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Abstract. A popular approach for testing if two univariate random variables are statis-

tically independent consists of partitioning the sample space into bins, and evaluating a

test statistic on the binned data. The partition size matters, and the optimal partition

size is data dependent. While for detecting simple relationships coarse partitions may

be best, for detecting complex relationships a great gain in power can be achieved by

considering finer partitions. We suggest novel consistent distribution-free tests that are

based on summation or maximization aggregation of scores over all partitions of a fixed

size. We show that our test statistics based on summation can serve as good estimators

of the mutual information. Moreover, we suggest regularized tests that aggregate over

all partition sizes, and prove those are consistent too. We provide polynomial-time algo-

rithms, which are critical for computing the suggested test statistics efficiently. We show

that the power of the regularized tests is excellent compared to existing tests, and almost

as powerful as the tests based on the optimal (yet unknown in practice) partition size, in

simulations as well as on a real data example.
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1 Introduction

Testing if two univariate random variables X and Y are independent of one another,

given a random paired sample (xi, yi)
N
i=1, is a fundamental and extensively studied

problem in statistics. Classical methods have focused on testing linear (Pearson’s cor-

relation coefficient) or monotone (Spearman’s ρ, Kendall’s τ) univariate dependence,

and have little power to detect non-monotone relationships. Recently, there has been

great interest in developing methods to capture complex dependencies between pairs

of random variables. This interest follows from the recognition that in many mod-

ern applications, dependencies of interest may not be of simple forms, and therefore

the classical methods cannot capture them. Moreover, in modern applications, thou-

sands of variables are measured simultaneously, thus making it impossible to view

the scatter-plots of all the potential pairs of variables of interest. For example, Steuer

et al. (2002) searched for pairs of genes that are co-dependent, among thousands of

genes measured, using the estimated mutual information as a dependence measure.

Reshef et al. (2011) searched for any type of relationship, not just linear or monotone,

in large datasets from global health, gene expression, major-league baseball, and the

human gut microbiota. They proposed a novel criterion which generated much inter-

est but has also been criticised for lacking power by Simon and Tibshirani (2011) and

Gorfine et al. (2011), and for other theoretical grounds by Kinney and Atwal (2014).

A special important case is when X is categorical. In this case, the problem reduces

to that of testing the equality of distributions, usually referred to as the K-sample

problem (where K is the number of categories X can have). Jiang et al. (2014)

searched for genes that are differentially expressed across two conditions (i.e., the

2-sample problem), using a novel test that has higher power over traditional methods

such as Kolmogorov–Smirnov tests (Darling, 1957).
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For modern applications, where all types of dependency are of interest, a desirable

property for a test of independence is consistency against any alternative. A con-

sistent test will have power increasing to one as the sample size increases, for any

type of dependency between X and Y . Recently, several consistent tests of indepen-

dence between univariate or multivariate random variables were proposed. Székely

et al. (2007) suggested the distance covariance test statistic, that is the distance (in

weighted L2 norm) of the joint empirical characteristic function from the product

of marginal characteristic functions. Gretton et al. (2008) and Gretton and Gyorfi

(2010) considered a family of kernel based methods, and Sejdinovic et al. (2013) el-

egantly showed that the test of Székely et al. (2007) is a kernel based test with a

particular choice of kernel. Heller et al. (2013) suggested a permutation test for inde-

pendence between two random vectors X and Y , which uses as test statistics the sum

over all pairs of points (i, j), i 6= j, of a score that tests for association between the

two binary variables I{d(xi, X) ≤ d(xi, xj)} and I{d(yi, Y ) ≤ d(yi, yj)}, where I(·) is

the indicator function and d(·, ·) is a distance metric, on the remaining N − 2 sample

points. Gretton and Gyorfi (2010) also considered dividing the underlying space into

partitions that are refined with increasing sample size. For the K-sample problem,

Székely and Rizzo (2004) suggested the energy test. This test was also proposed by

Baringhaus and Franz (2004) and mentioned in Sejdinovic et al. (2013) to be related to

the MMD test proposed in Gretton et al. (2007) and Gretton et al. (2012). Harchaoui

et al. (2008) adopted the kernel approach of Gretton et al. (2007) and incorporated

the covariance into the test statistic by using the kernel Fisher discriminant.

The tests in the previous paragraph are not distribution-free, i.e., the null distribution

of the test statistics depends on the marginal distributions of X and Y . Therefore,

the computational burden of applying these tests to a large family of hypotheses may

be great. For example, the yeast gene expression dataset from Hughes et al. (2000)

contained N = 300 expression levels for each of 6, 325 Saccharomyces cerevisiae genes.
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In order to test each pair of genes for co-expression, it is necessary to account for

multiplicity of M = 2 × 107 hypotheses. For the permutation tests of Heller et al.

(2013) and Székely et al. (2007), the number of permutations required for deriving

a p-value that is below 0.05/M is therefore of the order of 1010. Since these test

statistics are relatively costly to compute for each hypothesis, e.g., O(N2) in Székely

et al. (2007), and O(N2 logN) in Heller et al. (2013), applying them to the family of

M = 2× 107 hypotheses is computationally very challenging, even with sophisticated

resampling approaches such as that of Yu et al. (2011). Distribution-free tests have

the advantage over non-distribution-free tests, that quantiles of the null distribution

of the test statistic can be tabulated once per sample size, and repeating the test on

new data for the same sample size will not require recomputing the null distribution.

Therefore, the computational cost is only that of computing the test statistic for each

of the hypotheses.

We note that for univariate random variables Székely and Rizzo (2009) considered

using the ranks of each random variable instead of the actual values in the test of dis-

tance covariance (Székely et al., 2007), resulting in a distribution-free test. Similarly,

for the test of Heller et al. (2013) replacing data with ranks results in a distribution-

free test. An earlier work by Feuerverger (1993) defined another test based on the

empirical characteristic functions for univariate random variables. The test statistic

of Feuerverger (1993) was based on a different distance metric of the joint empiri-

cal characteristic function from the product of marginal characteristic functions than

that of Székely et al. (2007). Moreover, in Feuerverger’s test the X’s and Y ’s are first

replaced by their normal scores, where the normal scores of the X’s depend on the

data only through their ranks among the X’s, and similarly the normal scores of the

Y ’s depend on the data only through their ranks among the Y ’s, thus making this

test distribution-free.

3



A popular approach for developing distribution-free tests of independence considers

partitioning the sample space, and evaluating a test statistic on the binned data. A

detailed review of distribution-free partition-based tests is provided in Section 1.1 for

the independence problem, and in Section 1.2 for the K-sample problem. In 1.3 we

describe our goals and the outline of the present paper.

1.1 Review of distribution-free tests of independence based

on sample space partitions

For detecting any type of dependence between X and Y , the null hypothesis states

that X and Y are independent, H0 : FXY = FXFY , where the joint distribution of

(X, Y ) is denoted by FXY , and the marginal distributions of X and Y , respectively,

are denoted by FX and FY . The alternative is that X and Y are dependent, H1 :

FXY 6= FXFY .

Figure 1 shows example partitions of the sample space based on the ranked observa-

tions, rank(Y ) versus rank(X), where a m×m partition is based on m− 1 observa-

tions. We refer to such partitions as data derived partitions (DDP). The dependence

in the data can be captured by many partitions, and some partitions are better than

others.

Hoeffding (1948) suggested a test based on summation of a score over all N 2 × 2

DDP of the sample space, which is consistent against any form of dependence if the

bivariate density is continuous. Hoeffding’s test statistic is

∫∫
N
{
F̂XY (x, y)− F̂X(x)F̂Y (y)

}2

dF̂XY (x, y),

where F̂ denotes the empirical cumulative distribution function. Blum et al. (1961)
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showed that Hoeffding’s test statistic is asymptotically equivalent to
∑N

i=1(oi1,1o
i
2,2 −

oi1,2o
i
2,1)2/N4, where oiu,v, u, v ∈ {1, 2}, is the observed count of cell (u, v) in the

2× 2 contingency table defined by the ith observation. Thas and Ottoy (2004) noted

that by appropriately normalizing each term in the sum, the test statistic becomes

the average of all Pearson statistics for independence applied to the contingency

tables that are induced by 2× 2 sample space partitions centered about observation

i ∈ {1, . . . , N}. They proved that the weighted version of Hoeffding’s test statistic is

still consistent.

Partitioning the sample space into finer partitions than the 2 × 2 quadrants of the

classical tests, based on the observations, was also considered in Thas and Ottoy

(2004). They suggested that the average of all Pearson statistics on finer partitions

of fixed size m × m may improve the power, but did not provide a proof that the

resulting tests are consistent. They examined in simulations only 3 × 3 and 4 × 4

partitions. Reshef et al. (2011) suggested the maximal information coefficient, which

is a test statistic based on the maximum over dependence scores taken for partitions

of various sizes, after normalization by the partition size, where the purpose of the

normalization is equitability rather than power. Since computing the statistic exactly

is often infeasible, they resort to a heuristic for selecting which partitions to include.

Thus, in practice, their algorithm goes over only a small fraction of the partitions

they set out to examine. In Section 4 we show that the power of this test is typically

low.

1.2 Review of the K-sample problem

As in Section 1.1, we focus on consistent partition-based distribution-free tests. For

testing equality of distributions, i.e., for a categorical X, one of the earliest and

still very popular distribution-free consistent tests is the Kolmogorov–Smirnov test
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Figure 1: A visualization of the partitioning of the rank–rank plane which is at the
basis of the data derived partitions (DDP) tests. Here, N = 30, and circles represent
observed points. Full black circles represent those observations that were chosen to
induce the partition, and different shades represent partition cells. With m = 2, all
cells are corner cells (top-left); with m = 3, the center cell has two vertices which are
observed sample points (top-right); with m = 4, all internal cells, i.e., cells that are
not on the boundary, have at least one observed point vertex (bottom-left); only with
m ≥ 5, there exists at least one internal cell free of observed vertices (bottom-right,
internal cell with no vertex which is a sample point is marked in red).
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(Darling, 1957), which is based on the maximum score of all N partitions of the

sample space based on an observed data point. Aggregation by summation over all

N partitions has been considered by Cramer and von Mises (Darling, 1957), Pettitt

(Pettitt, 1976) who constructed a test-statistic of the Anderson and Darling family

(Anderson and Darling, 1952), and Scholz and Stephens (1987).

Thas and Ottoy (2007) suggested the following extension of the Anderson–Darling

type test. For random samples of size N1 and N − N1, respectively, from two con-

tinuous densities, for a fixed m, they consider all possible partitions into m intervals

of the sample space of the univariate continuous random variable. They compute

Pearson’s chi-square score for the observed versus expected (under the null hypothe-

sis that the two samples come from the same distribution) counts, then aggregate by

summation to get their test statistics. A permutation test is applied on the resulting

test statistic, since under the null all
(
N
N1

)
assignments of the group labels are equally

likely. They show that the suggested statistic for m = 2 is the Anderson–Darling

test. They examined in simulations only partitions into m ≤ 4 intervals.

Jiang et al. (2014) suggested a penalized score that aggregates by maximization the

penalized log likelihood ratio statistic for testing equality of distributions, with a

penalty for fine partitions. They developed an efficient dynamic programming algo-

rithm to determine the optimal partition, and suggested a distribution-free permuta-

tion test to compute the p-value.

Although there are many additional tests for the two-sample problem, the list above

contains the most common as well as the most recent developments in this field.

Interestingly, when working with ranks, the energy test of Székely and Rizzo (2004)

and the Cramer–von Mises test turn out to be equivalent.
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1.3 Overview of this paper

In this work, we suggest several novel distribution-free tests that are based on sample

space partitions. The novelty of our approach lies in the fact that we consider aggre-

gation of scores over all partitions of size m×m (or m for the K-sample case), where

m can increase with sample size N , as well as consideration of all ms simultaneously

without any assumptions on the underlying distributions. In Section 2 we present the

new tests both for the independence problem and for the K-sample problem, with a

focus on our regularized scores (that consider all ms) in Section 2.1. We prove that all

suggested tests are consistent, including those presented in Thas and Ottoy (2004),

and show the connection between our tests and mutual information (MI). In Section 3

we present innovative algorithms for the computation of the tests, which are essential

for large m since the computational complexity of the naive algorithm is exponential

in m. Simulations are presented in Section 4. Specifically, in Section 4.1 we show that

for the two-sample problem for complex distributions there is a clear advantage for

fine partitions, while for simple distributions rougher partitions have an advantage.

In Section 4.2 we show that for the independence problem there typically is a clear ad-

vantage for finer partitions for complex non-monotone relationships while for simpler

relationships there is an advantage for rougher partitions. We further demonstrate

the ability of our regularized method (which aggregates over all partitions) to adapt

and find the best partition size. Moreover, in simulations we show that for complex

relationships all these tests are more powerful than other existing distribution-free

tests. In Section 5 we analyze the yeast gene expression dataset from Hughes et al.

(2000). With our distribution-free tests, we discover interesting non-linear relation-

ships in this dataset that could not have been detected by the classical tests, contrary

to the conclusion in Steuer et al. (2002) that there are no non-monotone associations.

Efficient implementations of all statistics and tests described herein are available in
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the R package HHG, which can be freely downloaded from the Comprehensive R

Archive Network, http://cran.r-project.org/. Null tables can be downloaded

from the first author’s web site.

2 The proposed statistics

We assume that Y is a continuous random variable, and that X is either continuous

or discrete. We have N independent realizations (x1, y1), . . . , (xN , yN) from the joint

distribution of X and Y . Our test statistics will only depend on the marginal ranks,

and therefore are distribution free, i.e., their null distributions are free of the marginal

distributions FX and FY .

Test statistics for the K-sample problem We first consider the case that X

is categorical with K ≥ 2 categories. In this case, a test of association is also a K-

sample test of equality of distributions. For N observations, there are
(
N+1

2

)
possible

cells, and
(
N−1
m−1

)
possible partitions of the observations into m cells, where a cell

is an interval on the real line. Since the cell membership of observations is the

same regardless of whether the partition is defined on the original observations or

on the ranked observations, and the statistics we suggest only depend on these cell

memberships, we describe the proposed test statistics on the ranked observations,

rank(Y ) ∈ {1, ..., N}. Let Πm denote the set of partitions into m cells. For any fixed

partition I = {i1, . . . , im−1} ⊂ {1.5, . . . , N − 0.5}, i1 < i2 < . . . < im−1, C(I) is the

set of m cells defined by the partition. For a cell C ∈ C(I), let oC(g) and eC(g)

be the observed and expected counts inside the cell for distribution g ∈ {1, . . . , K},

respectively. The expected count eC(g) is the width of cell C based on ranks multiplied

by Ng/N , where Ng is the total number observations from distribution g: e[il,il+1](g) =

9
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(il+1− il)×Ng/N , where l ∈ {0, . . . ,m− 1}, i0 = 0.5 and im = N + 0.5. We consider

either Pearson’s score or the likelihood ratio score for a given cell C,

tC ∈

{
K∑
g=1

[oC(g)− eC(g)]2

eC(g)
,

K∑
g=1

oC(g) log
oC(g)

eC(g)

}
. (2.1)

For a given partition I, the score is T I =
∑

C∈C(I) tC (where if tC =
∑K

g=1 oC(g) log oC(g)
eC(g)

then T I is the likelihood ratio given the partition). Our test statistics aggregate over

all partitions by summation (Cramer–von Mises-type statistics) and by maximization

(Kolmogorov–Smirnov-type statistics):

Sm =
∑
I∈Πm

T I , Mm = max
I∈Πm

T I . (2.2)

Tables of critical values for given sample sizes N1, . . . , NK can be obtained for (very)

small sample sizes by generating all possible N !/(ΠK
g=1Ng!) reassignments of ranks

{1, . . . , N} to K groups of sizes N1, . . . , NK and computing the test statistic for each

reassignment. The p-value is the fraction of reassignments for which the computed test

statistics are at least as large as observed. When the number of possible reassignments

is large, the null tables are obtained by large scale Monte Carlo simulations (we

used B = 106 replicates for each given sample size N1, . . . , NK). For each of the B

reassignment selected at random from all possible reassignments, the test statistic

is computed. Clearly, the B computations do not depend on the data, hence the

tests based on these statistics are distribution free. Again, the p-value is the fraction

of reassignments for which the computed test statistics are at least as large as the

one observed, but here the fraction is computed out of the B + 1 assignments that

include the B reassignments selected at random and the one observed assignment,

see Chapter 15 in Lehmann and Romano (2005). The test based on each of these
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statistics is consistent:

Theorem 2.1. Let Y be continuous, and X categorical with K categories. Let Ng be

the total number of observations from distribution g ∈ {1, . . . , K}, and N =
∑K

g=1 Ng.

If the distribution of Y differs at a continuous density point y0 across values of X in

at least two categories, label these 1 and 2, limN→∞
min(N1,N2)

N
> 0, and m finite or

limN→∞m/N = 0, then the distribution-free permutation tests based on Sm and Mm

are consistent.

We omit the proof, since it is similar to (yet simpler than) the proof of Theorem 2.2

below.

Test statistics for the independence problem We now consider the case that

X is continuous. For N pairs of observations, there are
(
N−1
m−1

)
×
(
N−1
m−1

)
partitions of

the sample space into m×m cells, where a cell is a rectangular area in the plane. We

refer to these partitions as the all derived partitions (ADP) and denote this set by

ΠADP
m . Since the cell membership of observations is the same regardless of whether

the partition is defined on the original observations or on the ranked observations,

and the statistics we suggest only depend on these cell memberships, we describe the

proposed test statistics on the ranked observations, so the N pairs of observations

are on the grid {1, . . . , N}2. For any fixed partition I = {(i1, j1), . . . , (im−1, jm−1)} ⊂

{1.5, . . . , N − 0.5}2, , i1 < i2 < . . . < im−1, j1 < j2 < . . . < jm−1, C(I) is the set

of m ×m cells defined by the partition. For a cell C ∈ C(I), let oC and eC be the

observed and expected counts inside the cell, respectively. The expected count in

cell C with boundaries [ik, ik+1] × [jl, jl+1] is eC = (ik+1 − ik) × (jl+1 − jl)/N , where

k, l ∈ {0, . . . ,m − 1}, i0 = j0 = 0.5, im = jm = N + 0.5. As with the K-sample

problem, we consider either Pearson’s score or the likelihood ratio score for a given

11



cell C,

tC ∈
{

(oC − eC)2

eC
, oC log

oC
eC

}
. (2.3)

For a given partition I, the score is T I =
∑

C∈C(I) tC (where if tC = oC log oC
eC

then

T I is the likelihood ratio given the partition). As above, we consider as test statistics

aggregation by summation and by maximization:

SADPm×m =
∑

I∈ΠADP
m

T I , MADP
m×m = max

I∈ΠADP
m

T I . (2.4)

We consider another test statistic based on DDP, where each set of m − 1 observed

points in their turn define a partition (see Figure 1). This variant has a computational

advantage over the ADP statistic for m < 5, see Remark 3.1. Since all observations

have unique values, the remaining N − (m− 1) points are inside cells defined by the

partition. There are
(
N
m−1

)
partitions, denote this set of partitions by ΠDDP

m . As

before, since the cell membership of observations is the same regardless of whether

the partition is defined on the original observations or on the ranked observations,

and the statistics we suggest only depend on these cell memberships, we describe

the proposed test statistics on the ranked observations. For a cell C ∈ C(I), where

I ∈ ΠDDP
m , the boundaries of C are not necessarily defined by two sample points, as

depicted at the bottom right panel of Figure 1. We refer to rl and rh as the lower and

upper values of the ranks of X in C, and to sl and sh as the lower and upper values of

the ranks of Y in C, where rl, rh, sl, sh ∈ {1, . . . , N}. Let oC and eC be the observed

and expected counts strictly inside the cell, respectively. The expected count in cell

C with rank range [rl, rh] × [sl, sh] is eC = (rh − rl − 1)(sh − sl − 1)/[N − (m − 1)].

We consider Pearson’s score or the likelihood ratio score for a given cell C, and define

tC as in (2.3). For a given partition I, the score is T I =
∑

C∈C(I) tC , and similarly

to (2.4) we define

12



SDDPm×m =
∑

I∈ΠDDP
m

T I , MDDP
m×m = max

I∈ΠDDP
m

T I . (2.5)

For each of the test statistics in (2.4) and (2.5), tables of exact critical values for a

given sample size N can be obtained for small N by generating all possible N ! per-

mutations of {1, . . . , N}. For each permutation (π(1), . . . , π(N)), the test statistic is

computed for the reassigned pairs (1, π(1)), . . . , (N, π(N)). Clearly, the computation

of these null distributions does not depend on the data, hence the tests based on these

statistics are distribution free. As in the case of the K-sample problem, the p-value

is the fraction of permutations for which the computed test statistics are at least as

large as the one observed, and when the number of possible permutations is large, the

critical values are obtained by large scale Monte Carlo simulations. The test based

on each of these statistics is consistent:

Theorem 2.2. Let the joint density of X and Y be h(x, y), with marginal densities

f(x) and g(y). If there exists a point (x0, y0) such that h(x0, y0) is continuous and

h(x0, y0) 6= f(x0)g(y0), i.e., there is local dependence at a continuous density point,

and if m is finite or limN→∞m/
√
N = 0, then the distribution-free permutation tests

based on the following test statistics are consistent:

1. The test statistics aggregated by summation: SDDPm×m and SADPm×m.

2. The test statistics aggregated by maximization: MDDP
m×m and MADP

m×m.

A proof is given in Appendix A.

We note that Thas and Ottoy suggested Sm with tC =
∑2

g=1
(oC(g)−eC(g))2

eC(g)
in Thas and

Ottoy (2007), and SDDP
m×m using Pearson’s score for finite m in Thas and Ottoy (2004).

However, they examined in simulations onlym ≤ 4. Thanks to the efficient algorithms
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we developed, detailed in Section 3, we are able to test for any m ≤ N in the K-

sample problem, and for aggregation by summation in the test of independence. If the

aggregation is by maximization in the test of independence, the algorithm, detailed in

Section 3, is exponential in m and thus the computations are feasible only for m ≤ 4.

We shall show in Section 4 that the power of the test based on a summation statistic

can be different from the power of the test based on a maximization statistic, and

which is more powerful depends on the joint distribution. However, for both ag-

gregation methods, using m > 3 partitions improves power considerably for complex

settings. Therefore, in complex settings our tests with m > 3 have a power advantage

over the classical distribution-free tests, which focused on rough partitions, typically

m = 2.

Connection to the MI An attractive feature of the statistics Sm and SADPm×m, for

m large enough, is that they are directly associated with the MI. MI (defined as

IXY =
∫
h(x, y) log[h(x, y)/{f(x)g(y)}]dxdy for continuous X and Y ) is a useful

measure of statistical dependence. The variables X and Y are independent if and

only if the MI is zero. Estimated MI is used in many applications to quantify the

relationships between variables, see Steuer et al. (2002), Paninski (2003), Kinney and

Atwal (2014) and references within. Although many works on MI estimation exist, no

single one has been accepted as a state-of-the-art solution in all situations (Kinney

and Atwal, 2014). A popular estimator among practitioners due to its simplicity

and consistency is the histogram estimator, where the data are binned according to

some scheme and the empirical mutual information of the resulting partition, i.e,

the likelihood ratio score, is computed. Intuitively, one can expect that the statistic

SADPm×m, properly normalized, can also serve as a consistent estimator of the mutual

information, when the contingency tables are summarized by the likelihood ratio

statistic, since it is the average of histogram estimators, over all partitions. This
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intuition is true despite the fact that the number of partitions goes to infinity, since

we show that the convergence is uniform and that the fraction of “bad” partitions

(i.e., partitions with cells that are too big or too small) is small, as long as m goes to

infinity at a slow enough rate.

Theorem 2.3. Suppose X is categorical with K categories and Y is continuous. Let

Ng be the total number of observations from distribution g ∈ {1, . . . , K}, and N =∑K
g=1 Ng. If limN→∞

Ng

N
> 0 for g = 1, . . . , K, limN→∞

m
N

= 0, and limN→∞m =∞,

then Sm

N(N−1
m−1)

is a consistent estimator of the MI.

Theorem 2.4. Suppose the bivariate density of (X, Y ) is continuous with bounded

mutual information. If limN→∞m/
√
N = 0, and limN→∞m =∞, then

SADP
m×m

N(N−1
m−1)×(N−1

m−1)

is a consistent estimator of the MI.

See Appendix B for a proof of Theorem 2.4. The proof of Theorem 2.3 is omitted

since it is similar to that of Theorem 2.4. See Appendix D for a simulated example of

MI estimation using SDDPm×m, SADPm×m, and the histogram estimator. The ADP estimator

is the least variable, as is intuitively expected since it is the average over many

partitions.

Remark 2.1. In this work we assume there are no ties among the continuous vari-

ables. In our software, tied data are broken randomly, so that our test remains dis-

tribution free. An alternative approach, which is no longer distribution free, is a

permutation test on the ranks, with average ranks for ties. Then a tied observation,

that falls on the border of a contingency table cell, receives equal weight in each of the

cells it borders with.
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2.1 The proposed regularized statistics

An important parameter of the statistics proposed above is m, the partition size. A

poor choice of m may lead to substantial power loss: if m is too small or too large,

it may lack power to discover complex non-monotone relationships. For example,

consider the three simulation settings for the two-sample problem in the first row of

Figure 2. The best partition for setting 1, “normal vs. normal with delta”, for small

sample sizes, is intuitively to divide the real line into three cells: until the start of the

narrow peak, the support of the narrow peak, and after the peak ends. Moreover, the

best aggregation method is by maximization, not summation, since there are very few

good partitions that capture the peak and aggregation by summation using m = 3

will aggregate many bad partitions that miss the peak. Therefore, we expect that M3

will be the most powerful test statistic for setting 1. For setting 2, “Mix. vs. Mix. 3

vs. 4 components”, intuitively it seems best to partition into more than seven cells,

and that many partitions will work well. For setting 3, “normal vs. normal with

many deltas”, it seems best to partition into many cells. Indeed, the power curves in

Figure 3 show that for the first setting, Mm is optimal at value m = 3, yet if we use

this value for the second setting, the test has 20% lower power than optimal power

(which is 86% at m = 10), and if we use this value for the third setting, the test has

58% less power than the optimal power (which is 88% at m = 34).

Since the optimal choice of m is unknown in practice, we suggest two types of regu-

larizations which take into consideration the scores from all partition sizes. The first

type of regularization we suggest is to combine the p-values from each m, so that

the test statistic becomes the combined p-value. Specifically, let pm be the p-value

from a test statistic based on partition size m, be it Sm or Mm for the K-sample

problem, or SADPm×m or SDDPm×m for the independence problem. Due to the computational

complexity, we do not consider a regularized score for Mm×m. We consider as test
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statistics the minimum p-value, minm∈{2,...,mmax} pm, as well as the Fisher combined

p-value, −
∑mmax

m=2 log pm. These combined p-values are not p-values in themselves,

but their null distribution can be easily obtained from the null distributions of the

test statistics for fixed ms, as follows: (1) for each of B permutations, compute the

test statistics for each m ∈ {2, . . . ,mmax}; (2) compute the p-value of each of the

resulting statistics, so for each permutation, we have a set of p-values p2, . . . , pmmax

to combine; (3) combine the p-values for each of the B permutations. Choose B to

be large enough for the desired accuracy of approximation of the quantiles of the null

distribution of the combined p-values used for testing. Obviously, since the combined

p-values are based on the ranks of the data, they are distribution-free. Since they

do not require fixing m in advance, they are a practical alternative to the tests that

require m as input.

In order to examine how close this regularized score is to the optimal m (i.e., the

m with highest power), we looked at the distribution of the ms with minimum p-

values in 20000 data samples from the above-mentioned three simulation settings.

For these settings, using the aggregation by maximization statistic, the median m

of the minimal p-value was: 3 for the first setting, 9 for the second setting, and 33

for the third setting. Moreover, the first and third quartiles were 3 to 5 for the first

setting, 7 to 14 for the second setting, and 19 to 60 for the third setting. We conclude

that for these examples, the m that achieves the minimum p-values in most runs was

remarkably close to the optimal m (which was 3, 10, and 34 for settings 1,2, and

3, respectively), suggesting that the power of the minimum p-value statistic is close

to that of the statistic with optimal m. Indeed, the power of the minimum p-values

in settings 1-3 using aggregation by maximum was 0.825, 0.799, and 0.785, whereas

the power using the (unknown in practice) optimal m in settings 1-3 was 0.894, 0.86,

and 0.88, respectively. Further empirical investigations detailed in Section 4 give

additional support to this regularization method.
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The second type of regularization adds a penalty to the statistic, so that the test

statistic becomes the maximum (over all ms) of the statistic plus penalty. For the

K-sample problem, Jiang et al. (2014) suggested assigning a prior on the partition

scheme and they regularized the likelihood ratio score using this prior. Specifically,

they assumed the partition size is Poisson and the conditional distribution on the m

partition widths (normalized to sum to one) is Dirichlet(1, . . . , 1). This led to their

penalty term −λ0(logN)(m − 1), where λ0 > 0 has to be fixed. We assume that

the marginal distribution on the partition size is π(m) (e.g., Poisson or Binomial),

and that the prior probability of selecting I given m, π(I|m), is uniform. There is

an important difference between our uniform discrete prior distribution on partitions

of size m and the continuous Dirichlet uniform prior of Jiang et al. (2014). Our

prior is uniform on all partitions that truly divide the sample space into m cells, i.e.,

we cannot have two partition lines between two consecutive samples, since this is

actually an m − 1 partition. Using the continuous Dirichlet prior results in practice

in at most m partitions, but the partition size may also be strictly smaller than m

if two partition points lie between two sample points. Therefore, their conditional

distribution given the partition size parameter is not necessarily the true size of the

partition. Their penalty translates to a conditional probability given a true partition

size m of (m−1)!

(N−1)(m−1) , compared to our π(I|m) = 1/
(
N−1
m−1

)
. Therefore, their score

penalizes more severely large ms, and their regularized test statistic has less power

when the optimal m is large in our simulations.

For aggregation by maximum in the K-sample problem, we consider the regularized

statistic,

max
m∈{2,...,mmax}

{Mm + log[π(I|m)π(m)]}, (2.6)

where we use the likelihood ratio score per partition. Due to the computational

complexity, we do not consider a regularized score for Mm×m. For aggregation by
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summation, our efficient algorithms described in Section 3 enable us to consider the

penalized average score per m,

max
m∈{2,...,mmax}

{SLRmπ(I|m) + log π(m)} (2.7)

where SLRmπ(I|m) is Sm divided by the number of partitions of size m for the K-

sample test, and SADPm×m (or SDDPm×m) divided by the number of partitions of size m×m

for the test of independence, using the likelihood ratio score per partition. The null

distribution of these regularized statistics is computed by a permutation test, and

they are distribution free.

An extensive numerical investigation, partially summarized in Appendix G, led us to

choose the minimum p-value as the preferred regularization method. Between the two

combining functions, we preferred the minimum over Fisher, since Fisher was far more

sensitive to the choice of the range of m for combining (see Table 6). Regularization

using priors was less effective, except when the Poisson prior was used with parameter

λ =
√
N (see Table 7). We preferred the first type of regularization since it was at

least as effective as regularizing by a Poisson prior, without requiring setting any

additional parameters. This regularized statistic is consistent, as the next theorems

show.

Theorem 2.5. Let Y be continuous, and X categorical. Let Ng be the total number

of observations from distribution g ∈ {1, . . . , K}, and N =
∑K

g=1Ng. If the distri-

bution of Y differs at a continuous density point y0 across values of X in at least

two categories, label these 1 and 2, limN→∞
min(N1,N2)

N
> 0 , then the permutation test

based on minm∈{2,...,mmax} pm is consistent, if:

1. it is based on Sm,m ∈ {2, . . . ,mmax}, and limN→∞mmax/
√
N = 0 or mmax is

finite.
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2. it is based on Mm,m ∈ {2, . . . ,mmax} and limN→∞mmax/N = 0 or mmax is

finite.

Theorem 2.6. Let the joint density of X and Y be h(x, y), with marginal densities

f(x) and g(y). If there exists a point (x0, y0) such that h(x0, y0) is continuous and

h(x0, y0) 6= f(x0)g(y0), i.e., there is local dependence at a continuous density point,

then the permutation test based on minm∈{2,...,mmax} pm is consistent, if

1. it is based on SDDPm×m or SADPm×m, and limN→∞mmax/N
1/3 = 0 or mmax is finite.

2. it is based on MDDP
m×m and MADP

m×m, and limN→∞mmax/
√
N = 0 or mmax is finite.

The proof of Theorem 2.6 follows in a straightforward way from the proofs of Theorem

2.2, see Appendix C for details. The proof of Theorem 2.5 follows similarly from the

proof of Theorem 2.1, and it is omitted.

3 Efficient algorithms

For computing the above test statistics for a given N and partition size m, the compu-

tational complexity of a naive implementation is exponential inm. We show in Section

3.1 more sophisticated algorithms for computing the aggregation by sum statistics for

all m ∈ {2, . . . , N} at once that have complexity O(N2) for the K-sample problem,

and O(N4) for the independence problem. This is possible since instead of iterating

over partitions, the algorithms iterate over cells. Moreover, the algorithms also enable

calculating the regularized sum statistics of Section 2.1 in O(N2) and O(N4) for the

K-sample and independence problems, respectively, since we just need to go over the

list of m scores and for each score Sm check its p-value in our pre-calculated null

tables, which requires just an additional O(N log(B)), where B is the null-table size.
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We show in Section 3.2 an algorithm with complexity O(N3) for the K-sample prob-

lem for computing the aggregation by maximum for all m at once. This algorithm

also enables calculating the regularized maximum statistic of Section 2.1 in O(N3).

The algorithms for aggregating by maximum in the independence problem are ex-

ponential in m, and therefore infeasible for modest N and m > 4. However, for

m = 3 and m = 4 we provide efficient algorithms with O(N2) and O(N3) complexity,

respectively, for the DDP test statistics.

3.1 Aggregation by summation

The algorithms for aggregation by summation are efficient due to two key observa-

tions. First, because the score per partition is a sum of contributions of individual

cells, and the total number of cells is much smaller than the number of partitions

(unless m = 2 in the K-sample problem, and m ≤ 4 when using DDP in the indepen-

dence problem, see Remark 3.1 below). Therefore, we can interchange the order of

summation between cells and partitions and thus achieve a big gain in computational

efficiency, since it is easy to calculate in how many partitions each cell appears, see

equations (3.1) and (3.4).

Second, because for a fixed m the number of partitions in which a specific cell appears

depends only on the width (and for independence testing, also length) of the cell, the

data-dependent computations do not depend on m: the test statistics are the sum of

cell scores for every width for the K-sample test, and for every combination of width

and length for the independence test, see equations (3.2) and (3.5). The complexity

of the algorithm remains the same even when the scores are computed for all ms,

since the complexity is determined by a preprocessing phase which is shared by all

ms. Therefore, the complexity for the regularized scores is the same as the complexity

for a single m.
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3.1.1 Algorithm for the K-sample problem

For g = 1, . . . , K (the categories of X) and r = 1, . . . , N (the ranks of Y ), we first

compute in O(N) A as follows:

A(g, r) =
r∑
i=1

I(gi = g),

and let A(g, 0) = 0. For a cell with rank range [rl, rh], where rl, rh ∈ {1, . . . , N}, using

A, the count of observations in category g that fall inside the cell can be computed

in O(1) operations as oC(g) = A(g, rh) − A(g, rl − 1). Therefore, for each cell C the

contribution of the cell, tC , can be computed in O(1) time.

Because the score per partition is a sum of contributions of individual cells, Sm is the

sum over the score per cell, multiplied by the number of times the cell appears in a

partition of size m. Considering further summing cells of width 1 to N , we may write

Sm as follows:

Sm =
∑
I∈Πm

T I =
∑
C∈C

tC
∑
I∈Πm

I[C ∈ C(I)] =
N∑
w=1

∑
C∈C(w)

tCn(w,m,C), (3.1)

where C(w) is the collection of cells of width w and n(w,m,C) is the number of

partitions that include C. For computing n(w,m,C), we differentiate between two

possible types of cells: edge cells and internal cells. Edge cells differ from internal

cells by having either rl = 1 or rh = N . The number of partitions of order m that

include an edge cell of width w = rh − rl + 1 is given by
(
N−1−w
m−2

)
. The number of

partitions including a similarly wide internal cell is
(
N−2−w
m−3

)
. Therefore, we may write

Sm as follows:

Sm =
N∑
w=1

(
N − 2− w
m− 3

)
Ti(w) +

N∑
w=1

(
N − 1− w
m− 2

)
Te(w), (3.2)
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where Ti(w) =
∑

C∈C(w),
rl 6=1∩rh 6=N

tC and Te(w) =
∑

C∈C(w),
rl=1∪rh=N

tC . The algorithm proceeds

as follows. First, in a preprocessing phase, we calculate Ti(w) and Te(w) for all w ∈

{1, . . . , N}. Since tC can be calculated in O(1), as described above, the calculation

of Ti(w) and Te(w) for a fixed w takes O(N). Since there are N values for w, we can

compute and store all values of Ti(w) and Te(w) in O(N2). Also in the preprocessing

phase, for all u, v ∈ {0, . . . , N} we calculate and store all
(
u
v

)
. This can be done in

O(N2) using Pascal’s triangle method.

Given Ti(w), Te(w), w = 1, . . . , N − 1 (which are independent of m!), and all
(
u
v

)
, we

can clearly calculate Sm according to equation (3.2) for any m in O(N) and therefore

for all ms in O(N2), since m < N . Therefore the overall complexity of computing

the scores for all ms is O(N2).

3.1.2 Algorithm for the independence problem

Let ri be the rank of xi among the observed x values, and si is the rank of yi among

the y values The algorithm first computes the empirical cumulative distribution in

O(N2) time and space,

A(r, s) =
N∑
i=1

I(ri ≤ r and si ≤ s), (r, s) ∈ {0, 1, . . . , N}2 (3.3)

where A(0, s) = 0, A(r, 0) = 0 and F̂ (r, s) = A(r, s)/N . First, let B be the (N + 1)×

(N + 1) zero matrix, and initialize to one B(ri, si) for each observation i = 1, . . . , N .

Next, go over the grid in s-major order, i.e., for every s go over all values of r, and

compute:

1. A(r, s) = B(r, s− 1) +B(r − 1, s)−B(r − 1, s− 1) +B(r, s), and

2. B(r, s) = A(r, s).
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We describe the algorithm for the ADP statistic, which selects partitions on the grid

{1.5, . . . , N − 0.5}2 on ranked data. The main modifications for the DDP statistic

are provided in Appendix E. The count of samples inside a cell with rank ranges

r ∈ [rl, rh] and s ∈ [sl, sh] can be computed in O(1) operations via the inclusion-

exclusion principle:

oC = A(rh, sh)− A(rl − 1, sh)− A(rh, sl − 1) + A(rl − 1, sl − 1).

Therefore, for each cell C the contribution of the cell tC can be computed in O(1)

time. Because the score per partition is a sum of contributions of individual cells, we

may write SADPm×m as follows:

∑
I∈ΠADP

m

T I =
∑
C∈C

tC
∑

I∈ΠADP
m

I[C ∈ C(I)] =
N−2∑
w=1

N−2∑
l=1

∑
C∈C(w,l)

tCn(w, l,m,C), (3.4)

where C(w, l) is the collection of cells of width w and length l and n(w, l,m,C) is the

number of partitions that include C. As in the algorithm for the K-sample problem,

n(w, l,m,C) depends only on w, l, m, and whether the cell is an internal cell or an

edge cell. For simplification, we discuss only the computation of the contribution

of internal cells to the sum statistic, and non-internal cells can be handled similarly

(as discussed in the algorithm for the K-sample problem). Therefore, our aim is to

compute:
N−2∑
w=1

N−2∑
l=1

n(w, l,m)T (w, l), (3.5)

where T (w, l) =
∑

C∈C(w,l) tC and n(w, l,m) is the number of partitions that include

an internal cell of width w and length l when the partition size is m and C(w, l) is

relabelled to be the collection of internal cells of width w and length l.

The algorithm proceeds as follows. First in a preprocessing phase we perform two

computations: 1) calculate and store T (w, l) for all pairs (w, l) ∈ {1...N − 2}2. Since
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tC can be calculated in O(1), as described above, the calculation of T (w, l) for a fixed

(w, l) takes O(N2) and since there are (N − 2)2 pairs (w, l) the total preprocessing

phase takes O(N4); 2) for all u, v ∈ {0, . . . , N} we calculate and store all
(
u
v

)
in O(N2)

steps using Pascal’s triangle method.

Given T (w, l), and all
(
u
v

)
, since n(w, l,m) =

(
N−2−w
m−3

)(
N−2−l
m−3

)
, we can clearly calculate

equation (3.5) for a fixed m in O(N2) and therefore for all ms in O(N3). Due to the

preprocessing phase the total complexity is O(N4).

Remark 3.1. When it is desired to only compute the statistic for very small m, faster

alternatives exist. For the two-sample problem, for m = 2, the number of partitions

is O(N) and therefore an O(N logN) algorithm can be applied that aggregates over

all partitions, and the complexity is dominated by the sorting of the N observations

(for m = 3, the number of partitions is already O(N2)). Similarly, for the test of

independence, the ADP statistic can be calculated in O(N2) steps for m = 2, and the

DDP statistic in O(N2) for m = 3, and in O(N3) for m = 4, since this is the order

of the number of partitions. Per partition, the computation of the score for m ≤ 4

is computed in O(1) time since the contribution of the cell can be computed in O(1)

time (as shown above). The DDP statistic for m = 2 can be computed in O(N logN),

using a similar sorting scheme as that detailed in Heller et al. (2013).

3.2 Aggregation by maximization

Algorithm for the K-sample problem Jiang et al. (2014) suggested an elegant

and simple dynamic programming algorithm for calculating maxm{Mm−mλ(N)} for

any function λ(·) in O(N2). We present a modification of their algorithm that enables

us to calculate Mm for all ms in O(N3). As a first step, for all i ≤ N and for all

j < i we calculate iteratively M(i, j), the maximum score which partitions the first i
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samples into j partitions. We compute M(i+ 1, j) from M(a, j − 1), a ≤ i using:

M(i+ 1, j) = max
a∈{2,...,i}

{M(a, j − 1) + t[a+0.5,i+1+0.5]},

where t[a+0.5,i+1+0.5] is the score of the cell from a+ 0.5 to i+ 1 + 0.5. This calculation

takes O(N), and since we have O(N2) such items to calculate, this step takes O(N3).

Since Mm = M(N,m), the overall complexity for computing the scores for all ms

is O(N3). Note that this algorithm enables us to calculate maxm∈{2,...,mmax}{Mm +

log[π(I|m)π(m)]} in O(N3) for any function π(m), thus the regularized test statistic

in Section 2.1 can also be computed in O(N3).

Algorithm for the independence problem The algorithm is the same as de-

scribed in Remark 3.1 for the ADP statistic for m = 2 and for the DDP statistic for

m = 3 and m = 4, with the difference that the aggregation is by maximization (not

summation) over the scores per partition. We are not aware of a polynomial-time

algorithm for arbitrary m. We discuss ways to reduce the computational complexity

in Section 6.

Remark 3.2. We show in Appendix F that for univariate data the test of Heller

et al. (2013) with an arbitrary distance metric, with or without ties, can be computed

in O(N2) in a similar fashion, thus improving their algorithm by a factor of logN

when X and Y are univariate.

4 Simulations

In simulations, we compared the power of our different test statistics in a wide range

of scenarios. All tests were performed at the 0.05 significance level. Look-up tables

of the quantiles of the null distributions of the test statistics for a given N were
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stored. Power was estimated by the fraction of test statistics that were at least as

large as the 95th percentile of the null distribution. The null tables were based on

106 permutations.

The noise level was chosen separately for each configuration and sample size, so

that the power is reasonable for at least some of the variants. This enables a clear

comparison using a range of scenarios of interest. Since the power was very similar

for the Pearson and likelihood ratio test statistics, only the results of the likelihood

ratio test statistic are presented.

The simulations for the two-sample problem are detailed in 4.1, and for the indepen-

dence problem in 4.2. The analysis was done with the R package HHG, now available

on CRAN.

4.1 The two-sample problem

We examined the power properties of the statistic aggregated by summation as well

as by maximization for m ∈ {2, . . . , N/2}, as well as the minimum p-value statistic,

minm∈{2,...,mmax} pm. We display here the results for mmax = 149 and N = 500.

However, the choice of mmax has little effect on power, see Appendix G for results

with other values of mmax. Also, see Appendix G for the results for mmax = 29 and

N = 100.

We compared these tests to six two-sample distribution-free tests suggested in the

literature. We compared to Wilcoxon’s rank sum test, since it is one of the most

widely used tests to detect location shifts. We compared to two consistent tests

suggested recently in the literature, the test of Jiang et al. (2014), referred to as DS,

and the test of Heller et al. (2013) on ranks, referred to as HHG on ranks. Finally, we

compared to the classical consistent tests of Kolmogorov and Smirnov, referred to as
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KS, of Cramer and von Mises (which is equivalent to the energy test of Székely and

Rizzo (2004) on ranks), referred to as CVM, and of Anderson and Darling, referred

to as AD.

We examined the distributions depicted in Figure 2. The three scenarios in the third

row were examined in Jiang et al. (2014). The remaining scenarios were chosen to

have different numbers of intersections in the densities, ranging from 2 to 18, in order

to examine the effect of partition size m on power when the optimal partition size

increases, as well as verify that the regularized statistic has good power. The scenarios

also differ by the range of support of where the differences in the distributions lie

(specifically, in the first and third scenario in the first row the difference between

the distributions is very local), since this makes the comparison between the two

aggregation methods interesting. We considered symmetric as well as asymmetric

distributions. Gaussian shift and scale setups were considered in Appendix G. Such

setups are less interesting in the context of this work, because if the two distributions

differ only in shift or scale then specialized tests such as Wilcoxon rank-sum for shift

will be preferable, but it is important to know that the suggested tests do not break

down in this case. We used 20000 simulated data sets, in each of the configurations

of Figure 2.

Table 1 and Figure 3 show the power for the setups in Figure 2. These results show

that if the number of intersections of the two densities is at least four, tests statistics

with m ≥ 4 have an advantage. Since the classical competitors, KS, CVM and AD,

are based on m = 2, they perform far worse in these setups. Moreover, although HHG

and DS have better power than the classical tests, HHG is essentially an m ≤ 3 test,

and DS penalizes large ms severely, therefore their power is still too low when fine

partitioning is advantageous. The minimum p-value statistic, which does not require

to preset m, is remarkably efficient: in Figure 2 we see that in all settings considered,
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1. Normal vs. Normal with delta 
 f1=N(0,1) 

 f2= 0.8N(0,1)+0.2N(0.4,0.001)

2. Mix. vs. Mix., 3  vs. 4 Components 
 f1= four Normal components at mu=−2,−0.2,0.2,2, sd=0.133
  f2= 0.25(N(−1.93,0.198^2)+N(−1.93,0.039))+0.5N(0,0.039)

3. Normal vs. Normal with many deltas 
 f1=N(0,1) 

 f2=0.8N(0,1) + 0.2 sampled from (−2,−1.5,−1,...,2)

4. Normal vs. Mixture 2 Components 
 f1=N(0,1)

 f2=0.5(N(−0.866,0.25)+N(0.866,0.25))

5. Normal vs. Mixture 3 Components 
 f1=N(0,1)

 f2=1/3*(N(−1.122,0.16)+N(0,0.16)+N(1.122,0.16))

6. Normal vs. Mixture 5 Components 
 f1=N(0,1)

 f2=5 Normal Components,mu= (−1.369, −0.684, 
  0, 0.684, 1.369),sd=0.25

7. Cauchy, Shift 
 f1=cauchy(0.17)

 f2=cauchy(−0.17)

8. Symmetric Gaussian mixture 
 f1=N(0,2.967)

 f2=0.5(N(−0.85,1)+N(0.85,1))

9. Asymmetric Gaussian mixture 
 f1=N(0.88, 2.061)

 f2=0.1*N(−1.1,1)+0.9*N(1.1,1)

10. Asymmetric Mixture vs. Mixture  
 f1=0.5(N(−1, 0.1806)+N(1,0.36))

 f2=0.5(N(−1.1,0.36)+N(1.1,0.180))

11. Mix. vs. Mix., 2  vs. 3 Components 
 f1=1/2(N(−1,0.0174)+N(1,0.1089))

 f2=1/3(N(−1.12,0.004356)+N(−0.88,0.004356)+N(0.9,0.1317))

12. Mix. vs. Mix., 2  vs. 4 Components, Symmetric 
 f1=two Normal Components, mu=−1,1, sd=0.165

   f2=four Normal components mu=−1.15,−0.85,0.85,1.15, sd=0.099

13. Mix. vs. Mix., 3  vs. 3 Components, Asymmetric 
 f1=1/2N(−1, 0.039)+1/4(N(0.88,0.0068)+N(1.12,0.0068))

 f2=1/4(N(−1.12,0.0068)+N(−0.88,0.0068))+1/2(N(1,0.039)

Figure 2: The two-sample problem in 13 different setups considered for N = 500,
which differ in the number of intersections of the densities, the range of support
where the differences lie, and whether they are symmetric or not.
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it is close to the power of the optimal m.

The choice of aggregation by maximization versus summation depends on how local

the differences are between the distributions. In Figure 3 we see clearly that when the

differences are in very local areas, maximization achieves the greatest power and the

test based on minimum p-value has more power if the aggregation is by maximization

rather than by summation (setups 1, 2, and 13), and aggregation by summation is

better otherwise. Note that the optimal m for aggregation by summation is always

larger than for aggregation by maximization. The reason is that in order to have a

powerful statistic aggregated by maximization, it is enough to have one good parti-

tion (i.e., contain cells where the distributions clearly differ) for a fixed m, whereas

by summation it is necessary to have a large fraction of good partitions among all

partitions of size m.

4.2 The independence problem

We examined the power properties of the ADP and DDP statistics, aggregated by

summation for m ∈ {1, . . . ,
√
N}, aggregated by maximization for m ≤ 4, as well as

the minimum p-value statistic min{m∈2,...,mmax} pm based on aggregation by summa-

tion. We display here the results for mmax = 10 and N = 100.

We compared these tests to seven tests of independence suggested in the literature.

We compared to Spearman’s ρ, since it is perhaps the most widely used test to

detect monotone associations. We also compared to previous tests suggested in the

literature with the same two important properties as our suggested tests, namely

proven consistency and distribution-freeness, as well as an available implementation:

the test of Hoeffding (1948), referred to as Hoeffding; the test of Reshef et al. (2011),

referred to as MIC; the tests of Székely et al. (2007) and Heller et al. (2013) that
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Figure 3: Estimated power with N = 500 sample points for the Mm (black) and
Sm (grey) statistics for m ∈ {2, . . . , 149} for the setups of Figure 2. The score per
partition was the likelihood ratio test statitsic. The power of the minimum p-value is
the horizontal dashed black line when it combines the p-values based on Mm, and the
horizontal dotted grey line when it combines the p-values based on Sm. The vertical
lines show the optimal m for Mm (black) and Sm (grey).
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Table 1: Power of competitors (columns 4-9), along with the minimum p-value statis-
tic using the Mm p-values (column 2) and the Sm p-values (column 3), for N = 500.
The score per partition was the likelihood ratio test statitsic. The standard error
was at most 0.0035. The advantage of the test based on the minimum p-value is
large when the number of intersections of the two densities is at least four (setups
2,3,4,5,6,10,11,12, and 13). The best competitors are HHG and DS, but HHG is es-
sentially an m ≤ 3 test, and DS penalizes large ms severely, therefore in setups where
m ≥ 4 partitions are better they can perform poorly. Among the two variants in
columns 2 and 3, the better choice clearly depends on the range of support in which
the differences in distributions occur: aggregation by maximum has better power
when the difference between the distributions is very local (setups 1, 3, and 13), and
aggregation by summation has better power otherwise. The highest power per row is
underlined.

Min p-value aggreg.
Setup by Max by Sum Wilcoxon KS CVM AD HHG DS

1 Normal vs. Normal with delta 0.825 0.491 0.072 0.149 0.108 0.099 0.175 0.849
2 Mix. Vs. Mix., 3 Vs. 4 Components 0.799 0.873 0.000 0.020 0.001 0.021 0.344 0.560
3 Normal vs. Normal with many deltas 0.785 0.733 0.051 0.078 0.073 0.099 0.142 0.245
4 Normal vs. Mixture 2 Components 0.827 0.937 0.053 0.531 0.458 0.495 0.855 0.796
5 Normal vs. Mixture 5 Components 0.592 0.686 0.048 0.238 0.179 0.246 0.484 0.556
6 Normal vs. Mixture 10 Components 0.818 0.820 0.048 0.240 0.211 0.310 0.561 0.789
7 Cauchy, Shift 0.339 0.492 0.542 0.620 0.627 0.577 0.641 0.436
8 Symmetric Gaussian mixture 0.752 0.775 0.033 0.194 0.242 0.617 0.749 0.835
9 Asymmetric Gaussian mixture 0.512 0.613 0.050 0.253 0.277 0.469 0.678 0.599
10 Asymmetric Mixture vs. Mixture 0.711 0.806 0.000 0.159 0.119 0.395 0.690 0.747
11 Mix. Vs. Mix., 2 Vs. 3 Components 0.540 0.686 0.004 0.093 0.057 0.116 0.302 0.440
12 Mix. Vs. Mix., 2 Vs. 4 Components, Symmetric 0.390 0.577 0.000 0.005 0.000 0.005 0.079 0.270
13 Mix. Vs. Mix., 3 Vs. 3 Components, Asymmetric 0.844 0.764 0.000 0.001 0.000 0.013 0.042 0.780
14 Null 0.051 0.051 0.050 0.043 0.050 0.050 0.050 0.050

first transform the observations of each variable into ranks, referred to as dCov and

HHG, respectively. We note that the power of the original dCov and HHG was fairly

similar to the power of their distribution-free variants, see Appendix I.

We examine complex bivariate relationships depicted in Figure 4. Most of these sce-

narios were collected from the literature illustrating the performance of other meth-

ods. Specifically, the first two rows were examined in Newton (2009), the next two

rows are similar to the relationships examined in Reshef et al. (2011), and the Heav-

isine and Doppler examples in the last row were used extensively in the literature

on denoising, see e.g., Donoho and Johnstone (1995). In all but the 4 Independent

Clouds setup, there is dependence. The 4 Independent Clouds setup allows us to
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verify that the tests maintain the nominal level. We used 2000 simulated data sets

for N = 100 and N = 300, in each of the configurations of Figure 4. Monotone setups

are presented in Appendix H in Figure 12. Monotone setups are less interesting in

the context of this work, because if there is reason to believe that the dependence is

monotone, specialized tests such as Spearman’s ρ or Kendall’s τ will be preferable,

but it is important to know that they still have reasonable power, as demonstrated

in the results in Appendix H, Figure 13 and Table 10.

Tables 2 and 3, and Figure 5 show the power for the settings depicted in Figure 4.

We only considered the test based on the DDP minimum p-value statistic in Ta-

bles 2 and 3, since for the minimum p-value statistic the tests of ADP and DDP

are almost identical. These results provide strong evidence that for non-monotone

noisy dependencies our tests have excellent power properties. Specifically, SDDPm×m with

m ∈ {3, . . . , 10} is more powerful than all other tests in Table 2 in most settings. For

example, it had greater power than all competitors in 9 settings with m = 4 and in 11

settings with m = 5, out of the 14 non-null settings. The test based on the minimum

p-value has greater power than all competitors in 7 settings, and it is very close to the

best competitor in most of the other settings. The MIC is best for the Sine example

but performs poorly in all other examples. The minimum p-value statistic is a close

second best in the Sine example, with a difference of only 0.005 from MIC, yet all

other tests are more than 0.19 below MIC in power. Overall, the HHG test is the

best competitor, but its power is lower than that of the minimum p-value statistic

when the optimal m is greater than 4. Table 3 shows that when aggregating by

maximization, the choice of m matters and the power is higher for m > 2. However,

the minimum p-value statistic, which is aggregated by summation and considers finer

partitions, is more powerful for most settings, and is a close second in the remaining

settings.
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Figure 4: Bivariate relationships (in red), along with a sample N = 100 noisy obser-
vations (in blue). The “four clouds” relationship is a null relationship, where the two
random variables are independent.
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Table 2: Power of competitors (columns 3–7), along with the DDP minimum p-value
statistic for N = 100. The standard error is at most 0.011. The score per partition
was the likelihood ratio test statitsic. The DDP minimum p-value statistic performs
very well in comparison to the other tests. Although the competitors may have greater
power in some examples, the advantage is usually small. By far the best competitor is
HHG, yet it has a disadvantage when the relationship is more complex, thus benefiting
from the finer partition of the minimum p-value test, especially in the Sine, Heavisine,
Spiral and Circles examples. The highest power per row is underlined.

Setup min{m∈2,...,10} pm Spearman Hoeffding MIC dCov HHG

W 0.655 0.000 0.414 0.526 0.361 0.798
Diamond 0.919 0.013 0.116 0.074 0.074 0.965
Parabola 0.847 0.028 0.413 0.211 0.386 0.784
2Parabolas 0.844 0.095 0.135 0.048 0.124 0.723
Circle 0.886 0.000 0.033 0.046 0.002 0.850
Cubic 0.731 0.344 0.655 0.515 0.627 0.768
Sine 0.995 0.368 0.494 1.000 0.415 0.804
Wedge 0.595 0.064 0.360 0.303 0.338 0.673
Cross 0.704 0.089 0.160 0.069 0.130 0.706
Spiral 0.949 0.112 0.141 0.251 0.140 0.337
Circles 0.999 0.048 0.084 0.093 0.061 0.354
Heavisine 0.710 0.396 0.493 0.532 0.492 0.585
Doppler 0.949 0.513 0.784 0.975 0.744 0.912
5Clouds 0.996 0.000 0.000 0.561 0.004 0.904
4Clouds 0.051 0.050 0.057 0.050 0.051 0.050

Table 3: The power of different variants aggregated by maximization (columns 3–
6), along with the DDP minimum p-value statistic (column 2) for N = 100. The
standard error is at most 0.011. The score per partition was the likelihood ratio
test statitsic. Although maximization is better than summation in some examples,
the advantage is usually small. The advantage of the minimum p-value statistic,
which is based on aggregation by summation, is large in the Cubic, Cross, Spiral,
and Circles relationships. In most examples, power increases with m. The power
differences between the ADP and DDP variants are small. We present only the
maximum variants that take at most O(N3) to compute, therefore for ADP only
results with m = 2 are presented. The highest power per row is underlined.

Setup min{m∈2,...,10} pm MDDP
2×2 MDDP

3×3 MDDP
4×4 MADP

2×2

W 0.655 0.190 0.637 0.574 0.155
Diamond 0.919 0.272 0.931 0.912 0.247
Parabola 0.847 0.533 0.855 0.803 0.597
2Parabolas 0.844 0.466 0.907 0.897 0.578
Circle 0.886 0.222 0.880 0.884 0.170
Cubic 0.731 0.496 0.654 0.653 0.496
Sine 0.995 0.768 0.958 0.998 0.774
Wedge 0.595 0.410 0.536 0.478 0.455
Cross 0.704 0.268 0.680 0.673 0.341
Spiral 0.949 0.116 0.489 0.764 0.189
Circles 0.999 0.085 0.606 0.844 0.088
Heavisine 0.710 0.519 0.642 0.692 0.534
Doppler 0.949 0.828 0.969 0.977 0.833
5Clouds 0.996 0.062 0.999 0.999 0.076
4Clouds 0.051 0.052 0.051 0.051 0.052
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Figure 5: Estimated power as a function of partition size m, with N = 100 sample
points, for the DDP (black) and ADP (grey) summation variants using the likelihood
ratio score for the setups of Figure 4. The score per partition was the likelihood ratio
test statitsic. For DDP (black) and ADP (grey), the horizontal dashed line is the
power of the minimum p-value statistic, and the vertical lines is the optimal m.
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5 Application to real data

We examine the co-dependence between pairs of genes on chromosome 1 in the yeast

gene expression dataset from Hughes et al. (2000), which contained N = 300 expres-

sion levels. After removing genes with missing values, we had 94 genes and a family of(
94
2

)
= 4371 pairs to examine simultaneously. Each pair was tested for independence

by the tests of Spearman, Hoeffding, MIC, dCov and HHG on ranks, as well as by our

new tests with m ranging from 2 to mmax = 17. The null tables were based on 20000

permutations for N = 300. The adjusted p-values from the Benjamini–Hochberg

procedure (Benjamini and Hochberg, 1995) were computed for each test statistic.

Table 4 shows the pairwise agreements between the Benjamini–Hochberg procedure

at level 0.05 using the different test statistics considered in each row, with the mini-

mum p-value statistic based on DDP. Clearly, a large number of pairwise associations

are missed when testing is performed with Spearman’s ρ compared to the minimum

p-value statistic, and only a small number of gene pairs detected with Spearman are

missed by the minimum p-value statistic (row 1 in Table 4). These findings contra-

dict an earlier examination of the data. Steuer et al. (2002) concluded that the most

widely used approach for pairwise association testing, namely Spearman correlation,

performs equivalently to a mutual information based testing approach. The authors

speculated that actual dependencies, if any, are linear. The number of discoveries

using MIC, Hoeffding, and dCov are much smaller than using the minimum p-value

statistic. HHG on ranks also discovers less co-dependencies compared with the min-

imum p-value statistic. The agreement between the tests based on DDP and ADP

was very high, as seen in the last row of Table 4 and in Figure 6, which shows the

number of rejections for SDDPm×m and SADPm×m for m = 2, . . . , 17. We conclude that in

this dataset there are many nonlinear associations, but powerful tests are necessary

in order to detect such associations in light of the large number of simultaneous tests
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Table 4: Benjamini–Hochberg rejections at level 0.05 for the gene expression problem
of Hughes et al. (2000). For different test statistics (rows), the number of rejections
(column 2), and their intersection with the rejections using the minimum p-value
statistic on DDP (column 3). The minimum p-value statistic on DDP had the highest
number of rejections, 3312.

Test Number of rejections Number of intersections
Spearman 2488 2445
MIC 245 245
Hoeffding 2890 2844
HHG on ranks 3283 3199
dCov on ranks 2889 2845
minimum p-value based on ADP 3310 3294

that have to be carried out, and that the suggested tests can be valuable tools for

this task.

Note that the data had ties due to low precision of the documented expression levels.

Ties were broken randomly, see remark 2.1. Repeated analysis with different seeds

provided similar results.
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Figure 6: Number of discoveries of genes with associated expression patterns in the
data of Hughes et al. (2000), by the Benjamini–Hochberg procedure at level 0.05 using
SDDPm×m (black) and SADPm×m (gray) for m = 2, . . . , 17 . In addition, number of rejections
using the minimum p-value statistic with mmax = 17, using the DDP (black horizontal
line) and the ADP (gray horizontal line).
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6 Discussion

In this paper we proposed new partition-based test statistics for both the indepen-

dence problem and the two-sample problem. We proved that the statistics are con-

sistent for general alternatives and demonstrated in simulations that the power ad-

vantage of the tests based on finer partitions can be great. We further showed that

the power of our regularized statistics is very close to that of the statistics based

on the optimal partition size. We recommend the test using the minimum p-value

statistic based on aggregation by summation, unless the alternative is suspected to be

of very local nature. Specifically, in the K-sample problem if the difference between

the distributions is on a very small range of the support, then the aggregation by

maximization is preferred over aggregation by summation.

The algorithms described in Section 3.1 for the test of independence based on reg-

ularized scores for a range of m ×m partitions can easily be generalized to include

mx×my partitions, where mx 6= my, with the same complexity for the ADP statistic

(for the DDP statistic mx = my). Considering unequal partition sizes for X and Y is

expected to improve power when the (unknown) optimal partition has an mx value

very different than the my value. Moreover, when the (unknown) optimal partition

has mx ≈ my, the power loss from considering the minimum p-value over all mx×my

values instead of over all m×m values is expected to be small.

The algorithms we suggested for the K-sample problem are O(N2) and therefore are

feasible even for large N . For the test of independence, even though the complexity

of our suggested algorithms is O(N4), for small N these algorithms can be quite

efficient in the following quite common multiple testing setting in modern studies.

If M hypotheses are simultaneously examined with the same sample size, then the

computational complexity of using our distribution-free tests isO(M×N4) if null table
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is available for this N , or max{O(M ×N4), O(B×N4)} if the null table is generated

by the user using B Monte-Carlo replicates for the sample size N . If we needed to

recompute the null distribution for every one of the M hypotheses (as required for

permutation tests that are not distribution-free, such as dCov and HHG), then the

computational complexity would have been O(M ×B×N4), which may be infeasible

in modern studies where the number of hypotheses tests simultaneously examined can

be several thousands or hundreds of thousands. Since the null distribution needs to be

generated only once in order to compute the significance of all the M test statistics,

due to the distribution-free property of our tests, they can be feasible with today’s

computing power even for a few thousands samples. However, computing O(N4) test

statistics is unfeasible for larger sample sizes. To reduce the computational complexity

when N is large, statistics which do not go over all partitions but rather just over

a representative sample can be considered. This approach was used for example in

Jiang (2014) for the K-sample problem. A simple way of doing this is to divide the

data into
√
N×
√
N bins and only consider partitions that do not break up these bins.

We expect such statistics to also be consistent and the algorithms that accompany

them to be computable in O(N2).

If one expects relatively simple dependence structures, for large N , the SDDP3×3 is

recommended, since it is both distribution-free and computable in O(N2) (see Remark

3.1). In our simulations it was as powerful as HHG and more powerful than dCov,

and it has the advantage over HHG of being distribution-free.

A thorough investigation of the suggested mutual information estimator in Section 2

was outside the scope of this paper, but is of interest for future research. We suspect

the asymptotic distribution of our mutual information estimator has a simple form.

The bias of the estimator can be dealt with by modifying our estimator, and our

algorithms accordingly, to only include partitions with cells of a minimum size, and
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by bias correction methods suggested in the literature, e.g., Vu et al. (2007). Although

in this work we limited ourselves to a theoretical examination of the ADP summation

statistic for mutual information estimation, we recognize that an estimator based only

on the DDP may be useful, and we plan to explore it in the future.
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A Proof of Theorem 2.2

A.1 The DDP test

Denote Sm×m = SDDPm×m. For simplicity, we show the proof using Pearson’s test statis-

tic. The proof using the likelihood ratio test statistic is very similar and therefore

omitted. We want to show that for an arbitrary fixed α ∈ (0, 1), if H0 is false, then

limN→∞ Pr(Sm×m > Stab1−α) = 1, where Stab1−α denotes the 1 − α quantile of the null

distribution of Sm×m.

If H0 is false, then without loss of generality h(x0, y0) > f(x0)g(y0). Moreover, there

exists a distance R > 0 such that h(x, y) > f(x)g(y) for all points (x, y) in the set

A = {(x, y) : x0 ≤ x ≤ x0 +R, y0 ≤ y ≤ y0 +R}. The set A has positive probability,

and moreover

min
A

[h(x, y)− f(x)g(y)] > 0.

Denote this minimum by c > 0. Clearly, the following two subsets of A have positive

probability as well:

A1 = {(x, y) : x0 ≤ x ≤ x0 +R/4, y0 ≤ y ≤ y0 +R/4}

A2 = {(x, y) : x0 + 3R/4 ≤ x ≤ x0 +R, y0 + 3R/4 ≤ y ≤ y0 +R}.

Denote the probabilities of A1 and A2 by f1 and f2, respectively.

Let Γ{(x1, y1), . . . , (xN , yN)} be the set of partitions of size m based on at least one

sample point in A1 and on at least one sample point in A2. Let Ni denote the

number of sample points in Ai, i ∈ {1, 2}. Let I ∈ Γ{(x1, y1), . . . , (xN , yN)} be such

a (arbitrary fixed) partition. So for I there exists (i, j) ⊆ I such that (xi, yi) ∈ A1

and (xj, yj) ∈ A2. Consider the cell C defined by the two points (i, j).
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The fraction of observed counts in the cell C is a linear combination of empirical

cumulative distribution functions

oC
N − (m− 1)

= F̂XY (xi, yi) + F̂XY (xj, yj)− F̂XY (xi, yj)− F̂XY (xj, yi),

and the expected fraction under the null is a function of the marginal cumulative

distributions

eC
N − (m− 1)

= {F̂X(xj)− F̂X(xi)}{F̂Y (yj)− F̂Y (yi)}.

where F̂ denotes the empirical distribution function based on N − (m − 1) sample

points.

By the Glivenko-Cantelli theorem, uniformly almost surely,

lim
N→∞

(
oC

N − (m− 1)
−
∫
{(x,y):x∈(xi,xj ],y∈(yi,yj ]}

h(x, y)dxdy

)
= 0,

lim
N→∞

{
eC

N − (m− 1)
−

(∫
{x:x∈(xi,xj ]}

f(x)dx

)(∫
{y:y∈(yi,yj ]}

g(y)dy

)}
= 0.

(A.1)

Therefore, by Slutsky’s theorem and the continuous mapping theorem, we have that

uniformly almost surely

lim
N→∞

1

N − (m− 1)

(oC − eC)2

eC
= lim

N→∞

(
oC

N−(m−1)
− eC

N−(m−1)

)2

eC
N−(m−1)

≥ lim
N→∞

(
oC

N − (m− 1)
− eC
N − (m− 1)

)2

= lim
N→∞

[∫
{(x,y):x∈(xi,xj ],y∈(yi,yj ]}

{h(x, y)− f(x)g(y)}dxdy

]2

, (A.2)
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where the inequality follows from the fact that eC
N−(m−1)

≤ 1.

We shall show that this limit can be bounded from below by a positive constant that

depends on (x0, y0) and R but not on I. Since

{(x, y) : x ∈ (x0 +R/4, x0 + 3R/4], y ∈ (y0 +R/4, y0 + 3R/4]}

⊆ {(x, y) : x ∈ (xi, xj], y ∈ (yi, yj]},

a positive lower bound on expression (A.2) can be obtained:

lim
N→∞

[∫
{(x,y):x∈(xi,xj ],y∈(yi,yj ]}

{h(x, y)− f(x)g(y)}dxdy

]2

≥
[∫
{(x,y):x∈(x0+R/4,x0+3R/4],y∈(y0+R/4,y0+3R/4]}

{h(x, y)− f(x)g(y)}dxdy
]2

≥ c2

∫
{(x,y):x∈(x0+R/4,x0+3R/4],y∈(y0+R/4,y0+3R/4]}

dxdy = c2R2/4, (A.3)

where the first inequality follows since h(x, y) − f(x)g(y) > 0 in A, and the sec-

ond inequality follows since the minimum value is c > 0. Therefore, it follows that

1
N−m+1

(oC−eC)2

eC
converges uniformly almost surely to a positive constant greater than

c′ = c2R2/4,

P r

(
lim
N→∞

1

N −m+ 1

(oC − eC)2

eC
≥ c′

)
= 1. (A.4)

The partition I either contains the cell C, or a group of cells that divide C. By

Jensen’s inequality, it follows that if the partition I contains a group of cells that

divide C, the score is made larger, since for any partition of the cell C, C = ∪lCl,

(
oC − eC
eC

)2

=

∑
l

eCl

(
oCl

eCl

− 1
)

∑
h eCh

2

≤

∑
l eCl

(
oCl

eCl

− 1
)2∑

l eCl

=

∑
l

(oCl
−eCl

)2

eCl

eC
,
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and therefore

(oC − eC)2

eC
≤
∑
l

(oCl
− eCl

)2

eCl

. (A.5)

Since
∑

l

(oCl
−eCl

)2

eCl

or (oC−eC)2

eC
is part of the sum that defines T I , it follows from

equations (A.5) and (A.4) that TI

N−m+1
converges uniformly almost surely to a positive

constant greater than c′.

Let |Γ| denote the cardinality of Γ{(x1, y1), . . . , (xN , yN)}. Since I ∈ Γ{(x1, y1), . . . , (xN , yN)}

was arbitrary fixed, and since the convergence for fixed I of tC/[N − (m − 1)] to

a limit bounded from below by a positive constant was uniform, it follows that

1
|Γ|
∑
I∈Γ

TI

N−m+1
converges almost surely to a positive constant at least as large as

c′. To see this, note that from the uniform convergence in equation (A.4), it follows

that for an arbitrary fixed ε > 0, there exists N(ε) (which does not depend on C)

such that for all N > N(ε), 1
N−(m−1)

(oC−eC)2

eC
≥ c′ − ε for every C, and therefore that

1
|Γ|
∑
I∈Γ

TI

N−m+1
≥ c′ − ε for all N > N(ε).

Since Sm×m ≥
∑
I∈Γ T

I , it follows that almost surely

lim
N→∞

Sm×m
|Γ|(N −m+ 1)

> c′. (A.6)

We shall show that limN→∞ |Γ|/
(
N
m−1

)
is bounded below by a positive constant. First,

we shall consider the case wherem is finite. Then, a subset of Γ{(x1, y1), . . . , (xN , yN)}

is the set of all partitions with m − 2 sample points in A1, and one sample point in

A2. Therefore, |Γ| ≥
(
N1

m−2

)
N2. Simple algebraic manipulations lead to the following

expression for
( N1
m−2)N2

( N
m−1)

:

(m− 1)
N2

N

N1

N − 1
· · · N1 −m+ 3

N −m+ 2
.
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Since N1/N converges almost surely to f1 , and similarly N2/N converges almost

surely to f2, then for m ≥ 3 finite it follows that
( N1
m−2)N2

( N
m−1)

converges almost surely to a

positive constant. Therefore, |Γ|/
(
N−1
m−1

)
is bounded away from zero. Second, we shall

consider the case that m → ∞. The complement of Γ, ΓC , is the set of contingency

tables with no points in A1 or in A2. An upper bound for |ΓC | is

(
N −N1

m− 1

)
+

(
N −N2

m− 1

)
.

Note that in order to show that limN→∞ |Γ|/
(
N
m−1

)
is bounded below by a positive

constant, since |Γ| =
(
N
m−1

)
− |ΓC |, it is enough to show that |ΓC |/

(
N
m−1

)
converges to

zero as N →∞. Simple algebraic manipulations lead to the following expression for

(N−N1
m−1 )

( N
m−1)

: (
1− N1

N

)
· · ·
(

1− N1

N − (m− 2)

)
≤
(

1− N1

N

)m
.

Since N1/N converges almost surely to f1 ∈ (0, 1), it follows that
(N−N1

m−1 )
( N
m−1)

converges

almost surely to zero as m → ∞. Similarly, since N2/N converges almost surely

to f2 ∈ (0, 1), it follows that
(N−N2

m−1 )
( N
m−1)

converges almost surely to zero. Therefore,

|ΓC |/
(
N
m−1

)
converges to zero as N →∞.

Since limN→∞ |Γ|/
(
N
m−1

)
is bounded below by a positive constant, it follows from (A.6)

that almost surely

lim
N→∞

Sm×m(
N
m−1

)
(N −m+ 1)

≥ c′′, (A.7)

for some constant c′′ > 0.

Consider now a random permutation (πy1), . . . , (πyN) of the y-values y1, . . . , yN . Let

Sπm×m be the test statistic that is computed from the data (x1, πy1), . . . , (xN , πyN).
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Therefore, by Markov’s inequality,

Pr

(
Sπm×m ≥ c′′

(
N

m− 1

)
(N −m+ 1) | ~x, ~y

)
≤

E(Sπm×m|~x, ~y)

c′′
(
N
m−1

)
(N −m+ 1)

≈
(
N
m−1

)
(m− 1)2

c′′
(
N
m−1

)
(N −m+ 1)

. (A.8)

where ~x = (x1, . . . , xN) and ~y = (y1, . . . , yN). The approximation in (A.8) becomes

more accurate the larger N is, since each of the contingency tables is approximately

χ2 with (m − 1)2 degrees of freedom. The right hand side of equation (A.8) goes to

0 as N →∞, as long as limN→∞
m√
N

= 0. Thus,

lim
N→∞,m/

√
N→0

Pr

(
Sπm×m ≥ c′′

(
N

m− 1

)
(N −m+ 1) | ~x, ~y

)
= 0. (A.9)

We now have all the necessary results to complete the proof. Specifically,

lim
N→∞

Pr(Sm×m ≤ Stab1−α) ≤ lim
N→∞

Pr

{
Sm×m ≤ c′′

(
N

m− 1

)
(N −m+ 1)

}
= 0,

where the inequality follows from (A.9), since Stab1−α is below c′′
(
N
m−1

)
(N −m+ 1) for

N large enough, and the equality follows from (A.7), thus proving item 1 of Theorem

2.2.

To prove item 2, we will use the following inequality for chi-square distributions,

which appears in equation (4.3) of Laurent and Massart (2000): for U a χ2 statistic

with D degrees of freedom, for any positive x, Pr(U −D ≥ 2
√
Dx+ 2x) ≤ e−x.

Let I be a fixed arbitrary partition of size m. Since for N large enough, under the

null hypothesis, T I is approximately a χ2 statistic with D = (m − 1)2 degrees of
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freedom, it thus follows that for x > D,

PrH0(T
I −D ≥ 4x) ≤ e−x. (A.10)

Let x = c′

8
(N −m+ 1)−D/4. Then for N large enough, x > D. It thus follows that

PrH0(T
I ≥ c′

2
(N −m+ 1)) ≤ e−( c′

8
(N−m+1)−D/4) ≤ e−( c′

8
(N−m+1)−(m−1)2/4) (A.11)

By Bonferroni’s inequality,

PrH0

(
MDDP

m×m ≥
c′

2
(N −m+ 1)

)
≤

∑
I∈ΠDDP

m

PrH0

(
T I ≥ c′

2
(N −m+ 1)

)

≤
(
N

m

)
e−( c′

8
(N−m+1)−(m−1)2/4), (A.12)

where the last inequality follows from (A.11). Since
(
N
m

)
is at most O(N

√
N), and

since

e−( c′
8

(N−m+1)−(m−1)2/4) = O(e−( c′
8
N)),

it follows that the expression in (A.12) goes to zero as N →∞.

Since we found contingency tables for which under the alternative the test statis-

tic TI

N−m+1
converges uniformly almost surely to a positive constant greater than c′

(A.4), it follows that
MDDP

m×m

N−m+1
converges uniformly almost surely to a positive constant

greater than c′ when the null is false. From (A.12) it follows that as N → ∞, with

limN→∞
m√
N

= 0, the probability that the test statistics
MDDP

m×m

N−m+1
will be above c′

2
goes

to zero when the null is true. It follows that the null hypothesis will be rejected with

asymptotic probability one when it is false.
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A.2 The ADP test

We want to show that if H0 is false, then for an arbitrary fixed α, limN→∞ Pr(S
ADP
m×m >

Stab1−α) = 1, where Stab1−α denotes the 1 − α quantile of the null distribution of SADPm×m.

We use A, c,A1,A2, f1, f2 as defined in the beginning of Appendix A of the main text.

For the ADP test, recall that the partitioning is based on selecting m − 1 points

from 1.5, . . . , N − 0.5 for the partitions of the ranked x-values, and separately for

the partitions of the ranked y-values. For a fixed rectangle, we say a grid point

(i+ 0.5, j + 0.5) is in the rectangle if the two x-values with ranks i and i+ 1, and the

two y-values with ranks j and j+ 1, are in the rectangle, for (i, j) ∈ {1, . . . , N}2. Let

Γ{(x1, y1), . . . , (xN , yN)} be the set of partitions of size m with at least one grid point

in A1 and at least one grid point in A2. Let Nix be the number of x-coordinates of

the grid points in Ai, i ∈ {1, 2}, and Niy be the number of y-coordinates of the grid

points in Ai, i ∈ {1, 2}.

Let I ∈ Γ{(x1, y1), . . . , (xN , yN)} define an (arbitrary fixed) ADP partition in Γ.

There exist two x-values in A1 that are separated by a grid point in I, and two x-

values in A2 that are separated by a grid point in I, denote the average of these two

x-values by x∗1 and x∗2. Let y∗1 and y∗2 be similarly defined for the y-values.

Let C be the cell defined by the points (x∗i , y
∗
i ), i = 1, 2. The fraction of observed

counts in the cell C is a linear combination of empirical cumulative distribution

functions

oC
N

= F̂XY (x∗1, y
∗
1) + F̂XY (x∗2, y

∗
2)− F̂XY (x∗1, y

∗
2)− F̂XY (x∗2, y

∗
1),

and the expected fraction under the null, is a function of the cumulative marginal
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distributions

eC
N

= {F̂X(x∗2)− F̂X(x∗1)}{F̂Y (y∗2)− F̂Y (y∗1)},

where F̂ denotes the empirical cumulative distribution function based on N sample

points.

By the Glivenko-Cantelli theorem, uniformly almost surely,

lim
N→∞

(
oC
N
−
∫
{(x,y):x∈(x∗1,x

∗
2],y∈(y∗1 ,y

∗
2 ]}
h(x, y)dxdy

)
= 0,

lim
N→∞

{
eC
N
−

(∫
{x:x∈(x∗1,x

∗
2]}
f(x)dx

)(∫
{y:y∈(y∗1 ,y

∗
2 ]}
g(y)dy

)}
= 0.

(A.13)

Therefore, by Slutsky’s theorem and the continuous mapping theorem, we have that

uniformly almost surely

lim
N→∞

1

N

(oC − eC)2

eC
= lim

N→∞

(
oC
N
− eC

N

)2

eC
N

≥ lim
N→∞

(oC
N
− eC
N

)2

= lim
N→∞

[∫
{(x,y):x∈(x∗1,x

∗
2],y∈(y∗1 ,y

∗
2 ]}
{h(x, y)− f(x)g(y)}dxdy

]2

, (A.14)

where the inequality follows from the fact that eC
N
≤ 1.

We shall show that the limit (A.14) can be bounded from below by a positive constant

that depends on (x0, y0) and R but not on I. Since

{(x, y) : x ∈ (x0 +R/4, x0 + 3R/4], y ∈ (y0 +R/4, y0 + 3R/4]}

⊆ {(x, y) : x ∈ (x∗1, x
∗
2], y ∈ (y∗1, y

∗
2]},
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a positive lower bound can be obtained:

lim
N→∞

[∫
{(x,y):x∈(x∗1,x

∗
2],y∈(y∗1 ,y

∗
2 ]}
{h(x, y)− f(x)g(y)}dxdy

]2

≥
[∫
{(x,y):x∈(x0+R/4,x0+3R/4],y∈(y0+R/4,y0+3R/4]}

{h(x, y)− f(x)g(y)}dxdy
]2

≥ c2

∫
{(x,y):x∈(x0+R/4,x0+3R/4],y∈(y0+R/4,y0+3R/4]}

dxdy = c2R2/4,

where the first inequality follows since h(x, y)−f(x)g(y) > 0 in A, and the second in-

equality follows since the minimum value is c > 0. Therefore, it follows that 1
N

(oC−eC)2

eC

converges uniformly almost surely to a positive constant greater than c′ = c2R2/4,

P r

(
lim
N→∞

1

N

(oC − eC)2

eC
≥ c′

)
= 1. (A.15)

The partition I either contains the cell C, or a group of cells that divide C. By

Jensen’s inequality, it follows that in the latter case the score is made larger, see the

arguments leading to expression (A.5). It thus follows that the score T I/N converges

uniformly almost surely to a positive constant greater than c′.

Let |Γ| denote the number of Γ{(x1, y1), . . . , (xN , yN)}. Since I ∈ Γ{(x1, y1), . . . , (xN , yN)}

was arbitrarily fixed, it follows that 1
|Γ|
∑
I∈Γ

TI

N
converges almost surely to a positive

constant greater than c′/2. Since Sm×m ≥
∑
I∈Γ T

I , it follows that almost surely,

lim
N→∞

Sm×m
|Γ|N

≥ c′

2
. (A.16)

We shall show that limN→∞ |Γ|/{
(
N−1
m−1

)(
N−1
m−1

)
} is bounded below by a positive con-

stant. First, we shall consider the case that m is finite. In this case, a subset

of Γ{(x1, y1), . . . , (xN , yN)} is the set of all partitions with m − 2 grid points in

A1, and one grid point in A2, for both x-values and y-values. Therefore, |Γ| ≥
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(
N1x

m−2

)
N2x

(
N1y

m−2

)
N2y. Simple algebraic manipulations lead to the following expression

for
(N1x
m−2)N2x

(N−1
m−1)

:

(m− 1)
N2x

N − 1

N1x

N − 2
· · · N1x −m+ 3

N − 1−m+ 2
.

Since N1x/N converges almost surely to
∫ x0+R/4

x0
f(x)dx, and similarly N2x/N con-

verges almost surely to
∫ x0+R

x0+3R/4
f(x)dx, then for m ≥ 3 finite it follows that

(N1x
m−2)N2x

(N−1
m−1)

converges almost surely to a positive constant. Similarly,
(N1y
m−2)N2y

(N−1
m−1)

converges almost

surely to a positive constant. Therefore, |Γ|/{
(
N−1
m−1

)(
N−1
m−1

)
} is bounded away from

zero.

Second, we shall consider the case that m→∞. The complement of Γ, ΓC , is the set

of contingency tables with no grid point in A1 or in A2. An upper bound for |ΓC | is:

(
N − 1

m− 1

){(
N − 1−N1x

m− 1

)
+

(
N − 1−N2x

m− 1

)
+

(
N − 1−N1y

m− 1

)
+

(
N − 1−N2y

m− 1

)}

Note that since |Γ| = {
(
N−1
m−1

)(
N−1
m−1

)
}−|ΓC |, it is enough to show that |ΓC |/{

(
N−1
m−1

)(
N−1
m−1

)
}

converges to zero as N → ∞. Simple algebraic manipulations lead to the following

expression for
(N−1−N1x

m−1 )
(N−1
m−1)

:

(
1− N1x

N − 1

)
· · ·
(

1− N1x

N − 1− (m− 2)

)
≤
(

1− N1x

N − 1

)m
.

Since N1x/N converges almost surely to a positive fraction
∫ x0+R/4

x0
f(x)dx, it fol-

lows that
(N−1−N1x

m−1 )
(N−1
m−1)

converges almost surely to zero. Similarly, since N2x/N , N1y/N

and N2y/N converge almost surely to positive fractions, it follows that respectively,

(N−1−N2x
m−1 )

(N−1
m−1)

,
(N−1−N1y

m−1 )
(N−1
m−1)

, and
(N−1−N2y

m−1 )
(N−1
m−1)

converge almost surely to zero. Thus |ΓC |/{
(
N−1
m−1

)(
N−1
m−1

)
}

converges almost surely to zero.

Since limN→∞ |Γ|/{
(
N−1
m−1

)(
N−1
m−1

)
} is bounded below by a positive constant, it follows
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from (A.16) that almost surely,

lim
N→∞

Sm×m(
N−1
m−1

)(
N−1
m−1

)
N
≥ c′′, (A.17)

for some constant c′′ > 0.

Consider now a random permutation (πy1), . . . , (πyN) of the y-values y1, . . . , yN . Let

Sπm×m be the test statistic that is computed from the data (x1, πy1), . . . , (xN , πyN).

By Markov’s inequality,

Pr

(
Sπm×m ≥ c′′

(
N − 1

m− 1

)(
N − 1

m− 1

)
N | ~x, ~y

)
≤

E(Sπm×m | ~x, ~y)

c′′
(
N−1
m−1

)(
N−1
m−1

)
N

≈
(
N−1
m−1

)(
N−1
m−1

)
(m− 1)2

c′′
(
N−1
m−1

)(
N−1
m−1

)
N

, (A.18)

where ~x = (x1, . . . , xN) and ~y = (y1, . . . , yN). The approximation in (A.18) becomes

more accurate the larger N is, since each of the contingency tables is approximately

χ2 with (m− 1)2 degrees of freedom. The right hand side of equation (A.18) goes to

zero as N →∞, as long as limN→∞
m√
N

= 0. Thus,

lim
N→∞,m/

√
N→0

Pr

(
Sπm×m ≥ c′′

(
N − 1

m− 1

)(
N − 1

m− 1

)
N | ~x, ~y

)
= 0. (A.19)

We now have all the necessary results to complete the proof. Specifically,

lim
N→∞

Pr(Sm×m ≤ Stab1−α) ≤ Pr

(
Sπm×m ≤ c′′

(
N − 1

m− 1

)(
N − 1

m− 1

)
N

)
= 0,(A.20)

where the inequality follows from (A.19), since Stab1−α is below c′′
(
N−1
m−1

)(
N−1
m−1

)
N for N

large enough, and the equality follows from (A.17), thus proving item 1 of Theorem

1 for the ADP summation statistic.
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B Proof of Theorem 2.4

We want to show that for all ε > 0, limN→∞ Pr
(∣∣∣SADP

m×m(L)

N |Π| − IXY
∣∣∣ > ε

)
= 0 if

limN→∞
m√
N

= 0 and limN→∞m = ∞, where |Π| =
((
N−1
m−1

))2
is the number of parti-

tions.

For continuous marginals, the copula function of the joint distribution of (X, Y ) is

unique, denote it by c(u, v). The mutual information is the negative copula entropy,

HUV = −
∫
c(u, v) log c(u, v)dudv,

IXY =

∫
c(FX(x), FY (y))f(x)g(y) log c(FX(x), FY (y))dxdy

=

∫
c(u, v) log c(u, v)dudv = −HUV . (B.1)

Consider an arbitrary fixed partition I = {(i1, j1), . . . , (im−1, jm−1)} ⊂ {1.5, . . . , N −

0.5}2. Recall that C(I) is the set of m×m cells that are defined by the partition. For

a cell C, let rl(C) and rh(C) be, respectively, the lowest and highest x-grid integer

values in C. Similarly, let sl(C) and sh(C) be, respectively, the lowest and highest

y-grid integer values in C.

The entropy of the partition I is

HIUV = −
∑

C∈C(I)
Pr

(
rl(C)

N
≤ U ≤

rh(C)

N
,
sl(C)

N
≤ V ≤

sh(C)

N

)
log

{
Pr

(
rl(C)

N
≤ U ≤

rh(C)

N
,
sl(C)

N
≤ V ≤

sh(C)

N

)}
.

The corresponding empirical (plug in) estimator is

ĤIUV = −
∑

C∈C(I)

oC
N

log
(oC
N

)
, oC =

N∑
i=1

I(rl(C) ≤ ri ≤ rh(C), sl(C) ≤ si ≤ sh(C)).
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Let HIU and HIV be the fixed marginal entropies of the partition I:

HIU = −
∑

Cx∈Cx(I)

rh(Cx)− rl(Cx)
N

log

(
rh(Cx)− rl(Cx)

N

)
,

HIV = −
∑

Cy∈Cy(I)

rh(Cy)− rl(Cy)
N

log

(
rh(Cy)− rl(Cy)

N

)
,

where Cx(I) and Cy(I) are the intervals induced by I in x and in y, respectively.

Note that given I, the observed and expected margins of the partitions are fixed, and

therefore

HIU = −
∑

C∈C(I)

oC log

(
rh(C)− rl(C)

N

)
(B.2)

= −
∑

C∈C(I)

Pr(rl(C) ≤ U ≤ rh(C), sl(C) ≤ V ≤ sh(C)) log

(
rh(C)− rl(C)

N

)
(B.3)

HIV = −
∑

C∈C(I)

oC log

(
sh(C)− sl(C)

N

)
(B.4)

= −
∑

C∈C(I)

Pr(rl(C) ≤ U ≤ rh(C), sl(C) ≤ V ≤ sh(C)) log

(
sh(C)− sl(C)

N

)
.(B.5)

The following simple derivation shows that the likelihood ratio score T I is a linear

combination of ĤIUV , H
I
U and HIV :

T I =
∑

C∈C(I)

oC log
oC
eC

=
∑

C∈C(I)

oC log
oC
N
−
∑

C∈C(I)

oC log
eC
N

= −NĤIUV −
∑

C∈C(I)

oC log

(
N
rh(C)− rl(C)

N

sh(C)− sl(C)

N

1

N

)
= −NĤIUV +NHIU +NHIV ,

where the last equality follows from equations (B.2) and (B.4).
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Let E(·) denote the expectation of a random variable. We bound from above our

probability of interest by a sum of three probabilities as follows.

Pr

(∣∣∣∣SADPm×m

N |Π|
− IXY

∣∣∣∣ > ε

)
= Pr

(∣∣∣∣∑I T Im×m(L)

N |Π|
− IXY

∣∣∣∣ > ε

)
= Pr

(∣∣∣∣∣
∑
I(H

I
U +HIV − ĤIUV )

|Π|
+HUV

∣∣∣∣∣ > ε

)
= Pr(|

∑
I

(HIU +HIV − ĤIUV +HUV )| > |Π|ε)

= Pr(|
∑
I

(−ĤIUV + E(ĤIUV )) +
∑
I

(−E(ĤIUV ) +HIUV )

+
∑
I

(−HIUV +HIU +HIV +HUV )| > |Π|ε)

≤ Pr(|
∑
I

(−ĤIUV + E(ĤIUV ))|+ |
∑
I

(−E(ĤIUV ) +HIUV )|

+|
∑
I

(−HIUV +HIU +HIV +HUV )| > |Π|ε)

≤ Pr(|
∑
I

(−ĤIUV + E(ĤIUV ))| > |Π|ε/3) (B.6)

+Pr(|
∑
I

(−E(ĤIUV ) +HIUV )| > |Π|ε/3) (B.7)

+Pr(|
∑
I

(−HIUV +HIU +HIV +HUV )| > |Π|ε/3), (B.8)

where the last inequality follows from {|
∑
I(−ĤIUV +E(ĤIUV ))|+ |

∑
I(−E(ĤIUV ) +

HIUV )| + |
∑
I(−HIUV + HIU + HIV + HUV )| > |Π|ε} ⊆ {(|

∑
I(−ĤIUV + E(ĤIUV ))| >

|Π|ε/3) ∪ (|
∑
I(−E(ĤIUV ) + HIUV )| > |Π|ε/3) ∪ |

∑
I(−HIUV + HIU + HIV + HUV )| >

|Π|ε/3} and Bonferroni’s inequality.

We will show that the three probabilities (B.6)–(B.8) vanish as N → ∞,m →

∞, m√
N
→ 0, thus proving the theorem.
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The probability (B.6) can be upper-bounded as follows,

Pr

(
|
∑
I

(ĤIUV − E(ĤIUV ))| ≥ |Π|ε/3

)
≤
∑
I

Pr
(
|(ĤIUV − E(ĤIUV ))| ≥ ε/3

)
≤ |Π|3e−

N
2
ε2/9 1

(logN)2 (B.9)

where the first inequality follows from the fact that {|
∑
I(Ĥ

I
UV−E(ĤIUV ))| ≥ |Π|ε/3} ⊆

{∪I∈Π(ĤIUV −E(ĤIUV )) ≥ ε/3} and Bonferroni’s inequality, and the second inequality

follows from the upper bound (3.4) in Paninski (2003) for the plug in estimator for a

given partition I. This probability goes to zero as N →∞, since |Π| is O(N
√
N) and

limN→∞O(N
√
N)e

−N
2
ε2/9 1

(logN)2 = 0.

The event in the second probability (B.7) is not random, so we need to show that

|
∑
I(E(ĤIUV )−HIUV )| < |Π|ε/3 for N large enough. Proposition 1 in Paninski (2003)

states that 0 ≤ (HIUV − E(ĤIUV )) ≤ log(1 + (m−1)2−1
N

). Therefore,

|
∑
I

(E(ĤIUV )−HIUV )| ≤ |Π| log(1 +
(m− 1)2 − 1

N
)

Clearly, the RHS is below |Π|ε/3 for N large enough, if limN→∞
m√
N

= 0.

It remains to show that (B.8) vanishes as N →∞. This event is not random, so we

will show that

lim
N→∞

|
∑
I(−HIUV +HIU +HIV +HUV )|

|Π|
< ε/3.

By the mean value theorem, for cell C there exists a point (uC , vC) in C such that

Pr(rl(C) ≤ U ≤ rh(C), sl(C) ≤ V ≤ sh(C)) = c(uC , vC)
rh(C)− rl(C)

N

sh(C)− sl(C)

N
.
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Therefore,

−HIUV

=
∑

C∈C(I)

c(uC , vC)
rh(C)− rl(C)

N

sh(C)− sl(C)

N
log

(
c(uC , vC)

rh(C)− rl(C)

N

sh(C)− sl(C)

N

)
=
∑

C∈C(I)

rh(C)− rl(C)

N

sh(C)− sl(C)

N
c(uC , vC) log c(uC , vC) (B.10)

+
∑

C∈C(I)

Pr(rl(C) ≤ U ≤ rh(C), sl(C) ≤ V ≤ sh(C)) log
rh(C)− rl(C)

N

+
∑

C∈C(I)

Pr(rl(C) ≤ U ≤ rh(C), sl(C) ≤ V ≤ sh(C)) log
sh(C)− sl(C)

N

=
∑

C∈C(I)

rh(C)− rl(C)

N

sh(C)− sl(C)

N
c(uC , vC) log c(uC , vC)−HIU −HIV , (B.11)

where the last equality follows from equations (B.3) and (B.5).

By the definition of the Riemann integral, expression (B.10) can be made arbitrarily

close to −HUV . Specifically, there exists a 0 < d(ε) < 1 such that if all cells satisfy

rh(C)−rl(C)
N

< d and sh(C)−sl(C)
N

< d, then

|
∑

C∈C(I)

rh(C)− rl(C)

N

sh(C)− sl(C)

N
c(uC , vC) log c(uC , vC) +HUV | < ε/3.

Therefore, it follows that for any partition I ∈ Π for which all cells satisfy rh(C)−rl(C)
N

<

d and sh(C)−sl(C)
N

< d, then we have

|(−HIUV +HIU +HIV +HUV )| < ε/3.

It remains to show that the contribution of the fraction of partitions that do not satisfy

rh(C)−rl(C)
N

< d and sh(C)−sl(C)
N

< d goes to zero as N → ∞. Since the probability of

selecting an x-value (or y-value) for a partition that will have a cell larger than d is
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1− d, the fraction of “bad” partitions is upper-bounded by

2m
(
N(1−d)
m−1

)(
N
m−1

)((
N−1
m−1

))2 ≤ 2m(1− d)m−1.

Since m→∞ the fraction of bad partitions goes to zero.

Note that |(−HIUV +HIU +HIV +HUV )| is at most O(logm2) because by Jensen’s in-

equality, |HIUV | ≤ logm2, |HIU | ≤ logm2, |HIV | ≤ logm2, and |HUV | = IXY is assumed

to be bounded. Therefore,

|
∑
I(−HIUV +HIU +HIV +HUV )|

|Π|
≤ ε/3 +O

(
logm2m(1− d)m−1

)
.

Since the second term of the RHS goes to zero as N → ∞,m → ∞, m√
N
→ 0, the

proof is complete.

C Proof of Theorem 2.6

We shall prove items 1 and 2 for the DDP statistic only, since the proof for the ADP

statistic is very similar. We shall use the notation of Section A.1. Let m̂ be the value

of m with minimum p-value,

m̂ = arg min
m∈{2,...,mmax}

p2, . . . , pm.

To prove item 1, we note that from equation (A.7) it follows that under the alternative,

lim
N→∞

Sm̂×m̂(
N
m̂−1

)
(N − m̂+ 1)

≥ c′′.
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Under the null,

Pr

(
Sπm̂×m̂ ≥ c′′

(
N

m̂− 1

)
(N − m̂+ 1) | ~x, ~y

)
≤

mmax∑
m=2

Pr

(
Sπm×m ≥ c′′

(
N

m− 1

)
(N −m+ 1) | ~x, ~y

)

≤ mmax max
m∈{2,...,mmax}

(
N
m−1

)
(m− 1)2

c′′
(
N
m−1

)
(N −m+ 1)

≤ mmax
(mmax − 1)2

c′′(N −mmax + 1)
,

where the first inequality is the Bonferroni inequality, and the second inequality fol-

lows from equation (A.8). Since the last term goes to 0 asN →∞ if limN→∞m/N
1/3 =

0, the proof of item 1 is complete.

The proof of item 2 is very similar to the proof in Section A.1, the only modification

is an additional application of Bonferroni’s inequality under the null:

PrH0

(
MDDP

m̂×m̂ ≥
c′

2
(N − m̂+ 1)

)
≤

mmax∑
m=2

PrH0

(
MDDP

m×m ≥
c′

2
(N −m+ 1)

)
≤ mmax max

m∈{2,...,mmax}

(
N

m

)
e−( c′

8
(N−m+1)−(m−1)2/4) ≤ mmax

(
N

mmax

)
e−( c′

8
(N−mmax+1)−(mmax−1)2/4),

where the first inequality in the last row follows from (A.12). Since mmax

(
N

mmax

)
is at

most O(N ×N
√
N), and since

e−( c′
8

(N−mmax+1)−(mmax−1)2/4) = O(e−( c′
8
N)),

it follows that the last expression goes to zero as N →∞.

D An example of mutual information estimation

We examined our suggested estimator in the following setup. For m = 15 and

N ∈ {300, 1000} sample points drawn from a two–component Gaussian mixture, we
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Table 5: The average (standard error) of the mutual information estimates using
random samples of size 300 (column 2) and 1000 (column 3) from the two com-
ponent Gaussian mixture, by the following methods: the naive histogram estima-
tor that partitions each axis to 15 intervals of equal count, SADP15×15/(N |ΠADP

15 |), and
SDDP15×15/(N |ΠDDP

15 |). The true mutual information value was 0.1784.

N = 300 N = 1000
Histogram 0.3165 (0.0052) 0.1854 (0.0029)
Data derived partitions 0.3010 (0.0030) 0.1879 (0.0022)
All derived partitions 0.2954 (0.0028) 0.1860 (0.0021)

simulated 50 datasets and computed the estimated mutual information using SDDPm×m,

SADPm×m, and the histogram estimator. The Gaussian mixture density was

0.8× fN
((

0.5

0.5

)
,

(
0.05 0.025

0.025 0.05

))
+ 0.2× fN

((
0.125

0.675

)
,

(
0.01 0

0 0.01

))
,

where fN (µ,Σ) is the bivariate normal distribution with mean µ and covariance ma-

trix Σ. For each partition, we applied the Miller–Madow correction (Paninski, 2003),

a simple and well-known modification that estimates the systematic error of the his-

togram estimators and improves the finite-sample properties of these estimators. We

compared it to the histogram estimator, as well as to the estimator based on the DDP

statistic that considers only a subset of all possible partitions. Table 5 shows that

the variability and the bias decrease as N increases for all estimators, and that the

ADP estimator is the least variable, as is intuitively expected since it is the average

over many partitions. In practice, it is difficult to identify the optimal m: it should

not be too small so that the local dependence structure is not missed, causing large

bias, nor should it be too large so that the grid created is too sparse, causing large

variance.
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E Algorithm for the DDP statistic

For the DDP statistic, the algorithm is very similar to that for the ADP statistic,

except that only DDP are considered on the grid of ranked data {1, . . . , N}2. The

algorithm is slightly more complex because the number of partitions that include a

cell C depends on the partition size m, on the data, and on the type of cell, with

four possible types. Specifics follow for internal cells. The first type is a cell C for

which there is a sample point that falls on the boundary of C but not on one of its

corners. Then no DDP can ever have C as a cell, and therefore the number of DDP

that include C is zero. For example, in Figure 7 (middle panel), if the open circle

is an observation, and therefore the filled circle with the same y value is not, since

there are no ties, then any DDP with this y value will necessarily partition C at the x

value of the open circle observation, and thus C cannot be a cell in any DDP. For the

remaining three types of cells, if there are sample points that fall on the boundary of

C they are necessarily on the corners of C. These types of cells differ by the number

of observations that determine the cell. The second type is a cell C defined by two

observed points. Then, the number of DDP that include C is the number of ways to

choose m− 3 points from the points in the four outer areas defined by (0, rl)× (0, sl),

(0, rl) × (sh, N ], (rh, N ] × (0, sl), and (rh, N ] × (sh, N ], see Figure 7 (left panel) for

illustration. The number of points in the four areas is calculable in O(1) using A, as

defined in equation (3.3). Specifically, the count of samples that fall strictly inside

any cell with rank ranges r ∈ [rl, rh] and s ∈ [sl, sh] is:

oC = A(rh − 1, sh − 1)− A(rl, sh − 1)− A(rh − 1, sl) + A(rl, sl).

The third and fourth type are cells defined by three or four observed points, respec-

tively, see Figure 7 (middle and right panels). Now the number of DDP that include
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C is exactly the number of ways to choose m− 4 and m− 5 points, respectively, from

the points in the four outer areas. Again, the number of points in the four outer areas

is calculable in O(1) using A. Since all cells are defined by two, three, or four points,

there are no additional types of cells.

𝐶 

𝑦ℎ 

𝑦𝑙 

𝑥𝑙 𝑥ℎ 

𝐶 

offending compliant 

𝑦ℎ 

𝑦𝑙 

𝑥𝑙 𝑥ℎ 

𝐶 

𝑦ℎ 

𝑦𝑙 

𝑥𝑙 𝑥ℎ 

Figure 7: Inner cell example C (orange), and the sample points that define a partition
where C is a cell (green). If any of the sample points ranked on a boundary column
or row of C is not on the corner of C, then C can never be a DDP cell (offending
point in purple, middle panel). An inner cell can be defined either by two data points
(left), by three data points (middle), or by four data points (right).

Let us denote the number of sample points in the four outer areas of a cell C by OUT .

Further denote by C(OUT ) the group of all cells which have exactly OUT points in

the outer areas. For the sake of brevity, lets consider only cells of type 2. Similarly to

equation (3.5) for the ADP statistic, the contribution to the score SDDPm×m of internal

cells of type 2 can be written as

N−2∑
OUT=2

n(OUT,m)
∑

C∈C(OUT )

tC =
N−2∑

OUT=2

n(OUT,m)T (OUT ). (E.1)

The algorithm proceeds as follows. First in a preprocessing phase we perform two

computations: 1)go over all cells and calculate tC and OUT for each cell and update

T (OUT ) = T (OUT ) + tC . This stage takes O(N4); 2) for all u, v ∈ {0, . . . , N} we

calculate and store all
(
u
v

)
in O(N2) steps using Pascal’s triangle method.

Now for each m, since n(OUT,m) =
(
OUT
m−3

)
, given T (OUT ), clearly equation (E.1)

can be calculated in O(N) for a fixed m and in O(N2) for all ms. Therefore the total
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complexity is again O(N4) due to the preprocessing phase.

F A fast algorithm for computing the HHG statis-

tic

Here we describe a fast algorithm for computing the univariate original (distribution-

dependent) HHG test statistic.

If DX(x1, x2) and DY (y1, y2) are distance metrics in the variables tested for indepen-

dence (for which, again, we have a paired sample with N i.i.d samples), the HHG

test requires computing N(N − 1) different 2× 2 contingency tables according to the

following partitions of the distance-distance plane. For every “origin” sample i, and

for every “radius” sample j, the remaining N − 2 samples are classified according to

whether their X and Y distances from i are both smaller than the X and Y distances

from j to i, or if only X, only Y , or neither are smaller than the respective j to i

distances. In the general case, generating contingency tables for all pairs can be done

in N2 logN , as described in (Heller et al., 2013). In the univariate case, an O(N2)

algorithm proceeds as follows.

Instead of working in the distance-distance plane, the algorithm is specified in terms

of the (x, y), i.e., the sample plane. It is sufficient to consider the discrete grid

expanded from unique X samples and unique Y samples actually observed (these can

be identified in O(N logN)). The double cumulative sum over this N × N grid is

computed as in Section 3.1 of the main text, with the only difference being that after

A is initialized to all zeros, it is updated sequentially with A(ri, si) = A(ri, si) + 1

for every sample of ranks in x and ranks in y, (ri, si), i = 1, 2, . . . , N , to account for

possible ties.
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Since, in the univariate case, DX(xi, xk) < DX(xi, xj) is equivalent to |xk − xi| <

|xj − xi|, and similarly for y, partition cells are simply axis-aligned rectangles, as in

the distribution-free test. Here, however, only sample j is a vertex, and sample i is

the center of mass. The diagonal-opposing vertex from j may not even be a point in

the sample, and thus is not directly captured by A. Still, the appropriate point to

sample A in, for computing the contingency table cell in O(1), can be found in O(1)

additional amortized time, as follows:

1. Sort once the unique values of x, and do the same for y.

2. When traversing all pairs, first traverse i.

2.1 For every i, traverse the sorted values of x with two concurrent iterators

starting from xi, one moving right (i.e., from low to high x) and one ad-

vancing left.

2.2 Subsequently to each step taken with the right iterator, arriving at an xj,

advance the left iterator until a value is encountered which is farther from

xi than xj is, and this is the opposing vertex x coordinate value for the

rectangle for the pair i, j.

The process, which is depicted in Figure 8, takes O(N) time for N values, and

is repeated for the y axis.

  

j1i j3 j4j
1 
, j

2
j
3

xmin xmax

x

j2

Figure 8: Finding the grid coordinates to sample for the O(N2) univariate
(distribution-dependent) HHG algorithm.
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G Additional simulations for the two-samples prob-

lem

Table 6 shows a comparison of the performance of the minimum p-value and Fisher-

combined test statistics. The variant with highest power in most setups (specifically,

setups 2,4,5,6,8,9,10,11,12) is the Fisher-combined p-value using aggregation by sum-

mation and mmax = 50. However, the Fisher-combined p-value test is sensitive to

the choice of mmax, which is unknown in practice. Since we view this as a significant

weakness of the Fisher-combined statistic, and since the minimum p-value does not

have this weakness and has very good power when compared with Fisher as well as

when compared with other tests (with a large range of mmax values examined), we

recommend the minimum p-value test statistic.

Table 6: Power of the minimum p-value test statistic (columns 2–5) as well as the
Fisher-combined p-value test statistic (columns 6–9), using the different aggregation
methods and two values of mmax, for N = 500 and the setups of Figure 2. The
difference between mmax = 50 and mmax = 149 is much larger for the Fisher-combined
than for the minimum p-value test statistic when aggregated by summation (columns
8–9 versus columns 4–5). Moreover, the power is typically lower for the Fisher-
combined that for the minimum p-value test statistic when the aggregation is by
maximization (columns 6–7 versus columns 2–3).

Minimum p-value Fisher combined p-value
Max aggregation Sum aggregation Max aggregation Sum aggregation

Setup mmax = 50 mmax = 149 mmax = 50 mmax = 149 mmax = 50 mmax = 149 mmax = 50 mmax = 149
1 0.836 0.825 0.500 0.491 0.631 0.424 0.549 0.560
2 0.810 0.799 0.883 0.873 0.819 0.701 0.917 0.898
3 0.783 0.785 0.553 0.733 0.867 0.847 0.502 0.782
4 0.836 0.827 0.945 0.937 0.749 0.567 0.952 0.882
5 0.607 0.592 0.708 0.686 0.531 0.381 0.760 0.655
6 0.829 0.818 0.836 0.820 0.749 0.567 0.882 0.821
7 0.358 0.339 0.516 0.492 0.201 0.135 0.430 0.287
8 0.770 0.752 0.795 0.775 0.542 0.361 0.814 0.672
9 0.531 0.512 0.641 0.613 0.344 0.227 0.635 0.470

10 0.728 0.711 0.824 0.806 0.569 0.393 0.849 0.721
11 0.556 0.540 0.707 0.686 0.509 0.380 0.756 0.657
12 0.402 0.390 0.599 0.577 0.399 0.293 0.655 0.557
13 0.852 0.844 0.777 0.764 0.809 0.663 0.823 0.822

Table 7 shows the power using different priors for regularization. The priors are as

follows: π(m) =
√
N
m
exp(−

√
N)/m! for Poisson; π(m) =

(
N−1
m−1

)
pm(1 − p)(N−m) for
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Binomial, with p = 0.119 so that the penalty becomes that of the Akaike information

criterion (i.e., log π(I|m)π(m) = −2m); π(m) = 1/K for fixed K for Uniform. We

also considered the prior in Jiang et al. (2014), resulting in the DS test with penalty

−λ0 logN(m− 1). According to the recommendation in Jiang et al. (2014), we chose

the value of λ0 so that the level under the null is as close as possible to 0.05 from

below, so λ0 = 1.11088 for N = 100, and λ0 = 0.904 for N = 500. The Poisson prior

(with rate
√
N) was by far the best among all priors considered, and its power was

comparable to that of the minimum p-value displayed in Table 6.

Table 7: Power using different priors , for N = 500 and the setups of Figure 2.

Poisson prior Poisson prior Uniform Prior Binomial Prior DS prior
Setup Max aggregation Sum aggregation Max aggregation Max aggregation Max aggregation

1 0.829 0.597 0.848 0.450 0.845
2 0.855 0.924 0.641 0.745 0.565
3 0.715 0.639 0.282 0.874 0.239
4 0.861 0.920 0.813 0.593 0.794
5 0.659 0.746 0.592 0.411 0.573
6 0.854 0.874 0.804 0.597 0.787
7 0.291 0.310 0.430 0.139 0.432
8 0.719 0.760 0.835 0.371 0.836
9 0.489 0.545 0.599 0.232 0.600

10 0.709 0.793 0.749 0.406 0.744
11 0.607 0.720 0.466 0.390 0.433
12 0.460 0.629 0.298 0.318 0.268
13 0.860 0.857 0.802 0.697 0.776

Table 8: Power of competitors (columns 4–9), along with the minimum p-value using
the Mm p-values (column 1) and the Sm p-values (column 2).

Minimum p-value
N Setup Max aggregation Sum Aggregation Wilcoxon KS CVM AD HHG DS

500 Normal shift 0.59 0.82 0.91 0.81 0.89 0.90 0.85 0.73
500 Normal scale 0.76 0.85 0.05 0.36 0.46 0.77 0.88 0.83
500 Normal shift & scale 0.83 0.90 0.46 0.69 0.74 0.88 0.92 0.90
100 Normal shift 0.39 0.58 0.68 0.53 0.65 0.67 0.60 0.49
100 Normal scale 0.51 0.59 0.06 0.20 0.23 0.41 0.63 0.54
100 Normal shift & scale 0.54 0.64 0.49 0.51 0.58 0.64 0.68 0.62

For sample size N = 100, we examined the distributions depicted in Figure 10, and

we used 20000 simulated data sets, in each of the configurations. Table 9 and Figure

11 show the power for the setups in Figure 10. These results concur with the results

in Section 4.1 for N = 500, and show that if the number of intersections of the two

distributions is at least four, tests statistics with m ≥ 4 have an advantage.
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Figure 9: Estimated power for the Mm (black) and Sm (grey) statistics for m ∈
{2, . . . , 149} for the Gaussian shift difference (first column, N(0, 1) versus N(0.5, 1)
for N = 100, and versus N(0.3, 1) for N = 500), Gaussian scale difference (second
column, N(0, 1) versus N(0, 0.62) for N = 100, and versus N(0, 0.752) for N =
500), and for the Gaussian shift and scale difference (third column, N(0, 1) versus
N(0.36, 0.72) for N = 100, and versus N(0.2, 0.82) for N = 500). The power of the
minimum p-value is the horizontal dashed black line when it combines the p-values
based on Mm, and the horizontal dotted grey line when it combines the p-values based
on Sm. The vertical lines show the optimal m for Mm (grey) and Sm (black).

H Simulations of monotone relationships

Four monotone relationships are presented in Figure 12. Figure 13 shows that the

differences for the summation variants between ADP and DDP are negligible, and

that the power decreases with m for all of these variants. Similar conclusions hold

for the maximum variants in Table 10. Table 10 further shows that for a linear

relationship, Pearson, Spearman, Hoeffding and dCov are clearly superior, but for

the remaining three monotone relationships minm∈{2,...,mmax} pm has quite good power

properties.

I Comparisons of dCov/HHG on ranks and on data

In Section 4 we only considered distribution-free competitors. Therefore, we applied

dCov and HHG on ranks rather than on data, even though they were designed as

permutation tests on data. Usually, the computational advantage of performing the
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1. Normal vs. Normal with delta 
 f1=N(0,1) 

 f2= 0.75*N(0,1)+0.25*N(0.65,1E−6)

2. Mix. vs. Mix., 3  vs. 4 Components 
 f1= four Normal components at mean=−2,−0.4,0.4,2, sd=0.264

  f2= 0.25(N(−1.6,0.11)+N(+1.6,0.11))+0.5N(0,0.11)

3. Normal vs. Normal with many deltas 
 f1=N(0,1) 

 f2=0.5N(0,1) + 0.5 sampled from (−2,−1,...,2)

4. Normal vs. Mixture 2 Components 
 f1=N(0,1)

 f2=0.5(N(−0.91,0.16)+N(0.91,0.16))

5. Normal vs. Mixture 3 Components 
 f1=N(0,1)

 f2=1/3*(N(−1.2,0.04)+N(0,0.04)+N(1.2,0.04))

6. Normal vs. Mixture 5 Components 
 f1=N(0,1)

 f2=5 Normal Components,mean= (−1.41, −0.70,
   0, 0.70, 1.41),sd=0.1

7. Cauchy, Shift 
 f1=cauchy(0.6)

 f2=cauchy(−0.6)

8. Symmetric Gaussian mixture 
 f1=N(0,10.56)

 f2=0.5(N(−1.5,1)+N(1.5,1))

9. Asymmetric Gaussian mixture 
 f1=N(1.6,5.95)

 f2=0.1*N(−2,1)+0.9*N(2,1)

10. Asymmetric Mixture vs. Mixture  
 f1=0.5(N(−1,0.09)+N(1,0.36))

 f2=0.5(N(−1.25,0.36)+N(1.25,0.09))

11. Mix. vs. Mix., 2  vs. 3 Components 
 f1=1/2(N(−1,0.11)+N(1,0.11))

 f2=1/3(N(−1.35,0.01)+N(−0.65,0.01)+N(0.8,0.21))

12. Mix. vs. Mix., 2  vs. 4 Components, Symmetric 
 f1=two Normal Components, mean=−1,1, sd=0.33

   f2=four Normal components mean=−1.3,−0.7,0.7,1.3, sd=0.099

13. Mix. vs. Mix., 3  vs. 3 Components, Asymmetric 
 f1=1/2N(−1,0.11)+1/4(N(0.65, 0.01)+N(1.35, 0.01))

 f2=1/4(N(−1.35, 0.01)+N(−0.65, 0.01))+1/2N(1.8, 0.11)

Figure 10: The two distributions in 13 different setups considered for N = 100, which
differ in the number of intersections of the densities, the range of support where the
differences lie, and the whether they are symmetric or not.
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Figure 11: Estimated power with N = 100 sample points for the Mm (black) and Sm
(grey) statistics for m ∈ {2, . . . , 29} for the setups of Figure 10. The power of the
minimum p-value is the horizontal dashed black line when it combines the p-values
based on Mm, and the horizontal dotted grey line when it combines the p-values based
on Sm. The vertical lines show the optimal m for Mm (grey) and Sm (black).
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Figure 12: Bivariate monotone relationships (in red), along with a sample of N = 100
noisy observations (in blue).
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Figure 13: Estimated power for the DDP (black) and ADP (gray) summation variants,
using the likelihood ratio score, for the setups from Figure 12, for a sample of size
N = 100. The horizontal lines are the power of minm∈{2,...,mmax} pm using DDP (dotted
black) and using ADP (gray) .
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Table 9: Power of competitors (columns 4–9), along with the minimum p-value statis-
tic using the Mm p-values (column 1) and the Sm p-values (column 2), for N = 100.
The standard error was at most 0.0035. The advantage of the test based on the mini-
mum p-value is large when the number of intersections of the two densities is at least
four (setups of rows 2,3, 4,5,6,10,11,12, and 13). The best competitors are HHG and
DS, but HHG is essentially an m ≤ 3 test, and DS penalizes large ms severely, there-
fore in setups where m ≥ 4 partitions are better they can perform poorly. Among
the two variants in columns 1 and 2, the better choice clearly depends on the range
of support in which the differences in distributions occur: aggregation by maximum
has better power when the difference between the distributions is very local (setups
of rows 1 and 3), and aggregation by summation has better power otherwise. The
highest power per row is underlined.

Min p-value aggreg.
Setup by Max by Sum Wilcoxon KS CVM AD HHG DS

1 Normal vs. Normal with delta 0.752 0.628 0.187 0.331 0.294 0.265 0.433 0.660
2 Mix. Vs. Mix., 3 Vs. 4 Components 0.656 0.680 0.000 0.003 0.000 0.063 0.465 0.505
3 Normal vs. Normal with many deltas 0.878 0.819 0.053 0.125 0.100 0.165 0.281 0.342
4 Normal vs. Mixture 2 Components 0.515 0.595 0.052 0.231 0.153 0.154 0.397 0.382
5 Normal vs. Mixture 3 Components 0.834 0.869 0.053 0.177 0.106 0.134 0.317 0.534
6 Normal vs. Mixture 5 Components 0.879 0.880 0.051 0.123 0.084 0.100 0.200 0.373
7 Cauchy, Shift 0.799 0.871 0.847 0.917 0.920 0.893 0.933 0.846
8 Symmetric Gaussian mixture 0.803 0.798 0.035 0.182 0.191 0.491 0.727 0.812
9 Asymmetric Gaussian mixture 0.747 0.816 0.046 0.369 0.407 0.593 0.845 0.740
10 Asymmetric Mixture vs. Mixture 0.718 0.769 0.000 0.157 0.128 0.306 0.655 0.652
11 Mix. Vs. Mix., 2 Vs. 3 Components 0.670 0.656 0.000 0.032 0.011 0.031 0.129 0.441
12 Mix. Vs. Mix., 2 Vs. 4 Components, Symmetric 0.682 0.696 0.000 0.000 0.000 0.000 0.005 0.238
13 Mix. Vs. Mix., 3 Vs. 3 Components, Asymmetric 0.891 0.917 0.000 0.000 0.000 0.000 0.053 0.575
14 Null 0.050 0.050 0.049 0.039 0.049 0.050 0.050 0.041

tests on (rank(X), rank(Y )) instead of on (X, Y ), due to the distribution-free prop-

erty of the tests on (rank(X), rank(Y )), comes at a cost of lower power, as noted

by Székely et al. (2007). Table 11 shows a power comparison of these two permuta-

tion tests on ranks and on data. The results on ranks are not identical numerically

(though very close) to those of Table 2 due to the use of a different seed to generate

the data for these same settings. The power in most settings is indeed greater when

the tests are used on data, and the maximal difference is almost 30% (in the Spiral

setting for HHG) in favour of using the data. However, in some settings the power

is actually larger for the test on ranks, e.g., in the Heavisine and 5Clouds settings

for HHG, where the difference is 10% and 16%, respectively, in favour of using the

ranked observations. Comparing the power of the HHG and dCov tests on data (in

Table 11) to the power of our suggested minimum p-value statistic (in Table 2), we
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Table 10: The power of competitors (rows 3–7), along with the minimum p-value
statistic based on DDP (row 1) and on ADP (row 2) and the different maximum
variants (rows 8–11), for N = 100. The standard error is at most 0.011.

Test Line Exp2x Exp10x Sigmoid
minm∈{2,...,10} pm using DDP 0.358 0.763 0.580 0.543
minm∈{2,...,10} pm using ADP 0.365 0.760 0.555 0.550

Spearman 0.459 0.758 0.396 0.630
Hoeffding 0.446 0.750 0.409 0.637

MIC 0.282 0.198 0.312 0.130
dCov 0.433 0.746 0.395 0.637
HHG 0.337 0.706 0.509 0.545

MDDP
2×2 0.287 0.688 0.678 0.438

MDDP
3×3 0.203 0.579 0.569 0.355

MDDP
4×4 0.177 0.511 0.479 0.301

MADP
2×2 0.294 0.715 0.746 0.440

see that although dCov on data may have more power than dCov on ranks, it has far

less power than HHG on data, and that HHG on data has less power than our test

when the relationship is more complex, especially in the Sine, Heavisine, Spiral and

Circles examples.

References

T.W. Anderson and D.A. Darling. Asymptotic theory of certain ”goodness of fit”

criteria based on stochastic processes. The Annals of Mathematical Statistics, 23

(2):193–212, 1952.

L. Baringhaus and C. Franz. On a new multivariate two-sample test. Journal of

Multivariate Analysis, 88:190–206, 2004.

Y. Benjamini and Y. Hochberg. Controlling the false discovery rate - a practical and

powerful approach to multiple testing. J. Roy. Stat. Soc. B Met., 57 (1):289–300,

1995.

J. Blum, J. Kiefer, and M. Rosenblatt. Distribution free tests of independence based

on the sample distribution function. The Annals of Mathematical Statistics, pages

485–498, 1961.

74



Table 11: Power of the competitors dCov and HHG on ranks as well as on data for
N = 100. The tests on data have greater power than on ranks in most, but not all,
examples. HHG on data has the best power out of these four competitors, but like the
HHG on ranks it has a disadvantage in comparison with our novel minimum p-value
test when the relationship is more complex, especially in the Sine, Heavisine, Spiral,
Circles, and 5Clouds examples.

dCov HHG
Setup on data on ranks on data on ranks

W 0.467 0.351 0.876 0.813
Diamond 0.136 0.076 0.997 0.968
Parabola 0.418 0.369 0.727 0.795
2Parabolas 0.183 0.120 0.873 0.726
Circle 0.001 0.003 0.791 0.858
Cubic 0.631 0.612 0.660 0.742
Sine 0.412 0.427 0.803 0.788
Wedge 0.471 0.327 0.755 0.661
Cross 0.184 0.138 0.795 0.704
Spiral 0.182 0.130 0.598 0.335
Circles 0.054 0.059 0.479 0.357
Heavisine 0.476 0.470 0.471 0.570
Doppler 0.747 0.736 0.901 0.914
5Clouds 0.000 0.001 0.738 0.903
4Clouds 0.050 0.050 0.050 0.050

D.A. Darling. The kolmogorov-smirnov, cramer-von mises tests. The Annals of Math-

ematical Statistics, 28(4):823–838, 1957.

D. Donoho and I. Johnstone. Adapting to unknown smoothness via wavelet shrinkage.

Journal of the American Statistical Association, 90(432):1200–1224, 1995.

A. Feuerverger. A consistent test for bivariate dependence. International Statistical

Review, 61(3):419–433, 1993.

M. Gorfine, R. Heller, and Y. Heller. Comment on detecting novel associations in

large data sets by reshef et al., science. Available: http: // iew3technionacil/

~ gorfinm/ files/ science6. pdf , 2011.

A. Gretton and L. Gyorfi. Consistent nonparametric tests of independence. Journal

of Machine Learning Research, 11:1391–1423, 2010.

A. Gretton, K.M. Bogwardt, M.J. Rasch, B. Scholkopf, and A. Smola. A kernel

75

http://iew3 technion ac il/~gorfinm/files/science6.pdf
http://iew3 technion ac il/~gorfinm/files/science6.pdf


method for the two-sample problem. Advances in Neural Information Processing

Systems (NIPS), 19, 2007.

A. Gretton, K. Fukumizu, C.H. TEO, L. Song, B. Scholkopf, and A. Smola. A

kernel statistical test of independence. Advances in Neural Information Processing

Systems, 20:585–592, 2008.

A. Gretton, K.M. Borgwardt, M.J. Rasch, Schlkopf, and A. Smola. A kernel two-

sample test. The Journal of Machine Learning Research, 13:723–773, 2012.

Z Harchaoui, F. Bach, and E. Moulines. Testing for homogeneity with kernel fisher

discriminant analysis. Advances in Neural Information Processing Systems (NIPS),

long version: arXiv:0804.1026v1,, 20:609–616, 2008.

R. Heller, Y. Heller, and M. Gorfine. A consistent multivariate test of association

based on ranks of distances. Biometrika, 100(2):503–510, 2013.

W. Hoeffding. A non-parametric test of independence. The Annals of Mathematical

Statistics, 19(4):546–557, 1948.

T.R. Hughes, M.J. Marton, A.R. Jones, C.J. Roberts, R. Stoughton, C.D. Armour,

H.A. Bennett, E. Coffey, H. Dai, Y.D. He, et al. Functional discovery via a com-

pendium of expression profiles. Cell, 102(1):109–126, 2000.

B. Jiang, C. Ye, and J. Liu. Non-parametric k-sample tests via dynamic slicing. Jour-

nal of the American Statistical Association, DOI:10.1080/01621459.2014.920257,

2014.

J. Kinney and G. Atwal. Equitability, mutual information, and the maximal infor-

mation coefficient. Proceedings of the national academy of sciences of the USA,

doi:10.1073, 2014.

76

http://arxiv.org/abs/0804.1026


B. Laurent and P. Massart. Adaptive estimation of a quadratic functional by model

selection. The Annals of Statistics, 28(5):1302–1338, 2000.

E.L. Lehmann and J.P. Romano. Testing Statistical Hypotheses, 3rd Edition. Springer,

New York, 2005.

M. Newton. Introducing the discussion paper by Szekely and Rizzo. The Annals of

Applied Statistics, 3 (4):1233–1235, 2009.

L. Paninski. Estimation of entropy and mutual information. Neural Computation, 15

(6):1191–1253, 2003.

A.N. Pettitt. A two-sample anderson–darling rank statistic. Biometrika, 63(1):161–

168, 1976.

D.N. Reshef, Y.A. Reshef, H.K. Finucane, S.R. Grossman, G. McVean, P.J. Turn-

baugh, E.S. Lander, M. Mitzenmacher, and P.C. Sabeti. Detecting novel associa-

tions in large data sets. Science, 334(6062):1518–1524, 2011.

F.W. Scholz and M.A. Stephens. K-sample anderson-darling tests. Journal of the

American Statistical Association, 82(399):918–924, 1987.

D. Sejdinovic, B. Sriperumbudur, A. Gretton, and K. Fukumizu. Equivalence of

distance-based and rkhs-based statistics in hypothesis testing. Annals of Statistics,

41 (5):2263–2291, 2013.

N. Simon and R. Tibshirani. Comment on detecting novel associations in large data

sets by reshef et al., science. arXiv:1401.7645, 2011.

R. Steuer, J. Kurths, C. Daub, J. Weise, and J. Selbig. The mutual information:

detecting and evaluating dependencies between variables. Bioinformatics, 18(suppl

2):S231–S240, 2002.

77
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