃1
m

])

= Pr

(
P1j ≤

lq̃1
m

)
− Pr

(
P1j ≤

(l − 1)q̃1
m

)
.

Therefore for each j ∈ I0 we obtain:

k∑

l=1

1

l

k∑

r=1

p̃jrl ≤
k∑

l=1

1

l

[
Pr

(
P1j ≤

lq̃1
m

)
− Pr

(
P1j ≤

(l − 1)q̃1
m

)]

=
k∑

l=1

1

l
Pr

(
P1j ≤

lq̃1
m

)
−

k−1∑

l=0

1

l + 1
Pr

(
P1j ≤

lq̃1
m

)

=
k−1∑

l=1

(
1

l
− 1

l + 1

)
Pr

(
P1j ≤

lq̃1
m

)
+

1

k
Pr

(
P1j ≤

kq̃1
m

)

≤
k−1∑

l=1

1

l + 1

(
q̃1
m

)
+

q̃1
m

=

(
q̃1
m

) k∑

l=1

1

l
. (F.13)
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The inequality in (F.13) follows from the fact that for j ∈ I0, Pr(P1j ≤ x) ≤ x for all

x ≥ 0. Combining (F.13) with (F.12) we obtain an upper bound for the first term of

the sum in (F.10):

∑

j∈I0

k∑

r=1

1

r
Pr

(
P1j ≤

rq̃1
m

, C(j)
r

)
≤
∑

j∈I0

(
q̃1
m

) k∑

l=1

1

l
=

|I0| q̃1
m

k∑

l=1

1

l
. (F.14)

We will now find an upper bound for the second term of the sum in (F.10):

∑

j∈I0

m∑

r=k+1

1

r
Pr
(
P1j ≤ t, C(j)

r

)
=
∑

j∈I0

m∑

r=k+1

1

r
Pr (P1j ≤ t) Pr

(
C(j)

r |P1j ≤ t
)

≤
∑

j∈I0

m∑

r=k+1

t

r
Pr
(
C(j)

r |P1j ≤ t
)

(F.15)

≤ q̃1
m

∑

j∈I0

m∑

r=k+1

Pr
(
C(j)

r |P1j ≤ t
)

(F.16)

=
q̃1
m

∑

j∈I0

Pr
(
∪m
r=k+1C

(j)
r |P1j ≤ t

)
≤ |I0| q̃1

m
. (F.17)

The inequality in (F.15) follows from the fact that for j ∈ I0, Pr(P1j ≤ x) ≤ x for all

x ≥ 0. The inequality in (F.16) follows from the fact that for all r ≥ k + 1, it holds

that r ≥ ⌈tm/q̃1− 1⌉+1 = ⌈tm/q̃1⌉ ≥ tm/q̃1, yielding that t/r ≤ q̃1/m. The equality

in (F.17) follows from the fact that ∪m
r=k+1C

(j)
r is a union of disjoint events.

Combining (F.10), (F.14) and (F.17) we obtain an upper bound for the first term of

the sum in (A.1):

E

( ∑
j∈I0

Rj

max(R, 1)

)
≤ |I0| q̃1

m

k∑

l=1

1

l
+

|I0| q̃1
m

≤ q̃1

(
1 +

k∑

l=1

1

l

)
= q1. (F.18)

Note that for t ≤ q1/m, ⌈tm/q1−1⌉ = 0, therefore q1 = max{x : x(1+
∑⌈mt/x−1⌉

i=1 1/i) =

q1}. We obtain q̃1 = q1, which yields that in this case no modification is required.

It follows from Lemma F.1, item 3, that the second term of the sum in (A.1) is
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bounded by q2. Combining this result with (F.18), we obtain

FDR ≤ q1 + q2 = q1 + q − q1 = q.

F.1 Proof of Lemma F.1

Proof of item 1. Our proof is similar to the proof of Theorem 1.2 in Benjamini and Yekutieli

(2001). For j ∈ {1, . . . , m} and s ∈ {1, . . . , m−1} we define the event D
(j)
s as follows:

D(j)
s = {(P (j)

1 , P
(j)
2 ) : T(s) > s+ 1, T(s+1) > s+ 2, . . . , T(m−1) > m},

and we define D
(j)
m to be the entire sample space of (P

(j)
1 , P

(j)
2 ). Note that D

(j)
s =

∪s
r=1C

(j)
r . It is easy to see that D

(j)
s is the event in which if HNR,j is rejected by

Procedure 3.2, at most s hypotheses are rejected including HNR,j.

We will first show that for each p1, j ∈ I10∩R1(p1) and s ∈ {1, . . . , m−1}, D(j)
s ∩{P1 =

p1} is an increasing set for P
(j)
2 , i.e. if (P1, P

(j)
2 ) ∈ D

(j)
s ∩ {P1 = p1} and P̃

(j)
2 ≥ P

(j)
2 ,

then (P1, P̃
(j)
2 ) ∈ D

(j)
s ∩ {P1 = p1}. The result follows from the fact that for fixed

P1 = p1 and j ∈ I10 ∩R1(p1), Ti = ∞ for i /∈ R(j)
1 (p

(j)
1 ), and Ti is increasing in P2i for

i ∈ R(j)
1 (p

(j)
1 ).

For a given p1 and j ∈ I10 ∩ R1(p1), using the fact that for each s ∈ {1, . . . , m− 1},

D
(j)
s ∩ {P1 = p1} is an increasing set for P

(j)
2 , as well as the PRDS property of the

p-values from the follow-up study and the independence of the p-values across the

studies, we obtain for each s ∈ {1, . . . , R1(p1)− 1}:

Pr

(
D(j)

s |P2j ≤
sq2

R1(p1)
, P1 = p1

)
≤ Pr

(
D(j)

s |P2j ≤
(s+ 1)q2
R1(p1)

, P1 = p1

)
. (F.19)

Using the fact that for each s ∈ {1, . . . , R1(p1)− 1}, D(j)
s ∪ C

(j)
s+1 = D

(j)
s+1, where D

(j)
s
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and C
(j)
s+1 are disjoint events, and the fact that D

(j)
1 = C

(j)
1 we obtain:

R1(p1)∑

r=1

Pr

(
C(j)

r |P2j ≤
rq2

R1(p1)
, P1 = p1

)
=

Pr

(
D

(j)
1 |P2j ≤

q2
R1(p1)

, P1 = p1

)
+

R1(p1)∑

r=2

[
Pr

(
D(j)

r |P2j ≤
rq2

R1(p1)
, P1 = p1

)
− Pr

(
D

(j)
r−1 |P2j ≤

rq2
R1(p1)

, P1 = p1

)]

=

R1(p1)∑

r=1

Pr

(
D(j)

r |P2j ≤
rq2

R1(p1)
, P1 = p1

)
−

R1(p1)−1∑

r=1

Pr

(
D(j)

r |P2j ≤
(r + 1)q2
R1(p1)

, P1 = p1

)

≤
R1(p1)∑

r=1

Pr

(
D(j)

r |P2j ≤
rq2

R1(p1)
, P1 = p1

)
−

R1(p1)−1∑

r=1

Pr

(
D(j)

r |P2j ≤
rq2

R1(p1)
, P1 = p1

)

(F.20)

= Pr
(
D

(j)
R1(p1)

|P2j ≤ q2, P1 = p1

)
= 1,

where the inequality in (F.20) follows from (F.19).

Proof of item 2. Let p1 be arbitrary fixed. Then,

E

(
∑

j∈I10

Rj/max(R, 1) |P1 = p1

)
=

∑

j∈I10∩R1(p1)

R1(p1)∑

r=1

1

r
I
[
p1j ≤

rq1
m

]
Pr

(
P2j ≤

rq2
R1(p1)

, C(j)
r |P1 = p1

)

≤
∑

j∈I10∩R1(p1)

R1(p1)∑

r=1

1

r
Pr

(
P2j ≤

rq2
R1(p1)

, C(j)
r |P1 = p1

)
(F.21)

=
∑

j∈I10∩R1(p1)

R1(p1)∑

r=1

1

r
Pr

(
P2j ≤

rq2
R1(p1)

|P1 = p1

)
Pr

(
C(j)

r |P2j ≤
rq2

R1(p1)
, P1 = p1

)

≤ q2
R1(p1)

∑

j∈I10∩R1(p1)

R1(p1)∑

r=1

Pr

(
C(j)

r |P2j ≤
rq2

R1(p1)
, P1 = p1

)
≤ q2

R1(p1)
|I10 ∩R1(p1)|.

(F.22)
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The first inequality in (F.22) follows from the independence of the p-values across the

studies and the fact that for each j ∈ I10, Pr(P2j ≤ x) ≤ x for all x ≥ 0. The second

inequality in (F.22) follows from Lemma F.1, item 1. Taking the expectation over P1,

we obtain E
(∑

j∈I01
Rj/max(R, 1)

)
≤ q2.

Proof of item 3. For q′1 and p1 arbitrary fixed,

E

(
∑

j∈I10

Rj/max(R, 1) |P1 = p1

)
=

∑

j∈I10∩R1(p1)

R1(p1)∑

r=1

1

r
I

[
p1j ≤

rq′1
m

]
Pr

(
P2j ≤

rq2
R1(p1)

, C(j)
r |P1 = p1

)

≤
∑

j∈I10∩R1(p1)

R1(p1)∑

r=1

1

r
Pr

(
P2j ≤

rq2
R1(p1)

, C(j)
r |P1 = p1

)
.

The arguments that lead from (F.21) to the result of item 2 complete the proof.

G Additional theoretical results under dependence

Theorem G.1. Assume that the p-values across studies are independent, the p-values

within the primary study are independent, and the set of p-values within the follow-up

study has property PRDS. If the selection rule used in step 1 of Procedure 3.2 is a

valid selection rule, then Procedure 3.2 with parameters (q1, q) controls the FDR at

level q for the family of no replicability null hypotheses HNR,1, . . . , HNR,m.

Proof. Let us first find an upper bound for the first term of the sum in (A.1). Note

that (A.3) is established using the independence of the p-values within the primary

study only, therefore it holds for any form of dependence among the p-values within

the follow-up study. In particular, (A.3) holds under the dependency of Theorem

G.1, establishing an upper bound for the first term of the sum in (A.1). It follows
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from Lemma F.1, item 2, that the second term of the sum in (A.1) is bounded by q2.

Thus we obtain:

FDR ≤ |I0|q1
m

+ q2 =
|I0|q1
m

+ q − q1 ≤ q.

Theorem G.2. Assume that the p-values across studies are independent. Then Pro-

cedure 3.2 with parameters (q1, q) controls the FDR at level q for the family of no

replicability null hypotheses HNR,1, . . . , HNR,m if the selection rule used in step 1 of

Procedure 3.2 is a valid selection rule, and the expressions in step 2 of Procedure 3.2

are modified as follows:

1. In the terms r(q−q1)/R1 and R2(q−q1)/R1, q−q1 is replaced by (q−q1)/(
∑R1

i=1 1/i),

and in the terms rq1/m and R2q1/m, q1 is replaced by q1/(
∑m

i=1 1/i).

2. In the terms r(q−q1)/R1 and R2(q−q1)/R1, q−q1 is replaced by (q−q1)/(
∑R1

i=1 1/i),

and in the terms rq1/m and R2q1/m, q1 is replaced by q̃1, where

q̃1 = max{x : x(1 +

⌈tm/x−1⌉∑

i=1

1/i) = q1},

if only hypotheses with primary study p-values at most a fixed threshold t <

q1/(1 +
∑m−1

i=1 1/i) are considered for follow-up, i.e. R1 ⊆ {j ∈ {1, . . . , m} :

P1j ≤ t}.

Proof of item 1. We will first show that the first term of the sum in (A.1) is

bounded by |I0| q1/m. The first term of the sum in (A.1) equals to:

E

( ∑
j∈I0

Rj

max(R, 1)

)
=
∑

j∈I0

m∑

r=1

1

r
Pr

(
j ∈ R1, P1j ≤

rq1
m
∑m

s=1
1
s

, P2j ≤
r(q − q1)

|R1|
∑|R1|

s=1 1/s
, C(j)

r

)

≤
∑

j∈I0

m∑

r=1

1

r
Pr

(
P1j ≤

rq1
m
∑m

s=1
1
s

, C(j)
r

)
.
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Now it follows from the arguments that lead from (F.3) to (F.8) that the first term

of the sum in (A.1) is bounded by |I0| q1/m.

Let us now find an upper bound for the second term of the sum in (A.1). For each

p1, j ∈ R1(p1) ∩ I10, r ∈ {1, . . . , R1(p1)} and l ∈ {1, . . . , R1(p1)}, let us define:

pjrl(p1) = Pr

(
P2j ∈

(
(l − 1)q2

R1(p1)
∑R1(p1)

s=1 1/s
,

lq2

R1(p1)
∑R1(p1)

s=1 1/s

]
, C(j)

r

∣∣∣P1 = p1

)
.

(G.1)

Note that for each p1, j ∈ R1(p1) ∩ I10 and l ∈ {1, . . . , R1(p1)}:

R1(p1)∑

r=1

pjrl(p1) = Pr

(
∪R1(p1)
r=1 C(j)

r , P2j ∈
(

(l − 1)q2

R1(p1)
∑R1(p1)

s=1 1/s
,

lq2

R1(p1)
∑R1(p1)

s=1 1/s

] ∣∣∣P1 = p1

)

= Pr

(
P2j ∈

[
(l − 1)q2

R1(p1)
∑R1(p1)

s=1 1/s
,

lq2

R1(p1)
∑R1(p1)

s=1 1/s

] ∣∣∣P1 = p1

)
.

(G.2)

The equalities follow from the fact that given P1 = p1, ∪R1(p1)
r=1 C

(j)
r is the whole sample

space for P
(j)
2 , represented as a union of disjoint events. In addition, note that for

each p1, j ∈ R1(p1) ∩ I10 and r ∈ {1, . . . , R1(p1)},

Pr

(
P2j ≤

rq2

R1(p1)
∑R1(p1)

s=1 1/s
, C(j)

r |P1 = p1

)
=

r∑

l=1

pjrl(p1), (G.3)

since for j ∈ I10, Pr(P2j ≤ x) ≤ x for all x ≥ 0, in particular Pr(P2j = 0) = 0.
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Therefore, for each p1,

E

(
∑

j∈I10

Rj/max(R, 1) |P1 = p1

)
=

∑

j∈I10∩R1(p1)

R1(p1)∑

r=1

1

r
I

[
p1j ≤

rq1
m
∑m

s=1 1/s

]
Pr

(
P2j ≤

rq2

R1(p1)
∑R1(p1)

s=1 1/s
, C(j)

r |P1 = p1

)

≤
∑

j∈I10∩R1(p1)

R1(p1)∑

r=1

r∑

l=1

1

r
pjrl(p1) =

∑

j∈I10∩R1(p1)

R1(p1)∑

l=1

R1(p1)∑

r=l

1

r
pjrl(p1) (G.4)

≤
∑

j∈I10∩R1(p1)

R1(p1)∑

l=1

R1(p1)∑

r=l

1

l
pjrl(p1) ≤

∑

j∈I10∩R1(p1)

R1(p1)∑

l=1

1

l

R1(p1)∑

r=1

pjrl(p1)

=
∑

j∈I10∩R1(p1)

R1(p1)∑

l=1

1

l
Pr

(
P2j ∈

(
(l − 1)q2

R1(p1)
∑R1(p1)

s=1 1/s
,

lq2

R1(p1)
∑R1(p1)

s=1 1/s

] ∣∣∣P1 = p1

)

=
∑

j∈I10∩R1(p1)

R1(p1)∑

l=1

1

l
Pr

(
P2j ∈

(
(l − 1)q2

R1(p1)
∑R1(p1)

s=1 1/s
,

lq2

R1(p1)
∑R1(p1)

s=1 1/s

])
, (G.5)

where the first inequality in (G.4) follows from (G.3), the next to last equality follows

from (G.2), and the equality in (G.5) follows from the independence of the p-values

across the studies. Using similar arguments to those leading to (F.7), we obtain:

R1(p1)∑

l=1

1

l
Pr

(
P2j ∈

(
(l − 1)q2

R1(p1)
∑R1(p1)

s=1 1/s
,

lq2

R1(p1)
∑R1(p1)

s=1 1/s

])
≤ q2

R1(p1)
.

Combining this result with (G.5) we obtain for each p1:

E

(
∑

j∈I10

Rj/max(R, 1) |P1 = p1

)
≤

∑

j∈I10∩R1(p1)

q2
R1(p1)

=
|I10 ∩ R1(p1)|

R1(p1)
q2 ≤ q2.

It follows that

E

(
∑

j∈I10

Rj/max(R, 1)

)
≤ q2. (G.6)

Using this fact and the upper bound for the first term of the sum in (A.1), we obtain
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that FDR ≤ |I0|q1/m+ q2 = |I0|q1/m+ q − q1 ≤ q.

Proof of item 2. The first term of the sum in (A.1) equals to:

E

( ∑
j∈I0

Rj

max(R, 1)

)
=
∑

j∈I0

m∑

r=1

1

r
Pr

(
j ∈ R1, P1j ≤

rq̃1
m

,P2j ≤
r(q − q1)

|R1|
∑|R1|

s=1 1/s
, C(j)

r

)

≤
∑

j∈I0

m∑

r=1

1

r
Pr

(
P1j ≤ min

(
rq̃1
m

, t

)
, C(j)

r

)
.

Now it follows from the arguments that lead from (F.9) to (F.18) that the upper

bound for the first term of the sum in (A.1) is q1.

The second term of the sum in (A.1) is E
(∑

j∈I10
Rj/max(R, 1)

)
. For each p1,

E

(
∑

j∈I10

Rj/max(R, 1) |P1 = p1

)
=

∑

j∈I10∩R1(p1)

R1(p1)∑

r=1

1

r
I

[
p1j ≤

rq̃1
m

]
Pr

(
P2j ≤

rq2

R1(p1)
∑R1(p1)

s=1 1/s
, C(j)

r |P1 = p1

)

≤
∑

j∈I10∩R1(p1)

R1(p1)∑

r=1

r∑

l=1

1

r
pjrl(p1),

where pjrl(p1) is defined in (G.1). Now it follows from the arguments that lead from

(G.4) to (G.6) that the second term of the sum in (A.1) is bounded by q2. Therefore,

FDR ≤ q1 + q2 = q1 + q − q1 = q.

Consider now a situation where both studies are available before the analysis, as

described in Section 4 of the main manuscript. Without loss of generality, we label

the studies as study one and study two.

Theorem G.3. Assume the p-values across studies are independent. Procedure 4.1

with parameters (w1, q1, q) controls the FDR at level q for the family of no replicability
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null hypotheses HNR,1, . . . , HNR,m in either one of the following situations:

1. The set of p-values within each study has property PRDS, and the selection rule

in step 1 of Procedure 3.2 is Bonferroni at level w1q1 when the primary study

is study one, and at level (1− w1)q1 when the primary study is study two.

2. Arbitrary dependence among the p-values within each study, and the expressions

in step 2 of Procedure 3.2 are modified as follows: in the terms rq1/m and

R2q1/R1, q1 is replaced by q1/(
∑m

i=1 1/i), and in the terms r(q − q1)/R1 and

R2(q − q1)/R1, q − q1 is replaced by (q − q1)/(
∑R1

i=1 1/i).

Proof. The proof of Theorem 4.1 in Appendix C relies only on the facts that Procedure

3.2 used in step 1 and in step 2 of Procedure 4.1 is valid. Therefore, the same proof

shows that item 1 follows from item 2 of Theorem 3.3, and item 2 follows from item

1 of Theorem G.2.
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