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Abstract: Reshef et al. presented a novel measure of dependence - the maximal information

coefficient (MIC) aimed to capture a wide range of associations between pairs of variables,

and a statistical test for independence based on MIC. They defined a concept of equitability

and claim that non-equitable methods are less practical for data exploration. By simple power

comparisons, we show that this conclusion is wrong.

————————–

As pointed out by Reshef et al. (Research Article, 17 Dec 2011, p. 1518), it is often the case that

the pairwise relationship between many variables is simultaneously explored. In statistics, this

exploration is formalized in a multiple hypothesis testing framework, where the null hypothesis

of statistical independence is examined for every pair of variables. Then, the p-values of the

tests serve as a basis for generating final conclusions. Specifically, the pairs of variables are

ordered by their p-values (or the adjusted p-values after correcting for multiple testing) in

increasing order, and the pairs with the lowest p-values will be further studied. Reshef et al.
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recommended ranking the pairs based on MIC, which in this case is equivalent to ranking based

on the p-values of the MIC tests, for fixed sample size.

A highly important concept in hypotheses testing is the power of a statistical test: the

probability that the test will correctly lead to the rejection of the null hypothesis when the null

hypothesis is false. The power of a test usually depends on various factors, such as the sample

size. Two desirable properties of a test are the following. First, that the power increases as the

sample size increases, ie that the test is consistent against all alternatives. Second, that the

test achieves good power for finite sample sizes. Therefore, when comparing various statistical

tests for the same problem of hypotheses testing, it is important to compare their power under

different sample sizes and different configurations under which the null hypothesis is false.

Reshef et al. contrasted MIC with other dependency measures under fairly large sample

sizes, such as 250, 500 or 1000. They compared how the values of the dependency measures

change across different functional relationships, when the same level of noise was added to

these functional relationships (see Fig. 2 of their paper), and they ignored the power of the

tests based on the measures. They concluded that since the other considered methods are not

equitable even in the basic case of functional relationships (they showed a strong preference

for some type of functions even at identical noise levels) these methods are less practical for

data exploration compared to MIC. In the following simulation results we demonstrate that

under practical sample sizes, such as 50, and functional relationships at identical noise level,

the power of the MIC test varies dramatically between the various relationships. That is, under

practical sample sizes, MIC tends to have strong preference for some type of functions even at

identical noise levels. Moreover, it will be shown that under various settings, other tests which

enjoy the advantage of proven consistency, such as the distance correlation of Szekely et al. (3)

(which was considered by Reshef et al.) and HHG of Heller et al. (1), are more powerful than

the test based on MIC and thus are preferable over MIC.

Tables 1-2 present the results of a small simulation study comparing the power functions of

three tests: the distance correlation (dCor) (3), MIC, and a new test, HHG, recently proposed

in (1), while focusing on practical sample sizes. For each configuration considered, 1000 dataset

were generated and each of the three tests was performed at a significance level of α = 0.05.

2



The reported empirical power is the proportion of tests concluded with rejection of the null

hypothesis. Table 1 mimics the functional relationships studied by Reshef et al. (SOM of (2),

Section 4.3) with and without noise. It is evident that under the noiseless setting, MIC substan-

tially outperforms dCor and slightly outperforms HHG in 8 and 5 configurations, respectively;

whereas under a noise of about 0.64 dCor and HHG outperform MIC in 11 and 10 functions,

respectively. The configurations of Table 2 are unusual bivariate relation presented and plotted

in the wikipedia.org page on Pearson correlation. The 4 independent clouds represent the case

where the null hypothesis is true, and thus the empirical power is expected to be the level of the

test, 0.05. It is evident that the HHG test outperforms the other tests at any sample size and

for any false null distribution considered except for the W shape and a sample size of n = 30.

With n = 220 and the diamond relation, the respective values of the empirical power of dCor

and MIC (standard error) are: 0.799(0.0127) and 0.08(0.0086); and under the circle relation

the respective values are: 1(0), 1(0). With n = 600 and diamond relation the empirical power

of MIC equals 0.209(0.0129). It should be noted that to the best of our understanding the

proof of consistency of MIC does not hold for this type of data and indeed the performance is

dismal.

Summarizing, it is evident that (i) under the (unrealistic) noiseless functional settings, MIC

tends to slightly outperform HHG and significantly outperforms dCor; (ii) under the majority

of the noisy functionals and non-functional settings, the HHG and dCor tests hold very large

power advantages over the MIC test, under practical sample sizes; (iii) results obtained from

practical sample sizes (30, 50 or 100) could be markedly different from the results obtained from

larger samples (250, 500 or 1000) as considered in Reshef et al. These results clearly contradict

Reshef et al.’s conclusion that a method such as dCor is less practical for data exploration. Ad-

ditionally, consistency for certain type of dependencies is proven for MIC which is not feasible

to calculate, and it is not proven for the approximation actually being used. To the best of our

knowledge there are very few consistent scores that are of simple form, and here we focused

the power comparison on two such consistent tests, dCor and HHG, that are also applicable

for testing for independence between two random vectors of arbitrary dimensions while MIC is

only applicable for one dimensional variables.
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Table 1: Simulation results: The empirical power (SE) for a test at level 0.05, based on 1000

datasets for each configuration of joint distribution and sample size n=50. The distributions are

those of Table S3 at Reshef et al. ((2), SOM). The tests compared: dCor (based on the ‘energy’

R package with 1000 repetitions per dataset), MIC (with parameters and p-values provided by

the MINE website exploredata.net); HHG (the code can be provided by the authors upon request).

Noise equals 0 Noise is approximately 0.64

Function Name dCor MIC HHG dCor MIC HHG

Linear+Periodic, Low Freq 1.000(0.0000) 1.000(0.0000) 1.000(0.0000) 1.000(0.0000) 0.938(0.0076) 0.987(0.0036)

Linear+Periodic, Medium freq 0.545(0.0158) 0.941(0.0075) 0.996(0.0020) 0.221(0.0131) 0.206(0.0128) 0.175(0.0120)

Linear+Periodic, High Freq 1.000(0.0000) 1.000(0.0000) 1.000(0.0000) 0.998(0.0014) 0.842(0.0115) 0.972(0.0052)

Linear+Periodic, High Freq 2 1.000(0.0000) 1.000(0.0000) 1.000(0.0000) 0.998(0.0014) 0.869(0.0167) 0.967(0.0057)

Non-Fourier Freq [Low] Cosine 0.126(0.0105) 1.000(0.0000) 0.997(0.0017) 0.068(0.0080) 0.293(0.0144) 0.106(0.0097)

Cosine, High Freq 0.057(0.0073) 0.328(0.0148) 0.281(0.0142) 0.050(0.0069) 0.083(0.0087) 0.063(0.0077)

Cubic 1.000(0.0000) 1.000(0.0000) 1.000(0.0000) 0.681(0.0147) 0.596(0.0155) 0.733(0.0140)

Cubic, Y-stretched 1.000(0.0000) 1.000(0.0000) 1.000(0.0000) 0.697(0.0145) 0.650(0.0151) 0.747(0.0138)

L-shape 0.999(0.0000) 1.000(0.0000) 1.000(0.0000) 0.112(0.0100) 0.040(0.0062) 0.117(0.0102)

Exponential [2x] 1.000(0.0000) 1.000(0.0000) 1.000(0.0000) 0.944(0.0073) 0.626(0.0153) 0.892(0.0098)

Exponential [10x] 1.000(0.0000) 1.000(0.0000) 1.000(0.0000) 0.471(0.0158) 0.166(0.0118) 0.573(0.0156)

Line 1.000(0.0000) 1.000(0.0000) 1.000(0.0000) 0.998(0.0014) 0.895(0.0097) 0.980(0.0044)

Parabola 1.000(0.0000) 1.000(0.0000) 1.000(0.0000) 0.589(0.0156) 0.471(0.0158) 0.817(0.0122)

Random 0.059(0.0075) 0.047(0.0067) 0.053(0.0071) 0.056(0.0073) 0.052(0.0070) 0.040(0.0062)

Non-Fourier Freq [Low] Sine 0.091(0.0091) 0.999(0.0010) 0.853(0.0112) 0.060(0.0075) 0.233(0.0134) 0.081(0.0086)

Sine, Low Freq 0.318(0.0147) 1.000(0.0000) 0.972(0.0052) 0.128(0.0106) 0.229(0.0133) 0.113(0.0100)

Sine, High Freq 0.108(0.0098) 0.296(0.0144) 0.235(0.0134) 0.084(0.0088) 0.073(0.0082) 0.061(0.0076)

Sigmoid 1.000(0.0000) 1.000(0.0000) 1.000(0.0000) 0.998(0.0014) 0.940(0.0075) 0.948(0.0070)

Varying Freq [Medium] Cosine 0.316(0.0147) 0.988(0.0034) 0.831(0.0119) 0.131(0.0107) 0.213(0.0129) 0.121(0.0103)

Varying Freq [Medium] Sine 0.238(0.0135) 0.883(0.0102) 0.631(0.0153) 0.117(0.0102) 0.129(0.0106) 0.098(0.0094)

Spike 1.000(0.0000) 1.000(0.0000) 1.000(0.0000) 0.645(0.0151) 0.261(0.0139) 0.591(0.0156)

Lopsided L-shaped 1.000(0.0000) 1.000(0.0000) 1.000(0.0000) 0.101(0.0095) 0.061(0.0076) 0.102(0.0096)
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Table 2: Simulation results: The empirical power (SE) for a test at level 0.05, based on 1000

datasets for each configuration of joint distribution and sample size n. The distributions are

various unusual bivariate relation presented in the wikipedia.org page on Pearson correlation.

The tests compared: dCor (based on the ‘energy’ R package with 1000 repetitions per dataset),

MIC (with parameters and p-values provided by the MINE website exploredata.net), and HHG

(the code can be provided by the authors upon request).

n Distribution dCor MIC HHG

30 W 0.000(0.0000) 0.887(0.0100) 0.727(0.0141)

Diamond 0.029(0.0053) 0.084(0.0088) 0.284(0.0143)

Parabola 0.470(0.0158) 0.734(0.0140) 0.899(0.0095)

Hyper-parabola 0.189(0.0124) 0.144(0.0111) 0.997(0.0017)

Circle 0.000(0.0000) 0.221(0.0131) 0.472(0.0158)

4 independent clouds 0.041(0.0063) 0.042(0.0063) 0.050(0.0068)

50 W 0.815(0.0123) 1.000(0.000) 1.000(0.0000)

Diamond 0.049(0.0068) 0.087(0.0089) 0.662(0.0149)

Parabola 0.975(0.0049) 0.906(0.0092) 0.998(0.0014)

Hyper-parabola 0.301(0.0145) 0.366(0.0152) 1.000(0.0000)

Circle 0.000(0.0000) 0.359(0.0152) 0.993(0.0026)

4 independent clouds 0.046(0.0066) 0.045(0.0066) 0.050(0.0068)

100 W 1.000(0.0000) 1.000(0.0000) 1.000(0.0000)

Diamond 0.155(0.0114) 0.072(0.0082) 0.990(0.0031)

Parabola 1.000(0.0000) 1.000(0.0000) 1.000(0.0000)

Hyper-parabola 0.951(0.0068) 1.000(0.0000) 1.000(0.0000)

Circle 0.000(0.0000) 1.000(0.0000) 1.000(0.0000)

4 independent clouds 0.052(0.0070) 0.034(0.0057) 0.052(0.0070)
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