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Identifying which taxa in our microbiota are associated with traits of in-
terest is important for advancing science and health. However, the identifica-
tion is challenging because the measured vector of taxa counts (by amplicon
sequencing) is compositional, so a change in the abundance of one taxon in
the microbiota induces a change in the number of sequenced counts across
all taxa. The data are typically sparse, with many zero counts present either
due to biological variance or limited sequencing depth. We examine the case
of Crohn’s disease, where the microbial load changes substantially with the
disease. For this representative example of a highly compositional setting, we
show existing methods designed to identify differentially abundant taxa may
have an inflated number of false positives. We introduce a novel nonpara-
metric approach that provides valid inference, even when the fraction of zero
counts is substantial. Our approach uses a set of reference taxa that are non-
differentially abundant which can be estimated from the data or from outside
information. Our approach also allows for a novel type of testing: multivariate
tests of differential abundance over a focused subset of the taxa. Genera-level
multivariate testing discovers additional genera as differentially abundant by
avoiding agglomeration of taxa.

1. Introduction. The microbiome is the collection of microorganisms and bacteria
which are part of the physiological activity of a host body or ecosystem (Hamady and Knight
(2009)). It is of interest to associate change in microbial structure to disease and other envi-
ronmental factors. Identifying the associations is difficult when the microbial load changes
substantially with the trait, as is common in inflammatory bowl diseases. Our motivating ex-
ample is the study of Vandeputte et al. (2017) that investigated the change in the microbial
ecology of fecal samples in the presence of Crohn’s disease. This change is associated with a
change in the composition of the gut microbiome of patients along with a substantial decline
in the microbial load, that is, the physical abundance of bacteria. A better understanding of
the microbial changes in the gut may lead to a better understanding and treatment of Crohn’s
disease.

A common method of measuring the composition of the bacterial community is by se-
quencing the 16S rRNA gene which codes for a crucial part of the ribosome common to all
living cells. The variable regions in the 16S rRNA gene are subject to mutations along genetic
lineages. Due to these variations, 16S rRNA sequence patterns serve as a proxy for the tax-
onomic identification of their organism. The data are generated by collecting samples from
different specimen, and the targeted variable regions are duplicated and amplified using poly-
merase chain reaction (PCR). Sequencing technology allows one to read the amplicons of the
PCR procedure and list all sequences read for each sample. This list of sequences is then
trimmed to a constant length of, for example, 150 base pairs (Nelson et al. (2014)), and the
amount of each unique sequence in each sample is recorded. Due to errors in the sequencing,
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not all unique sequences actually represent unique bacteria. In order to identify the bacteria
actually present in each sample, two alternative methods can be used: Operational taxonomic
units (OTUs) are sequences which differ up to a certain threshold, for example, 3% of base
pairs out of 150 (Hamady and Knight (2009)). Amplicon sequence variants (ASVs) are the
individual sequences (Callahan et al. (2016), Amir et al. (2017)) obtained after a denoising of
the reads. The OTUs, or ASVs, represent the finest resolution of organism type identifiable
from sequencing variants of the 16S rRNA gene. The data consist of the number of observed
sequences for each OTU or ASV in each sample. The units of interest for analysis, referred to
as taxa, are the single OTUs or ASVs, or coarser units that aggregate phylogenetically related
OTUs or ASVs.

The first challenge in statistical analysis is that the number of sequenced reads, or sequenc-
ing depth, varies from sample to sample and is mostly an artifact of the sequencing procedure
rather than a proxy to the sample’s microbial load. Therefore, only the relative frequencies
are informative, that is, the count data are compositional (Gloor et al. (2017), Mandal et al.
(2015), Kumar et al. (2018)).

The second challenge is that the vector of taxa counts is sparse by nature, as not all taxa are
measured in all samples. The percentage of zeros in the data ranges between 50% and 90%
for many types of samples (Xu et al. (2015)). A taxon with zero counts can occur for two
reasons: (1) low frequency in the sampled units, so the sample does not capture the very rare
taxa, henceforth referred to as technical zeros, (2) taxa not shared by the entire population,
henceforth referred to as structural zeros.

Additional challenges are the study size (the number of samples can be much smaller
than the number of taxa, Nelson et al. (2014)) and the strong (yet unknown) dependence
between taxa counts. Microbiome data, being compositional data, may feature both positive
and negative correlations between components (Aitchison (1986), Hawinkel et al. (2019)).
Due to the above challenges, it is difficult to design a valid inferential method for identifying
the taxa that are associated with the trait. Statistical tests that ignore compositionality can
lead to false positive findings, as demonstrated by the following example.

EXAMPLE. A toy example demonstrating the danger of ignoring compositionality. Sup-
pose we have a binary trait, that is, two groups of samples. In terms of absolute abundance,
we assume the first taxon out of m taxa increased its absolute abundance in the second group,
compared to the first group, while all other taxa have the same absolute abundances across
the two groups. The relative abundances of taxa are measured for each sample, the observed
vector of counts for each sample is multinomial with N total counts, and a probability vector
determined by the samples group identity. For this setting, denoting the probability vector for
a sample that belongs to the first group as P, the probability vector for a sample that belongs to
the second group is, for some w ∈ (0,1), (1 −w)× P +w × e1 (where e1 is the binary vector
with a single entry of one in the first coordinate). An analysis that ignores compositionality
will perform for each taxon a two sample test of equality of distributions based on the taxon
counts in each group. Since the first taxon has an increased relative frequency in the first
group, compared to the second group, and all other taxa have decreased relative frequency in
the second group compared to the first group, for every taxon the counts indeed differ in their
distribution across groups. Therefore, for large enough sample sizes the two-sample test will
reject the null hypothesis for each taxon. As w increases, the number of zero counts increase
for all but the first taxon in the second group, and the probability of a significant result by the
two-sample test increases for all taxa. However, we are interested in detecting only the first
taxon, since it is the only one driving the differences across groups. (In microbiome studies,
unlike in this example, the probability vector varies within each group.)
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When taxa with varying absolute abundances across study groups substantially affect the
microbial load, an analysis for identifying the taxa driving the association with the trait has
to take compositionality into account in order to avoid an inflation of false positives. The data
in Vandeputte et al. (2017) show a 67% decrease in the median microbial load for samples
taken from subjects with Crohn’s disease, compared to healthy subjects, as measured by flow
cytometry. Hence, in order to identify the taxa driving the association with Crohn’s disease
the analysis should adjust carefully for the effect of compositionality. The main difficulty is
the fact that a change in the relative abundance of taxa, due to compositionality, induces a
change in the prevalence of technical zeros across study groups. Therefore, even if the total
microbial load is known (as in Vandeputte et al. (2017)), scaling is not possible due to the
technical zeros.

In addition to Crohn’s disease, there are other applications studying ecologies that show
vast changes in microbial load which can benefit from the methodology developed in this
work. The study of Vieira-Silva et al. (2019) shows that fecal samples taken from patients
with ulcerative colitis and primary sclerosing cholangitis also experience a substantial de-
crease in the microbial load. The microbial load quantification method of Jian et al. (2020)
exemplifies how the differences in microbial load across human fecal samples may experi-
ence up to a tenfold change. The human salivary microbiome is another microbiome ecology
in the human body that experiences large changes in absolute load; for example, the salivary
microbial load is reduced by 50% following teeth brushing (Morton et al. (2019)).

In the study of the microbiome in soil and water enviroments, the microbial load can also
change subtantially between study groups. For example, Tkacz, Hortala and Poole (2018)
provide a method to quantify the absolute microbial load, and show a 39% increase in micro-
bial load between two soil types. A different microbial load quantification method, by Guo
et al. (2020), shows the microbial load in saline soil changes more than threefold following
soil fertilization. The microbial load quantification method of Jiang et al. (2019) shows the
rhizosphere microbial load experiences up to a 2.8-fold increase in wet season compared to
dry season in roots. In an ocean microbiome study, Sunagawa et al. (2015) show how the
total microbial load of ocean microbiota changes with depth. Specifically, the microbial load
observed in surface water is 15 times higher than that observed in the Mesopelagic zone.
Kong et al. (2021) also studied the microbiome in surface water and show samples have large
fluctuations in microbial load.

We aim to identify the taxa whose original ecosystem abundance has changed. Generally,
the original ecosystem abundance of taxa cannot be reconstructed from the relative frequen-
cies of taxa alone. Hence, a change in the absolute abundance of taxa may be undetectable if
the ratios between relative abundances of taxa have remained fixed. A testable hypothesis is
whether the absolute abundance of a taxon changed in a way that is different from the ma-
jority of changes for the taxa in the ecosystem, that is, a test of differential abundance with
respect to a reference frame of taxa (Morton et al. (2019)). Our first step is to identify a set
of reference taxa. The reference set of taxa can be identified from the data, if most taxa are
nondifferentially abundant, by selecting the taxa whose respective ratios vary little across the
data. Of course, if there is outside information on which taxa are nondifferentially abundant,
it can be used to aid selection of reference taxa. Moreover, if the study has a very large sample
size (e.g., the American Gut Project, McDonald et al. (2018)), then the dataset can be split
and part of it sacrificed for identification of the reference set. Our next step is to tackle the
question of how to test for differential abundance. Specifically, we are interested in testing
whether the ratio of taxon abundance to reference set abundance is independent of the trait of
interest.

Traditionally, the common practice of normalization by rarefaction has been used for tests
involving all microbial taxa (Weiss et al. (2017)). Our work addresses an existing gap in the
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microbiome statistical literature, regarding the difference in normalization techniques used
for whole-microbiome analysis compared with differential abundance testing for a single
taxon. We extend the idea of normalization by rarefaction and show that a subsampling,
based normalization technique, is crucial not only when analyzing the collective microbiome
composition but also when analyzing a single taxon, or a subset of taxa, for differential abun-
dance.

In Section 1.1 we review methods for analysis of differential abundance in microbiome
studies and point out limitations which this work aims to overcome. In Section 2 we present
our motivating example, a Crohn’s disease dataset that shows strong variability in micro-
bial load. In Section 3 we formalize our analysis goal of detecting differential abundance.
In Section 4 we describe our main result, a testing procedure for discovering the differen-
tially abundant taxa that has guaranteed control over false positives. This test relies on the
availability of a reference set of taxa, and we show how to estimate this reference set from
the data. We also show how to test whether a group of taxa is independent of a trait. In Sec-
tion 5 we conduct a simulation study with simulated datasets based on the data set presented
in Section 2. Data generation aims to capture the data-specific characteristics discussed in
Section 2. In Section 6 we analyze the data presented in Section 2 using both our method and
the methods presented in Section 1.1. In Section 7 we conclude with final remarks.

1.1. Review of methods for differential abundance analysis. Let X be the m-dimensional
vector of observed taxa counts. Let C(X) be a function from N

m to the real positive line so
that the analysis will associate the scaled counts, X/C(X), with the trait. Total sum scaling
(TSS) normalization selects C(X) to be the total number of counts in X. The example of
Section 1 demonstrates that the trait may be associated with a nondifferentially abundant nor-
malized taxon, so a test of independence following normalization cannot be used to identify
the differentially abundant taxa.

Paulson et al. (2013) suggest cumulative sum scaling (CSS). CSS normalization selects
C(X) so that the smallest qCSS values in X sum to one, with qCSS chosen adaptively from
the data. As with TSS, this normalization does not resolve the bias in testing induced by
compositionality, as shown in Mandal et al. (2015) as well as in our simulations in Section 5.

Kaul et al. (2017) suggest other scaling methods for use in microbiome studies based on
the normalization of Aitchison (1982). But after transformation, the null hypothesis of inde-
pendence between a taxon and the trait will be false also for nondifferentially abundant taxa
since the scaling factors considered are functions of the differentially abundant taxa. Even
taking C(X) to be the count of a specific taxon, for example, the mth taxon, is problematic
since typically for every taxon some samples have a zero count. A pseudocount is put in place
of zero, but if the probability of zero counts changes with the trait, then C(X) is associated
with the trait, leading to a biased inference.

Kumar et al. (2018) suggest an alternative scaling approach, called Wrench, based on the
assumption that taxa not associated with the condition of interest have maintained the ratios
of their respective proportions in each sample. In Example 1, for example, while the expected
values of all coordinates differ across study groups, coordinate means across all taxa, except
the first taxon, are lower in the second group compared to the first group by the multiplicative
factor 1 − w. Kumar et al. (2018) suggest estimating the common multiplicative factor from
the data for scaling taxa counts.

Fernandes et al. (2013) suggest ALDEx2, where the normalization factor, C(X), is the
geometric mean of the counts in a subset of the taxa. The counts are normalized with respect
to taxa that are estimated to be nondifferentially abundant and then log-transformed for sta-
tistical inference, as detailed in Fernandes et al. (2013). In order to avoid division by zero, a
pseudocount of 0.5 is added to all data entries. If the probability of zero counts changes with
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the trait, then the inference may not be valid, but the bias is less severe than with the previous
methods, as we show in Section 5.1.

Additional methods making use of auxiliary measurements to determine normalization
factors include the approach of Vandeputte et al. (2017) which uses flow-cytometric mea-
surements as a means to estimate the absolute microbial load of samples, the approach of
Staemmler et al. (2016) which suggests artificially inserting bacteria of types nonendemic to
the measured samples in predetermined abundance, and the use of spiked-in DNA sequences
(Quinn et al. (2019)).

Mandal et al. (2015) suggest ANCOM which avoids the need of a “per-sample” scaling
factor as follows for a binary trait. First, for every pair of taxa the Wilcoxon rank sum test
is applied for testing the independence of the ratio between the two taxa and the binary
trait. In order to avoid division by zero, ANCOM adds a pseudocount with a value of 1 to
all taxa counts. Let Wj be the number of rejections by the Wilcoxon rank sum test, at a
predefined level α, with taxon j in the numerator. Assuming that the ratio is more or less
fixed for nondifferentially abundant taxa, in a well powered study we expect a higher value
of Wj for a differentially abundant taxon j . The taxa with indices {j |Wj ≥ W∗} are declared
differentially abundant where W∗ is chosen adaptively, as detailed in Mandal et al. (2015).

Calgaro et al. (2020) show that existing methods for analyzing RNA sequencing data, such
as Deseq2 (Love, Huber and Anders (2014)), may be useful for analyzing microbiome counts
data. Deseq2 uses negative binomial GLMs to model the marginal distribution of counts.
Calgaro et al. (2020) suggest using an extension of the Deseq2 model (suggested by Van den
Berge et al. (2018)) that downweights the importance of different samples in estimation of
model parameters according to the probability that they are structural zeros, using a zero-
inflated negative-binomial model (Risso et al. (2018)). Their approach has good power, but it
ignores compositionality, and it relies on parametric assumptions.

The methods described in this section suffer from the following three related limitations:
(1) nondifferentially abundant taxa remain associated with the trait if the prevalence of zero
counts varies with the trait, since zero counts cannot be scaled; (2) many of the methods, in or-
der to apply transformations, use pseudocounts instead of the zero counts, which corresponds
to microbial load not measured in practice, and (3) some methods ignore the compositional
nature of the data, for example, TSS and CSS, while other methods, such as ANCOM and
Wrench, provide inaccurate adjustment for it due to the two aforementioned limitations. We
demonstrate in numerical experiments that the above approaches can lead to an unacceptably
inflated rate of false positive discoveries.

2. The microbiome in Crohn’s disease. Vandeputte et al. (2017) examined fecal sam-
ples from 29 subjects with Crohn’s disease (CD) and 66 healthy controls. The V4 region of
the 16S gene was amplified and sequenced from fecal samples, in addition to a microbial load
count (number of bacteria per gram of fecal material). We picked sOTUs (a type of ASVs)
using the method of Amir et al. (2017). We set sOTU length to the default value of 150 base
pairs. Following sOTU selection, sOTUs appearing only in one sample were excluded from
analysis, leaving 1569 sOTUs for analysis.

Table 1 provides summary statistics displaying key distributional differences between the
group of healthy and the group of diseased subjects. The flow-cytometry measurements show
that the total abundance of the microbiota is much lower for subjects with CD, with the
median microbial load in the CD group being less than 33% than the median microbial load
for the healthy group. With such a high change in microbial load, it is plausible that most
taxa differ in their relative abundance with and without CD. Therefore, the inference has to
take this into account.
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TABLE 1
Summary statistics for the group of healthy and the group of diseased

subjects in the study of Vandeputte et al. (2017). Row 4 shows the median and
mean prevalence of taxa in each group, where a taxon’s prevalence is the

percentage of samples in the group with at least one read of that taxon

Healthy CD

Number of samples 66 29
Median 16S sequencing depth 22,871 18,874
Median microbial load (bacteria per gram) 1.16 · 1011 3.76 · 1010

Median taxa prevalence (mean) 0.09 (0.2) 0.03 (0.14)

The total number of reads in 16S samples is also associated with CD. We observe zero
counts to be substantially more prevalent in the group of samples taken from subjects with
CD, compared to healthy subjects, both by the mean and median prevalence of taxa.

In Section 6.1 we test for differential abundance using methods that address the com-
positional bias in testing, including normalization by the flow-cytometric measurements, as
suggested in Vandeputte et al. (2017). We show that existing approaches can result in spurious
discoveries that have limited replicability, whereas our novel approach provides discoveries
that appear more replicable.

In Section 6.2 we extend our approach, which uses the reference set and a multivariate test,
to identify association with genera that are masked using a univariate analysis. The number of
reads observed under the focus subset of taxa is confounded with the research variable, either
due to confounding sequencing depth or differentially abundant taxa found outside the focus
set. The typical solution in whole microbiome testing is to adjust for confounding sequencing
depth by rarefying the total number of reads (Weiss et al. (2017)). However, when considering
a subset of taxa, the number of samples with zero total counts can be nonnegligible. For
example, out of the 61 genera analyzed, 46 genera have at least one sample with zero counts,
and 30 genera have at least 30 samples with zero counts. Samples with zero counts cannot
be removed without invalidating the test (as detailed in Section 4). We avoid rarefaction to
zero depth by using a set of reference taxa, and our tests result in detection of genera not
discovered with a univariate analysis.

In Section 6.3 we extend the popular method of microbiome principal coordinates analysis
(PCoA, Goodrich et al. (2014)) to analyze counts from a single genus. Our “within-genus”
PCoA uses the reference taxa to perform a valid PCoA analysis for a subset of the taxa.

We also perform “within-genus” PCoA, after excluding any ASV-level discovery obtained
by existing methods, to examine whether this genera subset appears to differ across groups,
though the difference was undetected by the ASV-level analysis.

3. The setup and goal. Let m and n be the number of taxa and samples, respectively.
For sample i ∈ {1, . . . , n}, we denote by Ni the total number of counts sampled, by Yi the
measured (univariate or multivariate) trait, and by Xi the m-dimensional vector of observed
taxa counts. Let Pi be the (unobserved) vector of the taxa population relative frequencies in
sample i.

For simplicity, we omit the sample subscript i when addressing a single observation. For
an m-dimensional binary vector with at least one entry of one, s = (s1, . . . , sm)′, we denote
by X(s) and P(s) the subvectors of X and P of dimension s′s (the number of nonzero entries
in s) containing the coordinates for which s is equal to 1. The sum of the entries in these
subvectors is s′X and s′P. We denote by ej the m-dimensional binary vector with a single
entry of one at coordinate j , so P(ej ) and X(ej ) are the population relative frequency and



2654 B. BRILL, A. AMIR AND R. HELLER

observed count for taxon j ∈ {1, . . . ,m}. We observe n realizations of (X,Y), where X is the
vector of multinomial counts, given the (unobserved) random vector P of population relative
frequencies for the subject,

X|P,N ∼ multinom(N,P), P(ej ) ≥ 0 for j = 1, . . . ,m, 1′P = 1.

We aim to identify the taxa that are associated with Y, taking the compositional nature of
the data into account. For this purpose we assume that there exists a group of taxa that may
be associated with Y via their sum but are otherwise independent of Y. Specifically, denoting
the (unobserved) absolute abundance of the m taxa for the observation by μ, we have the
relationship μ/1′μ = P. We assume that there is a subset vector μ(s) that is independent of
Y, except possibly through a change in the total sum s′μ(s). The dependence on the sum may
occur, for example, if an increase in other taxa (with relation to Y) caused this subset of taxa
to be less prevalent, but the relationship between the coordinates of this subset is unchanged
with Y. Therefore, μ(s)/s′μ = P(s)/s′P is independent of Y (see Mandal et al. (2015) for
a similar assumption). Such a group of taxa can serve as a reference set, defined below, for
pointing toward the discoveries of interest. We use the symbol |= to mean that two random
vectors are mutually independent.

DEFINITION 3.1. A set of taxa with indices {b1, . . . , br} is a reference set if for the
m-dimensional indicator vector b with exactly r ones at entries (b1, . . . , br), b′P > 0 with
probability one, and

(3.1)
P(b)

b′P |= Y.

Our goal is to find all taxa that are differentially abundant, that is, taxa which vary with
Y, given the reference set, while taking compositionality into account. For a given reference
set of r taxa, let bj be the m-dimensional binary vector with entries of one in {b1, b2, . . . , br}
and in j , where j /∈ {b1, b2, . . . , br}. We want to test the null hypothesis that taxon j is not
differentially abundant,

(3.2) H
(j)
0 : P(bj )

b′
j P |= Y.

If H
(j)
0 is false, then the normalized vector of relative frequencies which includes taxon j

and the reference set varies with Y, and this variability is not a consequence of a change in
the relative abundance of the sum of the taxon and the reference set. Thus, we would like to
identify all taxa for which the null hypothesis in (3.2) is false. We note that if H

(j)
0 is true,

subcompositional coherence (Aitchison (1986)) implies that 3.1 holds for the reference set.
More generally, we can consider testing a group of taxa together. Let ej be the m-

dimensional binary vector with entries of one in j. Let bj be the m-dimensional binary vec-
tor with entries of one in {b1, b2, . . . , br} and in j, where j is a vector of indices satisfying
j ∩ {b1, b2, . . . , br} = ∅. We want to test the null hypothesis that none of the j taxa is differ-
entially abundant,

(3.3) H
(j)
0 : P(bj)

b′
jP

|= Y.

If H
(j)
0 is false, then the normalized vector of relative frequencies, which includes j, and the

reference set varies with Y, and this variability is not a consequence of a change in the relative
abundance of the sum of the taxa in j and the reference set.
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We are unable to test these null hypotheses directly, since P is not observed. A simplified
analysis, which assumes that P is fixed across observations with the same Y value, allows
application of well-known tests, but such tests will have an inflated type I error probability
when P varies across observations. For example, for a binary Y and a fixed P for each value
of Y, a test of whether P(bj)/b′

jP is identical across the two groups can be conducted by
constructing a 2 × 2 table, tabulating the number of counts in j (or j) and the reference set b
across the two study groups, and performing the Fisher exact test. In Section 5 we show that
the type I error probability of the Fisher exact test can be much higher than the nominal level
when the assumption that P, given Y, is fixed is violated.

Another simplified analysis may replace the unobserved P with the observed X in the test
of (3.2), thus rejecting (3.2) if the test of X(bj )/b′

j X |= Y is rejected. This analysis is possible
only if b′

j X is nonzero for all samples. In Section 2 of the Supplementary Material (Brill,
Amir and Heller (2022)), we show that adding a pseudocount may lead to severe inflation in
the level of the test when the total number of counts observed in X(bj ) depends on b′

j P (since
all differentially abundant taxa determine the support of X(bj )/b′

j X). For example, for low
values of b′

j X, the ratio X(bj )/b′
j X will be more affected by the addition of pseudocounts,

feature less possible values, and will appear “more discrete,” even if P(bj )/b′
j P does not

depend on Y.
Next, we present our suggested approach which takes the variability of P into account and

requires that the sum of the taxa in the reference set be positive for all samples (so no addition
of a pseudocount is necessary).

4. Testing for differential abundance. In Section 4.1 we detail our reference selection
procedure for data analysis; in Section 4.2 we present our test for differential abundance,
assuming our selected reference set is valid (i.e., satisfies (3.1)). In Section 4.3 we suggest a
diagnostic test for whether the reference set is valid and discuss the implication of rejection
by this diagnostic test.

4.1. Choosing the reference taxa (b1, . . . , br). If domain knowledge exists regarding
taxa which are independent of the trait, they can serve as the reference set. For example,
spike-in of synthesized DNA (see Section “Spike-in log-ratio normalization” in Quinn et al.
(2019)) or bacteria not endemic to the ecosystem studied (Staemmler et al. (2016)).

When there is no external knowledge about taxa that are independent of the trait, we need
to both identify the reference taxa and then test with respect to this reference set, using the
same dataset. If a large number of samples is available, the data can be split into two parts,
the first part for reference selection and the second part for testing. The reference selection
procedure may include all taxa that appear least associated with the trait in the first part.

It is also possible to select a reference set and then test for differential abundance, using the
same dataset, without sacrificing part of the data for reference set selection, under the follow-
ing sparsity condition: that the absolute abundance of the vast majority of taxa is independent
of the trait (or, more precisely, that the ratio of absolute abundance of one taxon over the
other is independent of the trait for most taxa pairs). If the score statistics used for reference
set selection are independent of the test statistic used for testing (3.2) and (3.3), the selection
step does not invalidate the inference (Hommel and Kropf (2005)). As a first principle our
statistic for selection of reference taxa does not use the trait values. One approach used for
identifying a compositional reference frame is by selecting taxa with low log-ratio variances
(VLR, Aitchison (1986)), as suggested in Wu et al. (2017) and Quinn et al. (2019). We want
to take a similar approach and suggest inserting a taxon with index j to the reference set
if the log-ratio variances V ((Pi (ej ))/(Pi (ek))) are relatively small for many of the possible
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k ∈ {1, . . . ,m} \ j . Since the Pi’s are not observed, the score for selection of taxon j is based
on the variance of log-ratios of counts and defined as follows:

Sj = median{k:k �=j,k=1,...,m}(SDj,k), SDj,k = sd
{

log10

(
Xi(ej ) + 1

Xi(ek) + 1

)
: i = 1, . . . , n

}
,

where sd is the sample standard deviation taken over n values. The score Sj will tend to have
higher values for differentially abundant taxa; see Section 6.1 of the Supplementary Material
(Brill, Amir and Heller (2022)) for a comparison of the distributions of Sj ’s in differentially
and nondifferentially abundant taxa.

We suggest thresholding the scores, so the reference set is B(Scrit) = {j |Sj ≤ Scrit}.
The minimal number of counts observed in the reference set B(Scrit) is λmin(Scrit) =
mini=1,...,n b′Xi , where b is the binary vector with entry one for taxa in the reference set
B(Scrit). The value of Scrit is set so the minimum count for each sample is appropriate in
the following sense. We want the minimum count to be large enough for good power when
testing (3.2) (or (3.3)), but we also want it to be no greater than necessary from power consid-
erations in order to minimize the risk of contamination of the reference set with differentially
abundant taxa. A brief discussion of a power analysis for choosing Scrit is provided in Sec-
tion 7. In our simulations in Section 5 and Section 4 of the Supplementary Material (Brill,
Amir and Heller (2022)), we select Scrit to be the lowest value such that λmin(Scrit) ≥ 100.

The definition of SDj,k uses a pseudocount of one which is perhaps a natural but some-
what arbitrary value. We expect the choice of pseudocount value to have little impact on the
procedure (as long as the pseudocount value is not too small). For example, the interquan-
tile log ratio (IQLR, Wu et al. (2017), Quinn et al. (2019)) adds a pseudocount of 0.5 to the
counts before computing log ratio variances. For any selected value of the pseudocount, the
diagnostic procedure of Section 4.3 can be used to assess the validity of the selected reference
set.

Figure 1(A) shows the distribution of the Sj ’s and λmin(Scrit) as a function of Scrit for
the data presented in Section 2. We set Scrit = 1.163, which is the value where the function
λmin(Scrit) for the CD data shows a jump, with λmin(Scrit) jumping from 56 to 126 counts.
The selected reference set has 1197 taxa.

We end this section with two final remarks. The first remark regards the important ob-
servation that, in order to avoid biased inference, none of the samples should be excluded
from the test of differential abundance (e.g., due to zero entries). Our approach for selecting
a reference set is guided by this observation. The implication is that all samples must have a
positive number of counts in the reference. In Section 3 of the Supplementary Material (Brill,

FIG. 1. For the CD data presented in Section 2: the minimum number of reads (across samples) in a reference
set B(Scrit) as a function of Scrit for all possible score values (left panel) and for scores between 1 and 1.5 (middle
panel), and the histogram of the 1569 Sj ’s (right panel). The vertical line at Scrit = 1.163 is the threshold used
for the CD data analysis in Section 6.
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Amir and Heller (2022)), we provide examples that show that if samples are excluded from
analysis based on the the total number of reads in the reference, then the test for differential
abundance may be biased. Samples with extremely low sampling depth (technical faults) may
be removed from the entire analysis if it is reasonable to assume Y or P are independent of
the total number of counts per sample.

The second remark regards the effect of using naive approaches for reference set selection.
In Section 6.3 of the Supplementary Material (Brill, Amir and Heller (2022)), we examine
approaches selecting the reference set to be the 50 most abundant taxa or selecting 50 taxa at
random. We show these approaches can result in biased inference with an unacceptably high
inflation of false positives.

4.2. Discovering differentially abundant taxa. Let {b1, . . . , br} be the selected reference
set of taxa for sample {(Xi ,Yi) : i = 1, . . . , n}. One approach to consider is rejection of the
null hypothesis (3.2) if the null hypothesis of independence between X(ej )/b′

j X and Y is
rejected, using an appropriate level α test for the data

{(Xi (ej )/b′
j Xi ,Yi) : i = 1, . . . , n}.

We will refer to this method of differential abundance testing as normalization by ratio. Our
motivation for considering this test for differential abundance is the fact that if the null hy-
pothesis (3.2) is true, then the conditional expectation of X(ej )/b′

j X, given P, is independent
of Y, as follows from the result formally stated in the next proposition.

PROPOSITION 1. If X | N,P ∼ multinom(N,P), then

E

{
X(ej )

max(1,b′
j X)

∣∣∣ P
}

= P(ej )

b′
j P

Pr
(
b′

j X > 0 | P
)
.

See Section 1 of the Supplementary Material (Brill, Amir and Heller (2022)) for the proof.
However, even if (3.2) is true, that is, P(bj )/b′

j P |= Y, b′
j X may depend on Y, so the spread

of Xi(ej )/b′
j Xi may depend on Y when the null hypothesis (3.2) is true. Therefore, this

approach can be approximately valid at best. The next example demonstrates the limits of the
“normalization by ratio” approximation.

EXAMPLE. Inflated false positive error rates when using the normalization by ratio ap-
proach. We consider a binary trait Y, and m = 3 taxa, with taxa relative abundances dis-
tributed P ∼ Dirichlet(90,0.1,10) in the first group (with Y = 0) and P ∼ Dirichlet((1 −
w) × 90 + w, (1 − w) × 0.1, (1 − w) × 10) in the second group (with Y = 1). We observe
50 samples from each group. The sequencing depth is 104 for all samples. We test the second
taxon for differential abundance with the third taxon serving as reference, that is, whether
P(e2)/(P(e2)+ P(e3)) |= Y. This null hypothesis is true for all values of w since the distribu-
tion of P(e2)/(P (e2)+P(e3)) is Beta(0.1,10), that is, it is independent of Y (due to proper-
ties of the beta dist.; see p. 59 of Forbes et al. (2011)). However, X(e2)/(X(e2) + X(e3)) |= Y
is false, since the distribution of X(e2)/(X(e2) + X(e3)) differs between the two groups
for w > 0; see Figure 2. Testing using the normalization by ratio approach, by applying the
Wilcoxon rank-sum test or the Welch t-test, leads to an inflated number of false positives. The
inflation increasing with w, when testing at level α = 0.1 using the Wilcoxon rank-sum test,
the estimated false positive rates for w = 0,0.5,0.75, are 0.1, 0.4, and 0.82, respectively;
when testing using the Welch t-test, the estimated false positive rates are 0.1, 0.12, and 0.18,
respectively.
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FIG. 2. In the example of Section 4.2, the cumulative distribution function (CDF) of X(e2)/(X(e2) + X(e3)) in
the second group for different values of w. The CDF for w = 0 coincides with the CDF of X(e2)/(X(e2)+ X(e3))

in the first group.

A valid testing approach using the reference set relies on a key observation that if the
null hypothesis (3.2) (or (3.3)) is true, then rarefying the subvectors X(bj ) (or X(bj)) to an
equal number of counts implies that the rarefied subvectors will be independent of the trait Y.
Therefore, rejection of the hypothesis of independence between these rarefied subvectors and
Y will lead to rejection of (3.2) (or (3.3)) with the desired nominal type I error level control
guarantee. Specifics follow.

We start by describing our approach for testing (3.2). For taxon j ∈ {1, . . . ,m}, the con-
ditional distribution of X(ej ), given b′

j X and P, is binomial with parameters b′
j X and

P(ej )/b′
j P. We can eliminate the dependence on the total count, b′

j X (which may depend
on Y), by rarefying to a depth λj = mini=1,...,n b′

j Xi > λmin(Scrit) (step 2 in the algorithm
below). The distribution of the rarefied count is binomial with parameters λj and P(ej )/b′

j P;
see Lemma 1 in Section 1 of the Supplementary Material (Brill, Amir and Heller (2022)) for
details. Therefore, if (3.2) is true, the rarefied count for X(ej ) is independent of Y, even if
b′

j X depends on Y, so the steps toward a valid test are as follows:

1. Compute the minimum total counts of the taxon and the reference set, λj =
mini=1,...,n b′

j Xi .
2. For each observation i = 1, . . . , n, sample a count from the conditional hypergeometric

distribution (given the observed count for taxon j and the total count in the reference set)
with parameters λj , Xi (ej ), b′

j Xi , where hypergeom(t, z, z + w) is the distribution of the
number of special items sampled (without replacement) when selecting t distinct items from
a population of z + w items, z of which are special. The sampled count is denoted by Zi,j .

3. Test the null hypothesis of independence between the rarefied count Zi,j and Yi using
an appropriate α level test of independence on the n pairs of observations {(Zi,j ,Yi) : i =
1, . . . , n}.

PROPOSITION 2. If the null hypothesis (3.2) is true, then the aforementioned testing
procedure has level α.

See Section 1 of the the Supplementary Material (Brill, Amir and Heller (2022)) for a
proof.

The dimension and possible values of Y dictate which test is performed. For a univariate Y,
the choice is among tests for equality of distributions, if Y is categorical, and among tests of
independence between random variables if Y is continuous. For a multivariate Y, the choice is
among tests of independence between a univariate random variable and a multivariate vector
(Gretton et al. (2008), Székely and Rizzo (2009), Heller, Heller and Gorfine (2013)).
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The procedure for the test of (3.3) is similar to the procedure for the test of (3.2). It uses the
multivariate hypergeometric (MHG) distribution defined as follows. Let U ∼ MHG(λ,v,M)

denote a sample from the multivariate hypergeometric distribution, so U is a random vec-
tor of dimension p formed by counting the number of balls of types 1, ..., p, when sam-
pling λ balls, without replacement, from an urn containing M balls, out of which the num-
ber of balls of type i is vi , for i = 1, . . . , p, and v = (v1, . . . , vp). For our test we use the
MHG distribution as follows. Let λj = mini=1,...,n b′

jXi . For the ith observation, sample
Zi,j ∼ MHG(λj,Xi(ej),b′

jXi). A test of independence between Zi,j and Yi is a valid test
for (3.3), using the same reasoning as in the proof for Proposition 2.

If Y is categorical, the popular PERMANOVA test (Anderson (2001)) can be used on
the vector of rarefied counts, as in our multivariate analysis of the data in Section 6.2. If Y is
multivariate, the choice is among tests of independence between two random vectors (Gretton
et al. (2008), Székely and Rizzo (2009), Heller, Heller and Gorfine (2013)). The choice of
test should take into account the number of taxa examined (in particular, whether this number
is greater than the sample size).

Another testing procedure for (3.3) we consider is using normalization by ratio. This pro-
cedure rejects the null hypothesis using a level α multivariate test for the data,{(

Xi(ej)/b′
jXi ,Yi

) : i = 1, . . . , n
}
.

We end this section with a remark about the rarefying step 2 toward a valid test. Regard-
ing the criticism that normalization by rarefaction leads to an inefficient analysis since only
part of the data are used for inference (McMurdie and Holmes (2014)). We view rarefaction
favorably despite this fact, since it enables inference with no parametric assumptions on the
distribution of P or on the structural zeros. Arguably, the potential power loss, due to rar-
efaction, is worth the gain in assurance that the correctness of discoveries does not hinge on
model assumptions and sequencing resolution. We support our argument via examples and
extensive simulations in Sections 5–6.

4.3. A diagnostic check for contamination in the reference set. We can test that none of
the taxa in the reference set are differentially abundant as follows:

1. For each reference taxon, test whether it is differentially abundant with respect to the
reference set, excluding that taxon, using the test described in Section 4.2. Let pb1, . . . , pbr

denote the resulting p-values for the reference set with indices {b1, . . . , br}.
2. Test the intersection hypothesis that none of the taxa in the reference set are differen-

tially abundant using Simes combination test, so contamination is established using a level α

test if

pSimes = min
j=1,...,r

r × p(j)

j
≤ α,

where p(1) ≤ · · · ≤ p(r) are the sorted pb1, . . . , pbr .

Although Simes test is only valid for p-values that are independent or have a type of
positive dependence (Simes (1986)), we prefer it over the valid Bonferroni test, r × p(1) ≤
α, since it is uniformly more powerful than Bonferroni. It is possible to generate the null
permutation distribution of the test statistic pSimes and thus obtain a valid p-value, instead of
the approximation pSimes, using more demanding computational resources.

Due to lack of power, we may observe pSimes > α, even though the reference set is con-
taminated. In our simulations we observed this approach to be well powered for detecting
contaminations in the reference set and that undetected contaminations did not result in an
inflation of false positives in the set of differential abundance discoveries; see Section 6.2 of
the Supplementary Material.
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On the other hand, if the study is very well powered, we may observe pSimes < α, even
though the reference set is not really contaminated but just because tiny effects are detected
with a large enough sample size. We suggest adding the following post hoc analysis to our
pipeline if pSimes < α:

1. Shrink the reference set to include less “differentially abundant” looking taxa. For ex-
ample, if the original reference set was selected using Scrit, which was the lowest possible
value, so that λmin(Scrit) ≥ 100, use, for example, 90 instead of 100 as the threshold for ref-
erence set selection.

2. Test for contamination by computing pSimes on the shrunk reference set. If pSimes < α,
return to the previous step and shrink the reference set further. Repeat until pSimes > α or if
the minimal count is a prespecified minimal size, say 20 counts (the minimal size may be
reached for studies that are very well powered).

In Section 6.2 of the Supplementary Material (Brill, Amir and Heller (2022)), we conduct
a simulation study in order to investigate the situation where differentially abundant taxa en-
ter the reference set. We empirically show our approach to be quite robust to differentially
abundant taxa entering the reference set in terms of false positive rate control and statisti-
cal power, even for excessively high values of λmin(Scrit), for example, 3000 or 7000. We
empirically show that the diagnostic check for detecting contamination in the reference is
well powered and that by shrinking the reference set by lowering Scrit, we are able to remove
contaminations from the reference set. The post hoc analysis with shrunken reference sets is
shown to provide good false positive rate control and power.

5. A simulation study. A simulation study was performed to compare the power and
error rate control of various tests for discovering the differentially abundant taxa. We focus
on settings where Y is a binary variable indicating group membership. Our data generation
procedure, described in Section 5.1, uses the data of Vandeputte et al. (2017), so methods are
compared in a setting that resembles our data set of interest.

The new procedures, described in Section 4, for differential abundance testing with
compositionality adjustment are denoted by DACOMP, DACOMP-t, and DACOMP-ratio.
These tests use a reference set that is adaptively chosen from the data, as described in Sec-
tion 4.1, with Scrit chosen to be the minimal value such that λmin(Scrit) ≥ 100. The chance that
differentially abundant taxa erroneously enter the reference set was negligible in the vast ma-
jority of our simulated settings; see Section 6.4 of the Supplementary Material (Brill, Amir
and Heller (2022)) for details for details. DACOMP and DACOMP-t follow the procedure
in Section 4.2, and they differ only with regard to the two-sample test carried out in Step 3:
Wilcoxon rank-sum test for DACOMP, and Welch two sample t-test on transformed counts,
log(Zi,j + 1), for DACOMP-t. DACOMP-t uses the pseudocount in order to log-transform
the counts Zi,j , which may be right skewed; however, the use of the pseudocount does not
effect the validity of the test, since the Zi,j ’s are already independent of the group labeling
if the null hypothesis is true. DACOMP-ratio follows the normalization by ratio approach in
Section 4.2 with Wilcoxon rank-sum test as the two-sample test. Since the normal approxi-
mation for the distribution of the Wilcoxon rank-sum test statistic may be inaccurate in the
presence of many ties in the data (caused by the many zeros), and the t approximation for
the distribution of Welch’s t statistic may be inaccurate if the distribution of Zi,j has heavy
tails, P -values for all DACOMP variants (as well as W-TSS,W-CSS, and W-Flow mentioned
below) were computed using permutations, as suggested in Tsagris et al. (2020). Tsagris et al.
(2020) showed that, when the P -value of the Welch t-test is computed using permutations,
the test is powerful against a wide range of scenarios in addition to the normal shift setting.

We compare the new procedures to the following: ANCOM (Mandal et al. (2015)), as
implemented in version 1.1-3 of the ANCOM package; W-FLOW, Wilcoxon rank sum tests
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with the correction by Vandeputte et al. (2017); W-CSS and W-TSS, Wilcoxon rank sum
tests with the CSS and TSS normalization, respectively, with W-CSS, as implemented in the
software package metaGenomeSeq in R (Paulson, Pop and Bravo (2013)) in version 1.24-1;
ALDEx2-t and ALDEx2-W (Fernandes et al. (2013)), using the two-sample Welch t-test and
Wilcoxon rank-sum test, respectively, as implemented in version 1.16-0 of the ALDEx2 pack-
age; WRENCH (Kumar et al. (2018)), implemented in version 1.2-0 of the wrench package,
with default parameters (it makes use of the tests of differential abundance implemented in
the “deseq2‘’ software package (Love, Huber and Anders (2014))); ZINB-WAVE, the method
combination shown in Van den Berge et al. (2018), using the parameter configuration of
Calgaro et al. (2020); HG, Fisher’s exact test against a reference set. The reference set for
HG was the oracle set that includes all nondifferentially abundant taxa with Scrit = 1.3 in or-
der to demonstrate that the test is biased due to a failure to account for over dispersion (rather
than due to the reference set being contaminated with signal).

For error control we chose the false discovery rate (FDR, Benjamini and Hochberg (1995)).
ANCOM carries out its own multiplicity correction aimed at FDR control. For all other meth-
ods we applied the Benjamini–Hochberg (BH) procedure (Benjamini and Hochberg (1995))
at level q = 0.1. We chose the BH procedure since empirical evidence and simulations sug-
gest it controls the FDR for most dependencies encountered in practice, including micro-
biome applications (Jiang et al. (2017)), even though the theoretical guarantee is only for
independence or a type of positive dependence. The family of tests is smaller for the new
DACOMP tests than for the other tests, since the taxa in the reference set are not tested for
differential abundance.

We display the results for ANCOM, W-FLOW, W-CSS, DACOMP, DACOMP-ratio,
ALDEx2-t, and HG which represent key approaches. The other results are detailed in Sec-
tion 4 of the Supplementary Material (Brill, Amir and Heller (2022)), since they are slight
variations on the key approaches or have a higher inflation of false positives. We also consid-
ered in Section 4 of the Supplementary Material (Brill, Amir and Heller (2022)) the following
additional settings: (a) a setting where sequencing depth varies across groups (as discussed,
e.g., in Weiss et al. (2017)) for which we show that only DACOMP and DACOMP-t pro-
vide adequate control over false positives; (b) a (unrealistic) setting where the total microbial
load of the differentially abundant taxa is identical across study groups, so marginal methods
provide a valid method of testing, since there is no bias due to compositionality, for which
we show that the loss of power when using DACOMP is small, and (c) a setting where only
the rare taxa are differentially abundant, causing a severe inflation of false positives for some
competitor methods. The simulation results are based on 100 replications.

5.1. Data generation. As a basis for the simulation, we use the 16S samples and flow
cytometric measurements obtained from the 66 healthy subjects in the data set described in
Section 2. All sOTUs which appeared in less than four subjects were removed from the data,
leaving m = 1066 sOTUs. The median number of reads across subjects was Nreads = 22449
reads.

For a simulated dataset, a total of 60 “healthy” and 60 “sick” subjects were sampled. The
absolute abundance vector for the “healthy” ith sample, was generated by the following steps:
(1) pick at random a healthy subjects from the original CD data, k ∈ {1, . . . ,66}, and let uk

and Cflow
k denote the 16S vector of counts and the flow cytometric measurement measured in

Vandeputte et al. (2017) for this sample; (2) set the (unobserved) absolute abundances to be
μH

i = Cflow
k × uk/1′uk , H standing for “healthy.”

In order to simulate the absolute abundance in the “sick” study group, m1 ∈ {10,100} taxa
were chosen to have increased absolute abundances compared to the ‘healthy” study group,
with the effect size determined by a value of δj ∈ {0.5,1.0,1.5} chosen at random, with equal
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probabilities, for each of the taxa. Absolute abundance for “sick” subjects were simulated as
follows: (1) simulate taxa absolute abundances for sick subjects, denoted by μS

i , in the same
way as for healthy subjects; (2) update the absolute abundance of taxa associated with the
disease. Specifically, if taxon j was chosen as differentially abundant, we updated its absolute
abundance via: μS

i (ej ) ← μS
i (ej ) + Ber(0.5) · N(ρi,j , ρi,j ), where ρi,j = �ml × C

S,flow
i ×

δj /m1, C
S,flow
i is the sum of μS

i before any simulated increments in the second step, and Ber
marks a Bernoulli random variable. The expected increase in the host microbial load, due to
the simulated conditioned, is determined by �ml ∈ {0,0.5,1.0, . . . ,3.0}. For example, with
�ml = 1.0 there is an expected increase of 100% in the total host microbial load, distributed
over the m1 differentially abundant taxa. Clearly, the resulting absolute abundance vector
of taxa, μS

i , differs in distribution from μH
i only in the m1 coordinates where counts were

added, and only for these coordinates the null hypothesis (3.2) is false.
Finally, the observed counts were sampled using the multinomial distribution, with taxa

proportions based on the μH
i ’s and μS

i ’s (after normalizing their proportions to a sum of
1) and with the number of reads in each count vector selected at random from the Poisson
distribution with parameter Nreads. The sums of μH

i ’s and μS
i ’s were reported as simulated

flow-cytometric measurements.

5.2. Results. Results in this section demonstrate the validity and good power properties
of our method, DACOMP, and the potential inflation of false positives of other methods. In
numerical comparisons we show that with DACOMP-ratio we can gain power but at a price
of an inflation in the type 1 error probability. However, this inflation is typically small in
comparison with the inflation incurred by other methods.

Figure 3 shows the estimated FDR and power for each method, for the different scenar-
ios. DACOMP is the only method controlling FDR across all scenarios considered. For the
global null setting (�ml = 0), only ANCOM and HG do not control the FDR. For HG this is
expected since P|Y is not constant in each study group. For ANCOM we have observed that
generally, under the global null, FDR is not controlled. In Section 7 of the Supplementary
Material (Brill, Amir and Heller (2022)), we present additional scenarios with no differen-
tially abundant taxa where ANCOM does not control the FDR. ANCOM and W-FLOW lack
FDR control when �ml ≥ 2.0. For ANCOM this could be attributed either to the empirical
decision rule being invalid or to mistreatment of technical zeros by using a pseudocount. For

FIG. 3. Estimated FDR and power vs. �ml for DACOMP and competitors in the simulation settings of Sec-
tion 5.1. The level of the BH procedure was q = 0.1 (in dashed black). The maximal standard error for FDR and
power was 0.04 and 0.0072, respectively.
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W-FLOW the lack of FDR control can be attributed to mistreating technical zeros as well:
W-FLOW uses a multiplicative factor to correct for compositional bias, providing no solution
for technical zeros. ALDEx2-t provides FDR control for m1 = 100 but not for m1 = 10. For
DACOMP-ratio, the inflation is largest with �ml = 3, with a maximum realized FDR value
of 0.17.

For m1 = 10, the power is close to one for all methods. For m1 = 100, DACOMP has
the highest statistical power, despite being the only valid procedure. The increase in power
results mainly from excluding the reference set of taxa from testing: the mean size of selected
reference sets across scenarios varied from 506 for m1 = 100 and �ml = 0.5, to 691 for m1 =
10 and �ml = 3.0 (the standard error was <15). While DACOMP has the highest expected
number of true discoveries, its expected number of discoveries is substantially lower, as other
methods do not provide adequate FDR control. For example, for the case where �ml = 2.5
and m1 = 100, W-CSS has 176 discoveries, on average, but only 95 true discoveries.

6. Analysis of the Crohn’s disease data. We proceed to analyze the data set presented
in Section 2. DACOMP is particularly suitable for this analysis, as it is the only method
that provides valid inference when the total number of reads is associated with the sample’s
group identity; see additional details in Section 4.2 of the Supplementary Material (Brill,
Amir and Heller (2022)). Our units for analysis were the 1569 ASVs present in at least two
subjects. The reference set for analysis was selected, as described in Section 4.1, and passed
the diagnostic check of Section 4.3 with pSimes = 0.14; see Section 5.6 of the Supplementary
Material (Brill, Amir and Heller (2022)) for an analysis with an alternative reference set
selection that uses the flow cytometric measurements available in this dataset.

6.1. A univariate analysis. Table 2 shows the number of taxa discovered for each method
along with the number of discoveries shared by the different methods. Procedures DACOMP
and ALDEx-t have a similar number of discoveries, and it is substantially lower than AN-
COM, W-FLOW, and W-CSS. W-FLOW uses an additional flow-cytometric measurement,
yet it has a lower number of discoveries than ANCOM and W-CSS.

Of course, a reduced number of discoveries does not indicate that there are less true dis-
coveries. Arguably, the discoveries with DACOMP are more trustworthy from the theoretical
guarantees in Section 4 and the empirical evidence, when truth is known in Section 5, as
well as from the following analysis that examines the agreement between methods. Figures 4
and 5 depict the number of discoveries shared by each method, for abundant and “rare” taxa,
respectively. Abundant and “rare” taxa were defined to be taxa which have, on average per
subject, at least 10 counts or less than 10 counts, with 264 of 1569 taxa being abundant. The

TABLE 2
Number of discoveries by each method, for the data of Vandeputte et al. (2017). The number of discoveries by

each method on the diagonal and shared with the other methods on the off-diagonal entries. For DACOMP and
DACOMP-ratio Scrit = 1.163

Method ANCOM W-FLOW W-CSS ALDEx2-t DACOMP DACOMP-ratio

ANCOM 216 159 189 103 127 151
W-FLOW 217 157 102 131 149
W-CSS 277 95 123 166
ALDEx2-t 103 95 102
DACOMP 151 143
DACOMP-ratio 213
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FIG. 4. Graphical representation of discoveries shared by different methods for the 264 taxa with at least 10
counts, on average, per sample.

methods compared agree fairly well on which of the abundant taxa are differentially abun-
dant. For rare taxa, methods have higher disagreement. For abundant taxa the majority of
discoveries are shared by all methods. Only 12 of the discoveries made by DACOMP are
not shared with W-FLOW which uses flow-cytometric measurements. For rare taxa, W-CSS
has 59 unique discoveries not shared by any other method. No other method discovers such
a high number of differentially abundant taxa that are rare. The majority of taxa, discovered
by both ANCOM and W-FLOW but not DACOMP, are found among the rare taxa, 40 out
of 58 taxa. When comparing discoveries of “rare” taxa by the different methods to W-Flow,

FIG. 5. Graphical representation of discoveries shared by different methods for the 1305 “rare” taxa with less
than 10 counts, on average, per sample.
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ANCOM, and W-CSS discover 45 and 102 “rare” taxa, respectively, in addition to the ones
discovered by W-Flow; on the other hand, DACOMP and ALDEx2-t discover either six or
no additional “rare” taxa as differentially abundant, compared to W-FLOW. We conclude
that discoveries involving abundant taxa are replicated across different methods (relying on
different assumptions), while discoveries involving rare taxa are not replicated.

6.2. A multivariate analysis. In order to identify the genera which are differentially abun-
dant, the sOTUs were assigned taxonomy level data using a taxonomy classifier (Wang et al.
(2007)), as implemented in the assignTaxonomy function of the dada2 (Callahan et al.
(2016)) software package, Version 1.18. The classifier used the Green Genes taxonomic
training set (version 13.8, DeSantis et al. (2006)) as a reference database, and parameter
minBoot = 80, 955 sOTUs were assigned to 61 genera that contained more than a single
sOTU, with a median genus size of 5 sOTUs.

For a specific genus that includes the taxa with indices j, we tested the null hypothesis (3.3)
by applying the PERMANOVA test in order to discover whether the rarefied counts, Zi,j, for
the DACOMP approach, or Xi (ej)/b′

jXi , for the DACOMP-ratio approach, are associated
with CD status. Our metric was the robust Mahalanobis distance detailed in Chapter 8.3 of
Rosenbaum (2010) which is robust to outliers and takes the correlation among counts into
account. We also tested (3.2) by treating each genus as a taxon, where the observed taxon
count is the sum of sOTU counts in the genus. We applied the BH procedure at level 0.1 on
the 61 genera. From Table 3 we see that the number of discoveries is about the same using
the multivariate or univariate analysis at the genera level with an overlap of 2/3 discoveries
(using DACOMP, and separately, using DACOMP-ratio).

6.3. Examining signals using “within-genus” PCoA analysis. In order to examine mul-
tivariate differential abundances, we extend the method of the principal coordinates analysis
(PCoA, Goodrich et al. (2014)) for graphical ordination of microbiome data samples. Classic
PCoA (Torgerson (1952)) receives as input a distance or dissimilarity matrix between data
points and outputs a two-dimensional plot with points in the graph corresponding to data
samples. Point locations are set so that relative distances between points in the graph approx-
imate the relative distances given by the original distance or dissimilarity matrix. Microbiome
PCoA analysis typically begins with rarefying 16S count vectors to constant depth, followed
by plotting the PCoA graph using the Unifrac distance or Bray–Curtis (BC) dissimilarity
measure. The “within-group” and “between-group” distances in the graph are then examined
for meaningful biological patterns on the ecosystem level.

TABLE 3
Number of genera discovered (out of 61) as differentially
abundant using the PERMANOVA test in the DACOMP

approach (Multi) and the DACOMP-ratio approach
(Multiratio), and using the Wilcoxon test at the genera level
in the DACOMP approach (Uni) and the DACOMP-ratio
approach (Uniratio). The number of discoveries by each

method on the diagonal and shared with the other methods
on the off-diagonal entries

DACOMP: Multi Multiratio Uni Uniratio

Multi 20 18 15 17
Multiratio 33 16 21
Uni 22 22
Uniratio 34
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We examine the distribution of counts across genus j, compared to the total number of
counts in both genus j and the reference taxa, by constructing PCoA plots using a distance
metric between Zi,j’s. Our approach naturally fits this analysis since distances are computed
after accounting for the varying number of reads available under the subset of taxa analyzed;
hence, no additional rarefaction steps are needed. We term this approach “within-genus”
PCoA analysis. We use the BC distance measure; see discussion on alternative distance met-
rics in Section 5.4 of the Supplementary Material (Brill, Amir and Heller (2022)). In order to
avoid a setting where some Zi,j’s contain only zeros and the BC metric cannot be computed,
we append a coordinate to Zi,j’s which contains the count λj − ∑

j∈j Zi,j . For this setting,
where the BC measure is computed over subvectors with identical sums, values for the BC
measure are equivalent to the �1 distances up to a constant scaling factor.

“Within-genus” PCoA plots allow for an unsupervised analysis of the data, as the next
example shows. Using the multivariate tests, described in Section 6.2, it is possible to identify
genera that have species positively and negatively associated with the trait. PCoA analysis
can be used for visualizing these multivariate associations. In Section 6.2, five genera were
discovered by the multivariate test alone. In the PCoA plots the point clouds for the two study
groups differ; see Figure 6 for “within-genus” PCoA plots for two such genera. These genera

FIG. 6. Top row: “within-genus” PCoA (using BC dissimilarity) for two genera found differentially abundant
by multivariate DACOMP analysis over genus ASVs in Section 6.2 but not discovered as differentially abun-
dant by a univariate test using the sum of genus counts. Black “x’s” and grey “+” represent samples from the
CD and control groups, respectively. The origin is depicted by two blue dashed lines. “Within-genus” PCoA
done using BC dissimilarity; see additional details in Section 6.3. Bottom row: boxplots for the ratio of genus
count to the total number of counts found under both the reference and genus in each study group. The genera
“g__[Ruminococcus]” (left column) and “g__Blautia” (right column) contain 18 and 30 taxa, respectively, of
which only five and 12 ASV-level taxa discoveries were made.
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are particularly interesting from a biological perspective since they show ASVs from the same
genus behave differently in the presence of CD. For some genera this behaviour has also been
observed in other studies. For example, the genus “Blautia” is known to include ASVs that
increase as well as ASVs that decrease in relative abundance in the presence of CD. We
provide two examples of such ASVs in Section 5.5 of the Supplementary Material (Brill,
Amir and Heller (2022)). Similar effects are documented for these ASVs in our analysis of
the data. In Section 5.1 of the Supplementary Material (Brill, Amir and Heller (2022)), we
provide the “within-genus” PCoA plots for all genera discovered as differentially abundant
in Section 6.2.

“Within-genus” PCoA accounts for variation in the number of reads observed under j, due
to both variations in the total sequencing depth and variations in the number of counts mea-
sured for differentially abundant taxa outside of j. A naive PCoA analysis for a specific genus
would begin by rarefying all samples to constant depth, followed by computing distances be-
tween the subvectors corresponding to genus ASVs, for example, using the �1 distance met-
ric. This naive analysis would disregard variations in the number of counts observed under
X(ej) due to differentially abundant taxa outside of j. In Section 5.2 of the Supplementary
Material (Brill, Amir and Heller (2022)), we show “within-genus” and naive PCoA plots for
the genera “Clostridium” and “Oscillospira;” two examples were our “within-genus” PCoA
analysis that has higher sensitivity to differential abundance effects in the data compared to
the naive analysis.

When performing “within-genus” PCoA analysis, an interesting question is whether sig-
nals at the genus level result from specific ASV level discoveries alone or are a property of
the genus. Our “within-genus” PCoA approach allows researchers to visually explore this.
In Section 5.3 of the Supplementary Material (Brill, Amir and Heller (2022)), we reconduct
our “within-genus” PCoA analysis after excluding from the data ASVs discovered as differ-
entially abundant by any of the methods considered in Table 2. Figure 15 in Section 5.3 of
the Supplementary Material (Brill, Amir and Heller (2022)) shows the genera “Bacteroids”
and “Lachnospira” as examples for differentially abundant genera that present a strong signal
in the “with-genus” PCoA plot, even after removing all ASV-level discoveries from the data.
This result hints that the number of differentially abundant taxa in these genera is greater than
identified by the univariate analyses of Section 6.1.

7. Final remarks. A crucial step in our approach is the identification of an appropriate
reference set. In Section 4.1 we provide a data adaptive method which avoids using the trait
values explicitly for reference selection. Since the validity of the test is ensured only if (3.1)
holds for the selected reference set, and the larger the reference set, the larger the chance
of differentially abundant taxa contaminating it, we suggest selecting the smallest possible
reference set for which the subsequent analysis has good power.

Researchers may conduct a power analysis for setting the minimal total count in the ref-
erence set. A numerical simulation approach can be taken, for example, using methods for
simulating microbiome data as in Hawinkel et al. (2019) for setting this parameter for antici-
pated effect sizes.

The DACOMP procedure for testing (3.2) and (3.3) relied on a single draw of counts for
analysis of the data. It may be tempting to “derandomize” the analysis by considering several
rarefied samples, instead of relying on a single draw; however, simplistic approaches, such
as averaging test statistics across multiple rarefactions of the data or averaging the rarefied
draws themselves, will result in a nonvalid test. To see why, consider the case where the
tested taxon j is not differentially abundant, and the total number of counts available in the
taxa with indices {j, b1, . . . , br} for samples with group label Y = 0 is stochastically smaller
than for samples with group label Y = 1, that is, b′

j Xi tends to be smaller if Yi = 0 than if
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Yi = 1. Hence, counts in samples with a trait of Y = 0 are more likely to be resampled across
multiple rarefactions of the data compared to counts from samples with Y = 1. Therefore,
the bivariate distribution of two rarefied draws taken from a single sample is different across
different values of Y. Specifically, multiple draws from a sample with Y = 0 will have a
higher correlation compared to multiple draws from a sample with Y = 1. Constructing valid
inference methods that consider the dependence between subsequent draws is a challenge for
future research.

We note that, when analyzing counts in a block design, the limitation of using a shared rar-
efaction depth for analysis is no longer needed, and DACOMP rarefaction can be performed
independently in each block. For example, when testing for gut taxa differential abundance
w.r.t. BMI, while conditioning on the host diet and with several diets recorded in the data,
a different value of λj can be selected for each diet group. For this setting, computation of
valid P -values can be performed by permuting trait values within blocks. We plan to address
the tasks of reference selection and differential abundance testing in block designs in future
research.

We provide empirical evidence that our approach is useful in a study of Crohn’s disease,
where the compositional effect is large. In addition, we analyze in Section 8 of the Supple-
mentary Material (Brill, Amir and Heller (2022)) the differential abundance of taxa across
49 pairs of adjacent body sites in the human body, using data from the Human Microbiome
Project (Gevers et al. (2012)), where DACOMP discovers a considerable number of taxa as
differentially abundant. Adjacent body sites in the oral cavity, throat, and skin are more likely
to have similar microbial loads and most pairs of taxa maintaining their ratio of abundances
across body sites. Hence, alternative methods are found in high agreement with DACOMP.
Specifically, we show there are little to no discoveries lost when normalizing by rarefaction.

In Section 9 of the Supplementary Material (Brill, Amir and Heller (2022)), as a second
example for data set with a large change in the microbial load across study groups, we ana-
lyze data from a stool sample dilution experiment (Staemmler et al. (2016)). Fecal samples
in the study were first diluted at different ratios and then “spiked-in” with a known load of
three types of bacteria. Unlike previous examples, for this data set the “ground truth” for
differential abundance is known. Moreover, the traits examined are continuous: the dilution
factor and the microbial load spiked-in. Therefore, we tested (3.2) using Spearman’s corre-
lation test, and we showed that DACOMP detects the true differentially abundant taxon and
that some of the other methods have an inflation of false positives. Instead of Spearman’s
correlation test, other tests of independence can also be used with our software.

Other fields of study that gather data by sequencing PCR amplicons also make use of sta-
tistical methods aimed at analyzing compositional data, for example, RNA-seq (Quinn et al.
(2019)), metabolomics (Kalivodova et al. (2015)), shotgun sequencing techniques for micro-
biome data (Luz (2019)), and study of immune system response (Vieira (2020)). Adapting
DACOMP and DACOMP-ratio to such datasets is an interesting direction for future work.
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SUPPLEMENTARY MATERIAL

Additional simulations and data analyses (DOI: 10.1214/22-AOAS1607SUPPA; .pdf).
An additional PDF file with supplementary material containing simulations results for ad-
ditional competitor methods, further examination of the reference selection procedure, and
additional data analyses.

https://doi.org/10.1214/22-AOAS1607SUPPA
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Detailed list of discoveries for the Crohn’s disease data (DOI: 10.1214/22-AOAS1607
SUPPB; .zip). A XLSX file containing the list of discoveries, by method, for the univariate
and multivariate analyses described in Section 6.

R-package for the DACOMP method (DOI: 10.1214/22-AOAS1607SUPPC; .zip). An
R language implementation for the DACOMP method.

Code for reproducing results (DOI: 10.1214/22-AOAS1607SUPPD; .zip). Scripts and
data used for the simulations and analyses performed in this paper.

QIIME2 plugin for DACOMP (DOI: 10.1214/22-AOAS1607SUPPE; .zip). A QIIME2
plugin allowing DACOMP to be run from within the QIIME 2 software for analysis of 16S
counts data.
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