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Appendix A

Proof of Theorem 1

We have to show that P0(P
u/n(s) ≤ q) ≤ q where the subscript 0 indicates

that the probability is calculated under the partial conjunction null hypoth-

esis.

Since pu/n(s) in equation (2) is an increasing function of the p-values,

Lemma 1 tells us that the stochastically smallest distribution of pu/n(s) oc-
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curs when u−1 p-values are zero (i.e. hi(Pi) = 0 for i = 1, . . . , u−1) and the

remaining n − u + 1 p-values are U(0, 1) random variables. So it is enough

to show for this case that P u/n(s)�stU(0, 1).

Let U(1) ≤ . . . ≤ U(n−u+1) be the order statistics of n − u + 1 U(0, 1)

random variables.

P0(P
u/n(s) ≤ q) ≤ P ( min

i=1,...,n−u+1
{(n − u + 1)

i
U(i)} ≤ q) ≤ q

where the last inequality follows since the n− u + 1 null p-values satisfy one

of the conditions (D1)-(D3) for which the Simes test is valid.

Appendix B

Proof of Theorem 3

The individual p-value maps are PRDS, so for every map j = 1, . . . , n with

vector of p-values ~pj = (pj(1), . . . , pj(S)) we can say the following: P (~Pj ∈

A|Pj(s) = x) for any increasing set A is non-decreasing in x for all s ∈ Ij
0 ,

where Ij
0 is the subset of null locations in map j.

Let the combined p-value in location s be pu/n(s) = f(p1(s), . . . , pn(s))

and ~pu/n = (pu/n(1), . . . , pu/n(S)) be the vector of all combined p-values.

Let I
u/n
0 be the subset of locations where the partial conjunction null is

true, I
u/n
0 = {s : H

u/n
0 (s) is true}. Benjamini and Yekutieli (2001) showed in

equation (10) that the FDR can be expressed as follows:

FDR =
S∑

k=1

∑

s∈I
u/n
0

1

k
Pr(P u/n(s) ≤ kq

S
∩ C

(s)
k ) (B.1)

where C
(s)
k is the event that if s is rejected, k − 1 hypotheses are rejected

alongside with it.
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The combined p-value under the null will have n − u + 1 p-values dis-

tributed uniformly (or from a distribution larger than the uniform), as well

as u − 1 p-values that can have any distribution since they can come ei-

ther from the null or from the alternative hypothesis. Assume without loss

of generality that for a given pooled p-value from the partial conjunction

null, P u/n(s) = f(P1(s), . . . , Pn(s)), the n − u + 1 first p-value maps con-

tain uniformly distributed p-values in location s, i.e. Pi(s) ∼ U(0, 1), i =

1, . . . , n − u + 1. Since the combining function is increasing, P u/n(s) ≥

f(P1(s), . . . , Pn−u+1(s), 0, . . . , 0) and moreover since it is a null location p-

value, Pr(f(P1(s), . . . , Pn−u+1(s), 0, . . . , 0) ≤ kq
S

) ≤ kq
S

. For convenience, let

P
u/n
0 (s) = f(P1(s), . . . , Pn−u+1(s), 0, . . . , 0). An upper bound on the FDR is

therefore

FDR =

S∑

k=1

∑

s∈I
u/n
0

1

k

Pr(P u/n(s) ≤ kq
S
∩ C

(s)
k )Pr(P

u/n
0 (s) ≤ kq

S
)

Pr(P
u/n
0 (s) ≤ kq

S
)

≤
S∑

k=1

∑

s∈I
u/n
0

q

S

Pr(P
u/n
0 (s) ≤ kq

S
∩ C

(s)
k )

Pr(P
u/n
0 (s) ≤ kq

S
)

(B.2)

In order to show that this upper bound is below the nominal q level, we

will first show that P (~P u/n ∈ A|P u/n
0 (s) = x) for any increasing set A is

non-decreasing in x. Let

h(u1, . . . , un−u+1) = Pr(~P u/n ∈ A|P1(s) = u1, . . . , Pn−u+1(s) = un−u+1)

h(u1, . . . , un−u+1) is a non-decreasing function of uj for j ∈ {1, . . . , n −

u+1}. This follows immediately from the fact that Pr(~P u/n ∈ A|Pj(s) = uj)

is increasing in uj for j = 1, . . . , n − u + 1. To see this fact, note that if A

is non-decreasing in its elements ~P u/n, then A is non-decreasing also in the
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original p-values {Pj(s) : j = 1, . . . , n, s = 1, . . . , S} because the combining

function is an increasing function. For a fixed map j, the p-values within

map j satisfy the PRDS property, and moreover since the p-values in other

maps are independent from these in map j (therefore trivially satisfy the

PRDS property as well on the subset of null p-values from map j), we have

that Pr(~P u/n ∈ A|Pj(s) = uj) is increasing in uj.

We will use the following theorem due to Efron (1965):

Theorem 1. Let X1, . . . , Xn be n independent random variables with PF2

densities r1(x), . . . , rn(x) respectively, and let H(x1, . . . , xn) be a real mea-

surable function on Euclidean n-space which is non-decreasing in each of its

arguments. Then E(H(x1, . . . , xn)|
∑n

i=1 Xi = y) is a non-decreasing func-

tion of y.

Since P
u/n
0 (s) = G(

∑n−u+1
i=1 g(Pi(s))) and both G(·) and g(·) are in-

creasing, for every x there exists a constant c such that {pu/n(s) = x} =

{∑n−u+1
i=1 g(Pi(s)) = c}, and c(x) is increasing in x.

Pr(~P u/n ∈ A|{P u/n
0 (s) = x}) = Pr(~P u/n ∈ A|

n−u+1∑

i=1

g(Pi(s)) = c)

= Eh(U1, . . . , Un−u+1)|
n−u+1∑

i=1

g(Ui) = c)

We can apply Theorem 4 to conclude that Pr(~P u/n ∈ A|{P u/n
0 (s) = x})

increases in x.

The result will follow as in the proof of Theorem 1.2 in Benjamini and

Yekutieli (2001). Let p
u/n(s)
(1) ≤ . . . ≤ p

u/n(s)
(S−1) be the ordered set of S − 1

p-values excluding s, let D
(s)
k = { (k+1)q

S
< p

u/n(s)
(k) , (k+2)q

S
< p

u/n(s)
(k+1) , . . . , q <
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p
u/n(s)
(S−1) } for k = 1, . . . , S − 1, and D

(s)
S be the entire space. Clearly for each

k, D
(s)
k is a non-decreasing set. Therefore

Pr(P
u/n
0 (s) ≤ kq

S
∩ D

(s)
k |{P u/n

0 (s) =
kq

S
}) ≤ Pr(P

u/n
0 (s) ≤ (k + 1)q

S
∩ D

(s)
k |{P u/n

0 (s) =
(k + 1)q

S
})

and so

Pr(P
u/n
0 (s) ≤ kq

S
∩ D

(s)
k |{P u/n

0 (s) ≤ kq

S
}) ≤ Pr(P

u/n
0 (s) ≤ (k + 1)q

S
∩ D

(s)
k |{P u/n

0 (s) ≤ (k + 1)q

S
})

Since D
(s)
k+1 = D

(s)
k ∪ C

(s)
k+1, we get that

Pr(P
u/n
0 (s) ≤ kq

S
∩ D

(s)
k )

Pr(P
u/n
0 (s) ≤ kq

S
)

+
Pr(P

u/n
0 (s) ≤ (k+1)q

S
∩ C

(s)
k+1)

Pr(P
u/n
0 (s) ≤ (k+1)q

S
)

≤ Pr(P
u/n
0 (s) ≤ (k+1)q

S
∩ D

(s)
k )

Pr(P
u/n
0 (s) ≤ (k+1)q

S
)

+
Pr(P

u/n
0 (s) ≤ (k+1)q

S
∩ C

(s)
k+1)

Pr(P
u/n
0 (s) ≤ (k+1)q

S
)

≤ Pr(P
u/n
0 (s) ≤ (k+1)q

S
∩ D

(s)
k+1)

Pr(P
u/n
0 (s) ≤ (k+1)q

S
)

Since C1 = D1 repeatedly using the above inequality for s = 1, . . . , S − 1

leads to
S∑

k=1

Pr(P
u/n
0 (s) ≤ kq

S
∩ C

(s)
k )

Pr(P
u/n
0 (s) ≤ kq

S
)

≤ 1

Going back to (B.1),

FDR ≤
∑

s∈I
u/n
0

q

S

S∑

k=1

Pr(P
u/n
0 (s) ≤ kq

S
∩ C

(s)
k )

Pr(P
u/n
0 (s) ≤ kq

S
)

≤ S0

S
q

Appendix C

Simulations

We conducted a simulations study in order to 1) validate that the screening

procedure controls the FDR in finite settings that are common in fMRI,
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and 2) examine the robustness of the method in more extreme settings of

dependency.

We simulated a typical fMRI setting. Maps of size 32 × 32 locations

were simulated, each containing a region of 100 locations that contain signal.

An additional control map of size 32 × 32 contained no signal. White noise

convolved with a Gaussian filter created spatially correlated noise. The filter

width varied in the simulations, ranging from a positive correlation between

all locations in the map to a positive correlation with the nearest 8 neighbors

only. The number of maps n was either 3 or 10. The number of locations

that satisfy the partial conjunction alternative was 100. For screening for

conjunction hypotheses that at least u out of n p-values are non-null, the

worst configuration (i.e. highest FDR) is when the null locations has u − 1

p-values with value zero. Therefore, the number of maps that contain signal

in a location was k for 100 locations (where k ranged from u to n) and u− 1

for all remaining locations. The signal size for each of the 100 locations

that satisfy the partial conjunction alternative was sampled from a N(µ, 2)

distribution, where µ ranged from 2 to 6 (if the signal size sampled was

smaller than zero it was set to 0.1). The signal size for the locations that

satisfy the partial conjunction null was set at 10. We applied the method for

all values of u = 1, . . . , n.

In order to examine the robustness of the method, we also simulated maps

within which we had negative correlation. We considered maps of size 100

and 300. The region of activity varied between 5 and 60 locations. The

negative correlation was either equal across all locations (in which case the

correlation of the noise was -1/100 or -1/300), or equal only within blocks
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of 5, 10, 20 and 30 with correlations of size -1/5, -1/10, -1/20 and -1/30

respectively.

A control map that contained only noise was also simulated for each

dependency structure. The p-value in each location, for each map, was the

tail Gaussian probability of the difference in values in the map and in the

control map normalized by the factor
√

2. The pooled p-value motivated by

Simes (equation 2) was used since the dependency per location is PRDS (the

case of all treatments being compared to the same control treatment). We

next applied the BH procedure at level 0.05.

The simulation results show that the FDR is controlled in all settings.

The power of the method depends both on the configuration of signal µ and

on the proportion k/n of false hypotheses. The representative Figure 1 for a

typical fMRI setting shows the FDR level and power as a function of average

signal size µ where the Gaussian spatial filter had a standard deviation of

4, the number of maps was 3 and the number of p-values per location that

come from the alternative is either null or 2.

The simulations with negative correlations show that the FDR is con-

trolled in all settings. The FDR level is higher when the fraction of locations

containing signal is small, k/n is large and u approaches k (or is greater

than k, i.e. all partial conjunction hypotheses are null). Figure 2 shows the

FDR and the power as a function of µ (with standard error ≤ 0.0008) in the

setting in which we received the highest FDR level: a map of size 300 with

5 locations containing signal and a correlation of −1/20 for blocks of size

20 locations. The number of maps containing signal is k = 7. The highest

FDR was achieved when u = 8, where it was exactly 0.0500 (Standard error
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0.0007).

[Figure 1 about here.]

[Figure 2 about here.]

Appendix D

Asymptotic Results

If the p-values within the individual maps have local dependencies, then the

dependencies between the p-values within the combined map remain local.

In this case applying the BH procedure after combining using equations

(2)-(5) as appropriate will control the FDR asymptotically as the number of

locations goes to infinity if the following asymptotic conditions on every map

i, i = 1, . . . , n are satisfied:

lim
S→∞

S0i

S
= A0i Exists and A0i < 1 (D.3)

FSi =
1

S

S∑

s=1

1[pi(s) < t|H0i(s)]
a.s.
→

S→∞
A0iFi(t), Fi(t) ≤ t∀t ∈ (0, 1](D.4)

GSi =
1

S

S∑

s=1

1[pi(s) < t|H1i(s)]
a.s.
→

S→∞
(1 − A0i)Gi(t) ∀t ∈ (0, 1] (D.5)

where S0i is the number of null locations in map i.

The threshold in the BH procedure is

t∗S = sup{t :
t

FS(t) + GS(t)
≤ q},

where FS = 1
S

∑S
s=1 1[pu/n(s) < t|Hu/n

0s ] and GS = 1
S

∑S
s=1 1[pu/n(s) <

t|Hu/n
1s ]. It controls the FDR asymptotically at level q (as S → ∞) for

any valid pooled p-value (i.e. not only using equation (4) or (5), but also

8



using (2) when valid or (3) if conditions (D.3)-(D.5) hold, and δ ≡ sup{t :

t/ lim(FS(t) + GS(t)) ≤ q} ∈ (0, 1]:

FDR = E(
FS(t∗S)

(FS(t∗S) + GS(t∗S)) ∨ 1
S

) = E(
t∗S

(FS(t∗S) + GS(t∗S)) ∨ 1
S

+
(FS(t∗S) − t∗S)

(FS(t∗S) + GS(t∗S)) ∨ 1
S

)

≤ q + sup
t≥δ

{ (FS(t) − t)

(FS(t) + GS(t)) ∨ 1
S

} + I{t∗S < δ}

From equations (D.4)-(D.5) the second term is asymptotically negative (be-

cause these conditions guarantee that the variance of FS(t) is asymptotically

zero, so lim FS(t) ≤ t) , and from the definition of δ the third term is asymp-

totically zero. It follows that the asymptotic upper bound for the FDR is

q.

References

Benjamini, Y. and Yekutieli, Y. (2001). The control of the false discovery

rate in multiple testing under dependency. The Annals of Statistics 29

(4), 1165–1188.

Efron, B. (1965). Increasing properties of polya frequency functions. The

Annals of Mathematical Statistics 36, 272–279.

9



2 3 4 5 6 7 8 9 10
0

0.01

0.02

0.03

0.04

0.05
FDR level

2 3 4 5 6 7 8 9 10
0

0.2

0.4

0.6

0.8

1

Power

Figure 1. FDR (top) and Power (bottom) as a function of µ for a BH
procedure at level 0.05. The simulated setting is that in which the Gaussian
spatial filter had a standard deviation of 4, the number of maps was 3 and
the number of p-values per location that come from the alternative is either
null or 2. We combined the maps using equation (2). The partial conjunction
parameter is u = 1 (solid line) or u = 2 (dotted line). The FDR does not
exceed the nominal 0.05 level.
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Figure 2. FDR (top) and Power (bottom) as a function of µ for a BH
procedure at level 0.05. The simulated setting is that in which the correlation
is negative in blocks of 20, the number of maps was 10 and the number of
p-values per location that come from the alternative is either null or 7. We
combined the maps using equation (2). The partial conjunction parameter
is u = 10 (red dotted line), u = 9 (red dashed line), u = 8 (red solid line),
u = 7 (black solid line), u = 6 (dash-dot line) or u = 5 (dashed line). The
FDR does not exceed the nominal 0.05 level.
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