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We propose a method for the statistical analysis of fMRI data that tests
cluster units rather than voxel units for activation. The advantages of
this analysis over previous ones are both conceptual and statistical.
Recognizing that the fundamental units of interest are the spatially
contiguous clusters of voxels that are activated together, we set out to
approximate these cluster units from the data by a clustering algorithm
especially tailored for fMRI data. Testing the cluster units has a two-
fold statistical advantage over testing each voxel separately: the signal
to noise ratio within the unit tested is higher, and the number of
hypotheses tests compared is smaller. We suggest controlling FDR on
clusters, i.e., the proportion of clusters rejected erroneously out of all
clusters rejected and explain the meaning of controlling this error rate.
We introduce the powerful adaptive procedure to control the FDR on
clusters. We apply our cluster-based analysis (CBA) to both an event-
related and a block design fMRI vision experiment and demonstrate its
increased power over voxel-by-voxel analysis in these examples as well
as in simulations.
© 2006 Elsevier Inc. All rights reserved.
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Introduction

The typical analysis of fMRI data uses one or both of two main
analysis approaches. The single-voxel approach creates activation
maps by testing each voxel separately (possibly after spatial pre-
processing, e.g., smoothing) for correlation with the experimental
paradigm (predictor) and declaring a voxel active if the p-value is
less than some threshold. (The threshold value may be pre-decided,
or it may be adjusted adaptively by the data, e.g., using FDR.) The
second common approach is to pre-define a region of interest
(ROI), based on either anatomical or functional data (by an
already-established paradigm known to activate that region), and

then to perform statistical analysis on the ROI time course obtained
from the new experiment.

Both of these analysis approaches have produced a wealth of
important findings. Nevertheless, they have several limitations.
Activation maps obtained by single-voxel analysis are inherently
limited by the SNR of individual voxel data, which is typically
low. Furthermore, the very large number of statistical tests (a
typical acquisition involves tens of thousands of voxels) requires
adjusting the p-values for multiple comparisons, imposing high
statistical thresholds that may reveal only the voxels with the very
highest SNR but mask others that do have real effects. To avoid
this loss in sensitivity, activation maps are often presented with
‘raw’ p-values, i.e., without adjusting for multiple comparisons,
choosing the threshold on a case-by-case basis; but this hampers
the replicability of the results because it makes it hard to compare
results from different experiments and/or observers. The ROI
approach overcomes the low SNR inherent in single-voxel data but
introduces other serious shortcomings. The most obvious problem
is that it thwarts researchers’ ability to discover effects of the
experimental manipulations in brain regions other than those
already hypothesized and pre-defined. In addition, the chosen ROI
itself may be comprised of subregions that behave differently, but
current ROI analysis methods do not allow researchers to discover
such microstructure. Finally, there are methodological problems:
the quality of the ROI data depends heavily on how reliably the
region(s) could be defined prior to the critical experiment. The pre-
defined ROI is likely to contain a mixture of voxels that do co-vary
with the experimental manipulation with voxels that do not, and
the latter add noise without adding any signal.

In this paper, we present a novel fMRI analysis method, a
‘cluster-based analysis’ (CBA) method. The approach can be
thought of as a ‘hybrid’ between the single-voxel and the ROI
analyses, combining some of the advantages of each while avoiding
many of their pitfalls. Like the single-voxel approach, CBA creates
complete activation maps: every voxel in the acquisition volume has
an a priori chance of being ‘discovered’. The important difference
from the single-voxel approach is that the units of analysis are now
contiguous clusters of voxels, taking advantage of the increased
SNR of multi-voxel data, as in the ROI approach.

Our approach is based on a central tenet articulated by Penny
and Friston (2003): “the fundamental quantities of interest to the
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neuroimager are the location, shape, and temporal signature of
clusters of voxels showing task-related activity.” The clusters may
be large, containing many voxels, or they may be small such that
they are comprised of only a few voxels (e.g., the V1 “blind spot”).
In both cases, the unit of a ‘voxel’ is arbitrarily determined by the
measurement technique and does not represent a primary neural
entity. Although this is implicit in the way results are reported in
most studies, there is lack of adequate analysis methods to deal
with functionally significant clusters. The correlation among
neighboring voxels is well recognized and is commonly incorpo-
rated into the analysis by applying a spatial filter prior to the tests
for significance. The spatial resolution of the resulting statistical
maps depend in such cases on the spatial filters used, losing the
opportunity to capture a more refined microstructure of correla-
tions that may exist in the data.

The approach we propose here makes use of the correlation
between neighboring voxels while retaining the spatial resolution of
the data. We first identify clusters based on correlation between
voxel time series during a preparatory scan (e.g., a functional ROI
localizer). We then perform on each of the clusters a test for
significant activation during the target experiment. The null
hypothesis we test is that all voxels within the cluster are non-
active. We define a cluster as “active” if it contains at least one voxel
that is active, and as “non-active” if it contains no active voxels. We
will use the terms “detected cluster” or “a cluster that is declared
active” to refer to a cluster whose null hypothesis is rejected. When
testing whether to declare a cluster as active, we use the time course
signal constructed from the average of the constituent voxels’ time
courses. Other than that, testing proceeds as in voxel-by-voxel
analysis (e.g., a generalized linear model (GLM) analysis of the
correlation between the signal and the experimental paradigm). This
approach guarantees that each p-value is uniformly distributed under
the null hypothesis, thus validating our testing procedure.

Our approach has several advantages: (1) averaging data from
multiple voxels increases the SNR of each statistical comparison; (2)
because the statistical testing is now performed on clusters, the total
number of tests is reduced; (3) controlling the proportion of
erroneously detected clusters is more relevant than merely the
proportion of erroneously detected voxels. Indeed, a common practice
is to eliminate from the activationmaps isolated voxels (mini-clusters)
even if they passed the threshold. Similarly, smoothing the activation
map introduces signal into non-active voxels but creates no new
regions (i.e., aggregates of contiguous voxels). Both widely used
procedures reveal the preference of investigators for inference on
regions rather than on individual voxels.

Note that the above procedure is based on two experimental
stages, so the clusters are defined on a different data set than the
one used to test for activation under the paradigm of interest.
Furthermore, because the first experimental stage is essentially the
same as that used in the traditional ROI approach, ROIs can still be
pre-defined and, as we shall see later, used in conjunction with the
clusters in adaptive, more powerful statistical testing. When a
localizer experiment is not available or not possible to conduct, it is
still possible to use the CBA approach by performing the
experiment twice, using the data from the first experimental run
to generate clusters and the results of the second experiment to test
the clusters for paradigm-related activation.

In the Clustering method section, we describe the first stage of
the analysis, how to define the units of analysis using a clustering
method. In the FDR on clusters section, we describe the second
stage of the analysis, how to discover which clusters are active. We

may seek clusters of activity in the entire brain, or within a pre-
defined ROI. If the search is constraint to a relatively small ROI,
we suggest a further improvement in the statistical analysis in the
Adaptive FDR section, which describes a more powerful method
for controlling for multiple testing. This method may be
successfully applied also to test voxels of activity rather than
clusters of activity within the ROI. Next, we apply our analysis to
both real and simulated fMRI data. The results are detailed in the
Results section and our conclusions in the Discussion section.

The CBA algorithm

Clustering method

The CBA approach is based on using data-driven clusters as the
units of analysis. The first step is therefore to form these clusters,
based on fMRI data other than the data used to test the
experimental paradigm of interest. We constrain the clusters to
be contiguous regions in the brain. This is in contrast to many
clustering methods in fMRI that ignore the contiguity constraint
when grouping together similar voxels (e.g., Goutte et al., 1999;
Windischberger et al., 2003).

The gain when using the CBA approach in the ability to detect
a larger proportion of truly active brain areas (the gain in power)
will be larger as the degree of homogeneity of the clusters (the
proportion of the active voxels in the active cluster) is larger. The
scientific importance of homogenous similarly activated clusters
was discussed in the Introduction section, here we will focus on
its importance in terms of the ability to discover activated clusters
and the interpretability of cluster FDR. The level of noise in the
cluster average time course is, by definition, smaller than the
noise in the a voxel-by-voxel time course. At the same time, if
the cluster contains only a few activated voxels, then the average
time course SNR can still be smaller than the SNR in the
activated voxels in the cluster, making it harder to detect the
cluster activation than it is to detect individual voxel activation.
Weighing these opposing factors, we favored a clustering
algorithm that will produce small clusters, even if this means
that the activated clusters will not correspond to whole activated
modules but only to subsets of modules. The spatial structure of
the data is taken into account by allowing only neighboring
voxels to belong to the same clusters. The neighborhood is taken
per volume, i.e., where every voxel has 26 neighbors. Because
the neighborhood extends across slices, the slices need to be
corrected for different acquisition times prior to clustering. This
correction is especially important if the slice acquisition order is
interleaved.

The clustering algorithm is as follows:

1. For each voxel, the correlation with each of its neighbors is
computed.

2. For every voxel, the neighbor with the highest correlation is
found (after adjusting correlation values for distance on the
acquisition grid, see below). Note that this is not a symmetric
property: given a voxel i that is maximally correlated with
neighbor j, voxel j may be maximally correlated with another of
its neighbors, k.

3. Each voxel and its maximally correlated neighbor define an
initial region, and if the same voxel is in two or more regions
these regions are joined together, iteratively until the process
terminates in non-overlapping clusters.
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Fig. 1 is a schematic display of step 3 in the algorithm. (For
visualization reasons, it is shown on a slice rather than volume.)
Note that the resulting clusters’ sizes and shapes are data driven,
unlike most smoothing methods where neighboring voxels are
joined into neighborhoods of fixed sizes and shapes over which the
signal is averaged.

To counteract biases in the comparison of correlations among
nearest neighbors that have unequal distances on the acquisition
grid, the raw correlation values were adjusted as follows. Let
ρ(d) be the correlation at distance d and let ρ(0)≡1. Our goal is
to keep the ratio of attenuations of the correlation between ρ(1)
and ρ(d) constant relative to the attenuations between ρ(0) to
ρ(1) for any d>1. We estimate this constant robustly using the
median correlations at each distance. For example, for d¼ ffiffiffi

2
p

(e.g., diagonal neighbors on the same slice), the constant is

c ffiffiffi
2

p ¼ 1=m1

m1=m ffiffi
2

p , where m1 and m ffiffi
2

p are the median correlation values

of horizontal/vertical neighbors and
ffiffiffi
2

p
distance diagonal

neighbors, respectively. Our adjusted correlation, ρ̂(1), should

therefore satisfy c ffiffiffi
2

p ¼ ˆ1=qð1Þ
q̂ð1Þ=qð ffiffiffi

2
p Þ, i.e., q̂ 1ð Þ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
qð ffiffiffi

2
p Þm1

q ffiffiffiffiffiffi
m1

m2

r
d

Similarly, for between slice neighbors that are a distance d¼ffiffiffi
3

p
apart, q̂ 1ð Þ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
qð ffiffiffi

3
p Þm1

q ffiffiffiffiffiffi
m1

m3

r
, where m3 is the median

correlation of the between slice diagonal neighbors.
Fig. 2 shows the correlation adjustment process for correlations

between a representative voxel and its neighbors. The voxel is paired
with the neighbor with whom the adjusted correlation is maximal. If
there are more than 3 distances for neighbors the adjustment should
be done for each as above.

FDR on clusters

The resulting clusters from the preparatory scan serve as our
units of analysis in subsequent analysis of the experimental data. For
each cluster, we calculate the average time course of its constituent
voxels and use it as the cluster’s signal. Then, p-values for the

clusters are calculated. Each p-value is uniformly distributed under
the null hypothesis that none of the voxels in the cluster are active.

Even though using clusters rather than voxels reduces the
extent of the problem of multiple hypotheses testing, this analysis
still involves testing thousands of clusters (e.g., if we test at the
0.05 level of significance, then even if all 1000 brain clusters are
(in truth) non-active, we will declare, on average, 50 clusters as
active). One way to tackle this increased probability of making
false discoveries is to control the false discovery rate (FDR). The
FDR is the expected proportion of false discoveries among the
discoveries. Setting our threshold level at 0.05, this means that on
the average we expect no more than 5% of the discoveries to be
false discoveries. In our case a discovery may be a detected voxel
in single-voxel analysis or a detected cluster in CBA. Note that
for a rightfully detected cluster, one can only conclude that it
contains at least one active voxel, not that all voxels are truly
active.

The BH procedure (Benjamini and Hochberg, 1995) has been
adopted in the fMRI community for controlling the FDR at any
desired level q while testing voxels (see Genovese et al., 2002;
Stanley and Rubin, 2003), with implementations in software
packages such as SPM and Brain Voyager. The results of Storey
(2003) provide a Bayesian interpretation to the FDR. For fMRI,
this implies that the posterior probability that the cluster is not
active given that it was detected is less than q.

The BH procedure makes use of the m p-values, calculated one
for each voxel for testing its activation. Sorting these p-values, we
get P(1)≤…≤P(j)≤…P(m). Then find the largest p-value among all

those satisfying PðjÞVq
j
m
; call it P(k), and declare the k voxels

whose p-value is less or equal to P(k) as active.
The procedure can be equivalently presented, and motivated, by

describing it as an “adjustment” made to the raw p-values. If we
choose P(j) as the threshold to separate activated voxels from not
activated ones, j voxels will be chosen as active. Denoting by m0

Fig. 1. A graphical display of step 3 of the clustering algorithm. Each arrow
starts from a different voxel and points to its maximally correlated neighbor.
The different colors denote the clusters obtained for this set of voxels. (For
interpretation of the references to colour in this figure legend, the reader is
referred to the web version of this article.)

Fig. 2. A graphical display of the procedure used to adjust the nearest-
neighbor correlation values for unequal distances on the acquisition grid.
The raw correlations are noted by a circle and displayed as a function of the
distance from the voxel at study. The adjusted correlations are noted by a
black triangle at distance 1, connected with a dashed line to the
corresponding raw value. The maximal correlation voxel is highlighted by
an enclosing large circle (in this example, it belonged to a d¼ ffiffiffi

3
p

nearest
neighbor). The median correlations are noted by black squares.
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the number of voxels that are not (truly) activated (out of the entire
sample of m voxels), on average P(j)m0 non-activated voxels will
be (falsely) declared as active. Thus, a crude estimate of the

proportion of false discoveries is
PðjÞm0

j
d. There may be a larger p-

value for which the crude estimate may be even smaller. Hence,
taking a greedy approach we may replace the estimate by

min
PðiÞm0

i

��izj
n o

. Because we expect the number of truly active

voxels to be a small fraction of m (as typical in brain imaging
experiments), we may (pessimistically) approximate m0 by its
upper bound m without great loss in sensitivity. Thus, we get the
“BHF-DR-adjusted p-values” as follows:

PBH
ðjÞ ¼min

PðiÞm
i

����izj

� �

The BH-adjusted p-values can now be compared with the
desired level of FDR, say q=0.05, and all those voxels for which
P(j)
BH≤q be declared as active.
The BH procedure, in either form, controls the expected

proportion of falsely discovered voxels among all voxels dis-
covered at the desired level. Note that whereas the above
provides an intuitive argument that the procedure controls the
FDR, the actual proof is much more involved (see Benjamini
and Hochberg, 1995; Benjamini and Yekutieli, 2001). In
Benjamini and Yekutieli (2001), it is proved to hold when the
p-values at the different voxels are independent and under a
technical condition, called positive regression dependence, that
holds when the noise in the data is Gaussian with non-negative
correlation across voxels and the tested hypotheses are one sided.
According to Genovese et al. (2002), this is a reasonable
assumption in fMRI. They argue that whereas strict indepen-
dence is hard to verify and will often fail with neuroimaging
data, it is often approximately true in the sense that the
correlations are local and tend to be positive. Nichols T.
(personal communication) has verified the assumption of fMRI
data. This assumption is widely accepted in fMRI literature.
Moving to clusters, the resulting test statistics also satisfy this
technical condition because if voxels are positively correlated so
are cluster averages:

cov

�Xn
i ¼ 1

aiXi;
Xm
i ¼ 1

biYi

�
¼

Xn
i ¼ 1

Xm
j ¼ 1

aibjcovðXi; YjÞz0 if

covðXi; YjÞz0 and ai> 0; i ¼ 1;…; n; bj> 0; j ¼ 1;…;m;

where ai=1 /n, bj=1 /m for the averages of clusters of size n
and m, respectively, and the covariance between every pair of
voxels cov(Xi, Yj ) is non-negative. We checked this assumption
for our analysis reported in the section CBA results on an fMRI
vision experiment and found that the average correlation
between the clusters was 0.57 and 0.25 in the block design
and event-related experiments, respectively, with only one
statistically non-significant negative correlation, at −0.02 (p-
value>0.4).

In CBA,we use the same procedure on the p-values obtained for the
clusters, replacing the total number of clustersmc for the total number of
voxels used above. Thus, the procedure controls the expected
proportion of falsely discovered clusters among all clusters declared
active. Note that a falsely discovered cluster is a cluster that contains no
active voxels, and correspondingly a truly discovered cluster is a cluster

that contains at least one active voxel. The point of view taken here is
similar to the one taken in (Pacifico et al., 2004) in the sense that a
cluster is considered a discovery rather than an individual voxel,
although the methods proposed there and here are very different in
principle as well as in detail.

Of course one should bear in mind that with CBAwe give up the
control of FDR on voxels. Thus, the FDR on voxels may be in certain
situations higher than the FDR on clusters, especially if there are many
non-homogenous clusters that contain both activated and non-activated
voxels. We believe that researchers are interested in these flexible units
of analysis for which conclusions are taken, rather than in the artificially
generated voxel units. Thus we emphasize the control of FDR of
clusters rather than the FDR of voxels.

The FDR methodology is geared to handle a pre-determined
family of hypotheses of fixed size. Here the number of
hypotheses and their identity may vary from one realization of
the preparatory scan to the other. But because the clustering step
is performed on the preparatory scan, it is independent of the
analysis step, so using a conditioning argument the FDR is still
controlled.

Adaptive FDR

The testing of clusters rather than voxels reduces the extent of
the multiple hypotheses testing problem as the number of clusters
tested mc is smaller than the number of voxels tested m. In fact
the reduction when using the clustering algorithm in Clustering
method section is to at least m

2
. The number of tests conducted can

be further reduced by restricting the analysis to clusters within
regions of interest (ROI) rather than searching over the entire
brain for activity. Such ROI can either be pre-defined (e.g.,
anatomically) or extracted from the experiment that is already
being used to define clusters. The restriction to an ROI is the
same as in the common ROI analysis approach, but whereas the
common approach tests for activation of the entire ROI as a single
unit, our testing units remain clusters, those ones which are within
the ROI. Thus, CBA in combination with ROI analysis can be
viewed as helping us search for activation within subregions of
the ROI.

In a successful choice of ROI, the potential proportion of
activated clusters out of all tested clusters within the ROI is much
larger than when analyzing the entire brain. This offers an
opportunity to use an adaptive method that estimates this
proportion, and use it instead of the more conservative value mc

(for a similar observation, see Genovese et al., 2002). This will
increase the proportion of the clusters detected as active out of the
active ones (the power). Recall that when we motivated the BH
procedure in the FDR on clusters section, we bounded the number
of non-active units by the total number of units tested. In the
adaptive procedure, we try to estimate the number of non-active
units and plug in the estimate.

In particular, we make use of the adaptive two stage pro-
cedure introduced by Benjamini, Krieger and Yekutieli (Techni-
cal Report RP-SOR-01-03, URL http://www.math.tau.ac.il/
~ybenja/MyPapers/bkymarch9.pdf) on cluster units. The ordered
cluster p-values areP(1)≤…≤P(mc). First, we run the BH procedure,

and get k1 ¼ max i : PðiÞ≤
q

1 þ q
i
mc

� �
clusters declared as active.

Next, we estimate the number of null clusters, m0c, by m̂0c= (1+q)*

(mc−k1). Finally, we use the BH procedure with q* ¼ q
mc

m̂0c
; i.e.,
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k2 ¼ max i : PðiÞ≤q
i

m̂0c

� �
. As the proportion

m0c

mc
is smaller, the

gain in power in using the adaptive procedure rather than the BH
procedure is expected to be larger.

Benjamini, Krieger, and Yekutieli prove that it controls the
FDR under independence of the test statistics and argue that this
is also the case under the PRDS assumption (see FDR on
clusters section). In the Validation using simulations section, we
show that the adaptive FDR procedure preserves an FDR level of
0.05 for simulated signals that take into account the fMRI
dependency structure. Other adaptive procedures exist in the
literature (for a review, see Benjamini et al., 2005). The only
other method with proven FDR control under independence of
the test statistics, making use of a different estimator of m0, is in
Storey et al. (2004).

Methods

fMRI data acquisition

Scanning was performed on a 3-T head-only Siemens Allegra
MRI Machine. A head coil was used for structural scans
(transmit/receive; Nova, MA). Functional data were acquired
with a flexible four element array of surface coils (receive only;
Nova, MA) fit into the head coil (transmit); the array elements
were placed over the occipital lobe and temporal lobes to
maximize signal from these regions. A set of 16 high-resolution
slices oriented parallel to the lateral fissure were acquired using a
T1-weighted spin echo sequence (TR=600ms, TE=9.1ms, flip
angle=90°). Interslice distance was 4mm (no gap, interleaved
acquisition); resolution was 128×128, FOV 192mm, resulting in
4×1.5×1.5mm voxels. Functional (T2*-weighted) EPI images
(TR=2s in the localizer and block-design experimental runs,
TR=1s in event-related experimental runs; TE=30ms; flip
angle=90°) were acquired using the same slice prescription as
the T1-weighted spin echo images, except that the in-plane
resolution was 64×64, resulting in 4×3×3mm voxels. The slices
completely covered the ventral occipital and temporal lobes.
Functional data were superimposed on the T1-weighted spin echo
images so that regions of activation could be anatomically
localized. The number of whole volume acquisitions varied
between experiments (see below).

Experimental design and visual stimuli

Lateral occipital complex (LOC) localizer
Observers viewed grayscale images of objects and phase-

scrambled controls (maintaining the amplitude spectrum of each
images Fourier components but randomizing their phase rendered
the objects unrecognizable). The intact and phase-scrambled
images were presented in a pseudorandomized order in an event-
related design for 0.5 s followed by 2 s blank each. There were 2
exemplars from each category, repeated 27 times. In addition, a
third trial type consisting of a 3 s blank interval was intermixed 26
times, providing temporal jitter to increase the efficacy of the
design. Order of the three trial types was counterbalanced and
optimized using m-sequences (Buracas and Boynton, 2002). The
stimulus presentation was preceded by 6 s and followed by 10 s of
fixation. A fixation point was present on the screen at all times and
the observer was asked to maintain fixation for the duration of the

experiment. Each image was 11.25°×11.25° of visual angle and
successive images were jittered ±0.6°. Observers performed a 1-
back task (25% of trials). Two runs were performed during the
scanning session.

Illusory contour (IC) and salient region (SR) stimuli
The IC stimulus was a Kanizsa square: four pacman inducers

arranged so that they create the impression of a large central
square in front of four circular disks (Kanizsa, 1979). The
corresponding control, no-IC stimulus, consisted of the same
inducers flipped outwards so that the illusory square disappeared.
The SR stimulus consisted of inducers resembling those of the IC
except that their corners were rounded and they were misaligned
so that crisp bounding ICs were no longer perceived, although the
impression of an enclosed region remained. The corresponding
control, no-SR stimulus, consisted of the same inducers flipped
outwards. (For more details and figures of the stimuli, see Stanley
and Rubin, 2003.) In the block-design experimental runs,
observers viewed alternating 16-s blocks of experimental and
control conditions (separate runs for ICs and SRs). Within each
block, the image reversed contrast every 1s. Eight blocks of
experimental and control stimuli were presented in a single run. In
the event-related design, observers viewed all four stimulus types
in a pseudorandom order. Each trial consisted of the presentation
of a stimulus for 1s, followed by a 2-s blank interval. In addition
to one trial type for each condition, a fifth trial type consisted of a
3-s blank interval, providing temporal jitter to increase the
efficacy of the design. There were 25 trials from each of the 4
experimental conditions and 24 blank trials, preceded by 10s and
followed by 6s of fixation. Trial order was counterbalanced and
optimized using m-sequences (Buracas and Boynton, 2002). A
fixation point was present on the screen at all times and the
observer was asked to maintain fixation for the duration of the
experiment. On 25% of the trials where a stimulus was present,
the fixation point turned from black to red and the observer
indicated whether the stimulus was the same as on the preceding
trial with a button press.

Stimulus presentation
Visual stimuli were generated using Matlab and Psychtoolbox

(Brainard, 1997; Pelli, 1997) and fed into an Eiki LC-XG100/4267
LCD projector (1024×768 pixels, 60Hz) with an extra focusing
lens installed. The projected image appeared on a plastic rear-
projection screen, and observers viewed it in a mirror mounted on
the head coil.

Data analysis

Functional data were corrected for head motion using a
customized MCFLIRT (Jenkinson et al., 2002) script. Each scan
was then corrected for differences in slice acquisition time using
the FSL function slicetimer. Finally, time course data were pre-
processed to remove linear trends using the robust loess method
(Cleveland and Devlin, 1988) from each voxel independently.

Data from the localizer runs were processed using the clustering
algorithm in the Clustering method section, producing the clusters
to be used in statistical testing on the experimental runs. In addition,
we defined as our LOC ROI all clusters discovered by the BH
procedure on clusters (FDR on clusters section) at level 0.001.
(Note that because the clustering and the testing were performed on
the same part of the experiment, the expected FDR on clusters at
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this preparatory stage may be greater than 0.001.) Using the clusters
and ROI from the localizer runs, data from the experimental runs
were analyzed as follows. On the entire brain, we performed both
CBA and voxel-by-voxel analysis using the BH procedure. On the
ROI, we performed in addition the two analyses using the adaptive
procedure.

The procedure for calculating the p-values basically follows
Worsley et al. (2002). The calculation is based on the average
cluster time series in CBA and on the voxel time series for voxel-
by-voxel analysis.

A general linear model with AR(1) errors was used (see e.g.,
Worsley et al., 2002). The hemodynamic response was modeled as
a difference of two gamma functions

h tð Þ ¼
�

t

5:4

�6

e�
ðt�5:4Þ
0:9 � 0:35

�
t

10:8

�12

e�
ðt�10:8Þ

0:9 ;

and convolved with the external stimulation, which was modeled
as

Pk
i¼1 Xtibi with i=1,…, k different stimuli. We followed

Worsley et al. (2002) for estimation of the coefficients βi and the
calculation of the p-value without spatially smoothing the AR(1)
parameter.

Matlab code, which implements the CBA algorithm and
procedures described above, as well as the data for the fMRI
example presented in this paper, is available in http://www.math.
tau.ac.il/~ybenja/Software.html.

Validation using simulations

The simulations we performed had two purposes. First, we
wanted to validate that the adaptive FDR procedure does not
exceed the pre-defined FDR rate under typical fMRI depen-
dency. Second, we wanted to compare the performance of
cluster-based and voxel-based analysis on data where ground
truth was known.

Setting
A 64×64 slice was chosen for the comparison. The slice

contained several hundred clusters, with an average size of
16voxels per cluster. We designated n clusters containing overall

m voxels to have activations in the first part of the experiment, and
approximately half these clusters were designated to have
activations in the second part of the experiment. The values of
(n, m) examined were (2, 1), (5, 3), (10, 5) and (20, 10).

The measured signal (i.e., signal+noise) of voxel v within
cluster c at time t was

Ycvt ¼ lct þ act þ �cvtd

The signal μct, in an active cluster c at time t, was set to μ=3 in
the first part of the experiment. In the second part, we examined
μ=0.4, 0.45, 0.5, 0.55, 0.6, 0.65, 0.7, 0.75. The signal level in null
clusters was set to zero.

The components of signal variation between clusters act were
drawn independently from a normal distribution with mean zero
and standard deviation 3.

The spatially correlated noise components �cvt were simulated
(independently for every time point t) by convolving white

Fig. 3. Activated clusters computed using CBA in two representative slices,
10 and 11. Colored voxels belong to clusters that comprise the LOC ROI,
with different colors for different clusters (non-contiguous voxels in a slice
can belong to the same cluster because those extend across slices). White
outlines indicate activated clusters within the ROI in the event-related
experiment, obtained using CBA with the BH procedure at the 5% FDR
level. Voxel-by-voxel analysis on the same data, with BH procedure at the
5% FDR level, yielded no activated voxels.

Fig. 4. Activated clusters with the LOC ROI in the block-design IC vs.
control experiment computed with three different procedures (clusters
indicated in white outlines; sample slices 10–11). Top panel, CBA with an
adaptive FDR procedure at the 5% level. Middle panel, CBA with BH
procedure at the 5% FDR level. Bottom panel, voxel-by-voxel analysis with
adaptive FDR at the 5% level.
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Gaussian noise with a spatial Gaussian kernel (FWHM 15mm,
with a convention that a voxel is 1×1×1mm3) using two-
dimensional (64×64 pixels) processes. In our simulations �cit has
mean zero and standard deviation 6.

The time series for each part of the experiment was of length
100. Under each configuration of signal and noise, 100 simulation
repetitions were performed.

The simulations were performed in Matlab (version 6.5).

Simulation data analysis
On the first part of each simulated experiment, we clustered the

data using the clustering algorithm in the Clustering method
section. We also defined as our ROI all clusters discovered by the
BH procedure on clusters at level 0.05. Note that because the
clustering and the testing were performed on the same part of the
experiment, the expected FDR on clusters may be greater than
0.05.

Using the clusters and ROI from the first part of the simulated
experiment, we analyzed the simulated data in the second part as
follows. On the entire slice, we performed both CBA and voxel-by-
voxel analysis using the BH procedure. On the ROI, we performed
in addition CBA and voxel-by-voxel analysis using the adaptive
procedure. The FDR level was estimated by averaging over the
simulations the proportion of false discoveries among the
discoveries at the appropriate units: voxels or clusters (recall that
a discovery of a cluster is false if it contains no active voxels). We
compared the performance of the analysis methods in terms of
power. Power can be defined in many ways. We measured power
as the proportion of discoveries out of all potential true discoveries.
In fMRI terms, this translates to the proportion of detected voxels
that are truly active out of all truly active voxels. For CBA, power
was also measured by the proportion of detected clusters out of all
active clusters. (Recall that the FDR level is taken to be the same
for the CBA and the voxel-by-voxel analysis.) In general, other
possible measures of power include the probability of making at
least one true discovery; the probability of finding all potential true
discoveries; or finally as one minus the expected proportion of
missed discoveries out of all non-discoveries. Although we believe
the measure we chose is the most adequate for fMRI, the advantage
of CBA over voxel-by-voxel analysis is likely to present itself also
with the other measures.

Results

CBA results on an fMRI vision experiment

To evaluate the advantage that CBA may offer over voxel-by-
voxel analysis, as well as the advantage of the adaptive FDR
procedure, we tested it on data acquired in an experiment that we
knew to have yielded a relatively small difference between
experimental and control conditions. In a previous publication,
Stanley and Rubin (2003) analyzed the responses to illusory
contour (IC) and salient region (SR) stimuli compared with their
corresponding control stimuli presented in a block design. An
ROI analysis performed on the average time courses of the
observers functionally defined lateral occipital complex (LOC)
showed significant effects for both types of stimuli, but a voxel-
by-voxel analysis yielded activation in few individual voxels, and
none for some subjects. We therefore tested CBA on this
paradigm. In addition, we reran the experiment on one of the
observers and added an event-related run, which interleaved all

four stimulus types (ICs, SRs and their corresponding controls;
see also Methods). The results presented below are a representa-
tive sample.

The LOC ROI computed with CBA on data from the event-
related localizer runs consisted of 207voxels, grouped into 20

Fig. 5. Illustration that the enhanced discoveries made by CBAwhen limited
data are available correspond well with the activation discovered with voxel-
by-voxel analysis when more data are available. Top panel, results of voxel-
by-voxel analysis on data from both localizer runs (here and below, FDR at
5%). Middle panel, the same analysis on data from only one of those runs
yields few discoveries. Bottom panel, results of CBA on the single-run data
(clusters derived from the event-related IC experimental run).
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clusters. The clusters ranged in size from 2 to 47, with a median
of 9voxels per cluster and a standard deviation of 9.3. Figs. 3
and 4 show the discoveries in the experiments of interest within
the ROI from two representative slices, 10 and 11. Every cluster
within the ROI is indicated with a different color; note that
clusters extend across slices, which is why non-contiguous voxels
within a slice can belong to the same cluster. Fig. 3 shows the
results obtained for the event-related experiment using CBA with
a BH procedure at the 5% FDR level. Activated clusters within
the ROI are indicated by white outlines. Overall, 44voxels were
found to be active, grouped into 4 clusters of sizes 12, 12, 9 and
11. In contrast, voxel-by-voxel analysis performed on the same
data with a BH procedure at the 5% FDR level failed to detect
any activation.

Fig. 4 shows the activated clusters in slices 10–11 in the block
design IC vs. control experiment computed with three different
procedures. Again, activated clusters within the ROI are indicated
by white outlines. The top panel shows the result of CBA with an

adaptive FDR procedure at the 5% level. Overall, 131voxels were
found to be active, grouped into 9 clusters (sizes 47, 13, 9, 11, 8,
10, 12, 12 and 9). For comparison, the middle panel shows the
activated clusters when the BH procedure was used instead of the
adaptive procedure. This procedure discovered considerably less
activation. For example, note that the pink and green ROI clusters
in slices 10–11 are marked as discoveries only using the adaptive
procedure (outlined in top panel but not middle panel). Overall,
only 56voxels were found, grouped into 5 clusters (a subset of the
clusters using the adaptive FDR; sizes 13, 9, 10, 12 and 12).
Finally, the bottom panel shows the result of a voxel-by-voxel
analysis with an adaptive FDR procedure at the 5% level. Overall,
41voxels were found to be active, coming from 14 different
clusters. When the BH procedure was used instead of the adaptive
procedure, 38voxels, coming from 13 different clusters, were
found to be active.

To further evaluate the gain in CBA over voxel-by-voxel
analysis, we reanalyzed the data from the localizer runs as follows:

Fig. 6. FDR as a function of μ when the analysis is done on the entire slice (left) for (1) cluster-based analysis (solid line) and (2) voxel-by-voxel analysis (dotted
line) and on the ROI (right) for (1) CBA using the adaptive procedure (solid line); (2) CBA using the BH procedure (dotted line); (3) voxel-by-voxel analysis
using the adaptive procedure (dashed line); (4) single voxel analysis using the BH procedure (dot and dashed line). Note that the FDR is always below 0.05, and
that for both CBA and single voxel analysis the FDR using the adaptive procedure is closer to the desired 0.05 than when using the BH procedure, making the
adaptive procedure more powerful.

Fig. 7. Power improvement over voxel-by-voxel analysis using the BH procedure as a function of signal size μ when the analysis is done on the entire slice (left)
of CBA and on the ROI (right) of (1) CBA using the adaptive procedure (solid line) (2) CBA using the BH procedure (dotted line) and (3) voxel-by-voxel
analysis using the adaptive procedure (dashed line). Note that the power advantage is largest when μ is not too small and not too large. The most powerful
analysis method is clearly (1).
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a voxel-by-voxel analysis at the 5% FDR level of the two localizer
runs detected 239voxels; repeating the analysis on just one of the
localizer runs detected only 15voxels; a CBA at the 5% level on
the same run detected 168voxels grouped into 13 clusters (the
event-related IC experimental run was used to create the clusters).
Treating the discoveries from the voxel-by-voxel analysis based on
the two localizer runs as the ground truth, the power of CBA was
0.29 compared with only 0.06 for voxel-by-voxel analysis. Fig. 5
shows the resulting activated regions in slice 09. The top panel
shows the “ground truth” (dark blue). The middle panel shows the
very few activations in voxel-by-voxel analysis on one localizer
run only (dark blue). In contrast, the bottom panel shows the
relatively large number of activations in CBA for the same run
(each cluster is indicated with a different color).

Validation using simulations

We present the analysis results for the following representative
signal configuration: in the simulated localizer experiment, 5
clusters were active (82voxels); in the simulated main experiment,
3 out of the 5 clusters were active (44voxels). The results were
similar for the other configurations.

Fig. 6 shows that the FDR is below 0.05 for all analysis
methods. Moreover, the right graph in Fig. 6 shows that the FDR of
CBA using the adaptive procedure is higher than that of CBA
using the BH procedure, and similarly the FDR of voxel-by-voxel
analysis using the adaptive procedure is higher than that of voxel-
by-voxel analysis using the BH procedure.

Fig. 7 show the power improvement of all analysis methods
over the voxel-by-voxel analysis using the BH procedure, as a
function of signal size μ. When μ is extremely low, then both CBA
and voxel-by-voxel analysis were barely able to detect activations.
However, as μ increased, the CBA analysis detected more
activations than the voxel-by-voxel analysis. When μ was very
large, both methods of analysis performed equally well. Clearly,
the advantage of CBA over voxel-by-voxel analysis is largest when
μ is not too low or too high—the zone of interest in practice.

Discussion

We presented an algorithm to calculate activation maps based
on analysis units that are independently defined clusters of voxels.
The clusters are defined as contiguous volumes of voxels, which
were correlated with each other more than with their other
(contiguous) neighbors in an independent run (e.g., a localizer run).
The method is based on the proposition that the units of testing for
activation in the brain should be larger than a voxel but smaller
than an entire region of interest. We argued that fMRI analysis is
likely to be more meaningful at the cluster level than at the voxel
level. The regions constructed by the clustering method are more
likely to be related to functional modules in the brain, leading to
increased SNR per unit tested. This improves our ability to detect
activations and may enable a fruitful search for the interactions
between brain regions.

We showed that CBA discovered larger and more contiguous
activation areas than voxel-by-voxel analysis. On the other hand,
we do not argue that our clustering algorithm is optimal according
to some well-defined criterion. How to define the relevant
criterion and develop the optimal segmentation is a question for
further research. For example, incorporating prior knowledge
from the anatomical image into the clustering algorithm may

result in a much more powerful procedure (e.g., by applying a
grey matter extraction procedure based on the anatomical image
prior to CBA).

The approach we currently take defines the units of testing
conservatively so the units are fairly small and are more likely
subunits of the true activated modules than unions of such. This
reduces the possibility of introducing more noise than signal into
the clusters. Also, the small size of clusters will keep low the
number of voxels that are not truly active in discovered regions
(aggregates of clusters). Moreover, although the number of clusters
(and their identity) may vary from one realization of the
experiments to the other, the discovered regions created from
these small “building blocks” can still be quite similar. At the same
time, bear in mind that the inclusion of a few voxels that were not
truly active in a detected cluster may be a small price to pay for the
gain CBA offers in terms of increased discoveries.

In this respect, note that commonly used pre-processing steps
such as smoothing also introduce signal into voxels that are not
truly active but are neighbors of active voxels. This may be a must
for multi-subject analysis, but the resulting increase in non-active
voxels discovered as such cannot be controlled by voxel-based
FDR analysis. In CBA, although discovered clusters may also
contain voxels that are not truly active, one is still able to control
the FDR at the cluster level. Furthermore, we think that the small
building blocks in CBA may fit well for the purpose of such multi-
subject analysis with no need for smoothing, providing a powerful
yet fully controlled analysis. This is a point of further research.

We explained the meaning of FDR on clusters and introduced
the adaptive FDR on clusters. In assessing the FDR, we give the
same weight to every cluster. Benjamini and Hochberg (1997) also
introduced the weighted FDR, which may be especially appropriate
here. For example, we may want to control a weighted FDR with
weights proportional to the size of the clusters, which means on the
one hand that it is important to reject a large cluster because it
considerably increases the weight of the total discoveries, but on
the other hand it also increases the weight of the errors if in fact it
is an error. We are currently exploring size weighted FDR
procedures and their suitability for fMRI data.
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