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Abstract

A graph is called H-free if it contains no copy of H. Denote by fn(H) the number of
(labeled) H-free graphs on n vertices. Erdős conjectured that fn(H) ≤ 2(1+o(1)) ex(n,H).
This was first shown to be true for cliques; then, Erdős, Frankl, and Rödl proved it
for all graphs H with χ(H) ≥ 3. For most bipartite H, the question is still wide open,
and even the correct order of magnitude of log2 fn(H) is not known. We prove that

fn(Km,m) ≤ 2O(n2−1/m) for every m, extending the result of Kleitman and Winston and
answering a question of Erdős. This bound is asymptotically sharp for m ∈ {2, 3}, and
possibly for all other values of m, for which the order of ex(n,Km,m) is conjectured to
be Θ(n2−1/m). Our method also yields a bound on the number of Km,m-free graphs
with fixed order and size, extending the result of Füredi. Using this bound, we prove a
relaxed version of a conjecture due to Haxell, Kohayakawa, and  Luczak and show that
almost all K3,3-free graphs of order n have more than 1/20 · ex(n,K3,3) edges.

1 Introduction

Let H be an arbitrary graph. We say that a graph G is H-free, if G does not contain H as
a (not necessarily induced) subgraph. Denote by Fn(H) the family of labeled H-free graphs
with vertex set {1, . . . , n}, and let fn(H) =

∣∣Fn(H)
∣∣. Let ex(n,H) denote the Turán number

for H, i.e., the maximum number of edges (size) that an H-free graph on n vertices may
have. The celebrated theorem of Turán [24] states that

ex(n,Km) =

(
1− 1

m− 1

)
n2

2
+O(n),

and the unique Km-free graph with ex(n,Km) edges is the complete (m − 1)-partite graph
with all parts as equal as possible. Generalizing this, Erdős and Stone [12] showed that the
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chromatic number of H determines the order of magnitude of ex(n,H) provided that H is
not bipartite, i.e.,

ex(n,H) =

(
1− 1

χ(H)− 1

)
n2

2
+ o(n2). (1)

Since every subgraph of an H-free graph is also H-free, Fn(H) contains at least 2ex(n,H)

graphs. Erdős, Kleitman, and Rothschild [11] proved that this crude lower bound is in fact
tight for complete graphs, obtaining an asymptotic formula for log2 fn(Km), namely

ex(n,Km) ≤ log2 fn(Km) ≤ (1 + o(1)) ex(n,Km). (2)

Later, Kolaitis, Prömel, and Rothschild [19] obtained an asymptotic formula for fn(Km) by
proving that almost all Km-free graphs are m-colorable. Erdős asked if (2) is also true when
one replaces Km by an arbitrary graph H. The question was resolved in the affirmative by
Erdős, Frankl, and Rödl [10] in the case χ(H) ≥ 3. For a brief survey and some related
results see, e.g., [3, 2, 1, 22].

The picture is very different when one drops the χ(H) ≥ 3 assumption. For the remainder
of this discussion, assume that H is a bipartite graph that contains a cycle. For most such H,
the problem of determining fn(H) remains wide open. Moreover, for a general bipartite H,
not much is even known about the order of magnitude of ex(n,H). Unlike the non-bipartite
case, the trivial lower and upper bounds for fn(H), i.e.,

2ex(n,H) ≤ fn(H) ≤
ex(n,H)∑
s=0

((n
2

)
s

)
, (3)

do not even determine the order of magnitude of log2 fn(H). The only nontrivial bipartite
graphs for which an estimate stronger than (3) is known are cycles. Kleitman and Win-
ston [17] proved that log2 fn(C4) ≤ 2.16384 · ex(n,C4), and later Kleitman and Wilson [16]
proved log2 fn(C6) = Θ(ex(n,C6)). Similar results on the number of graphs with large (even)
girth, i.e., graphs with no short (even) cycles, were proved in [16, 18]. Our main result ex-
tends that of Kleitman and Winston from K2,2 to all complete bipartite graphs with equal
class sizes.

Definition 1. The binary entropy function H : [0, 1]→ R is defined as

H(x) = −x log2 x− (1− x) log2(1− x).

For every positive integer m with m ≥ 2, let

Cm = sup
x∈(0,1)

(
x−1+1/mH(x)

)
and observe that Cm ∈ [mγ, (m + 2)γ], where γ = (log2 e)/e ≈ 0.531; for details, see
Appendix A.

Theorem 2. The number of labeled Km,m-free graphs on n vertices satisfies

log2 fn(Km,m) ≤ (1 + o(1))
m(m− 1)1/m

2m− 1
Cm · n2−1/m.
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This is known to be asymptotically sharp if m ≤ 3. For other values of m, Erdős
conjectured (see [8]) that ex(n,Km,m) = Θ(n2−1/m), i.e., that the O(n2−1/m) upper bound
on ex(n,Km,m) proved by Kövári, Sós, and Turán [20] is optimal. If this conjecture is true,
Theorem 2 would be sharp for all m.

An algebraic construction of Brown [7] proves that ex(p3, K3,3) ≥ (p5−p4)/2 for all primes
p such that p ≡ 3 (mod 4). Füredi [14] showed that this construction is asymptotically
optimal, i.e., ex(n,K3,3) = (1/2 + o(1))n5/3. Together with Theorem 2, this implies the
following.

Corollary 3. The number of labeled K3,3-free graphs of order n is bounded as follows:

(1/2 + o(1))n5/3 ≤ log2 fn(K3,3) ≤ (1.64618 . . .)n5/3.

Let fn,s(H) denote the number of H-free graphs with exactly s edges. Our methods give
an upper bound on fn,s(Km,m), which extends the result in [13].

Theorem 4. There is an n0 depending only on m such that for all n and s with n ≥ n0

and s ≥ n2−m/(m2−m+1)(log n)2, the number of labeled Km,m-free graphs of order n and size
s satisfies

fn,s(Km,m) ≤
(

3m
n2m−1

sm

)s
.

Let H be a fixed non-bipartite graph. Then for every positive ε, almost all H-free graphs
of order n have at least (1

2
− ε) ex(n,H) and at most (1

2
+ ε) ex(n,H) edges. It is not

known if a similar concentration around a half occurs when H is bipartite. Still, one should
expect that the number of edges in a “typical” H-free graph is at least bounded away from
the extremal values, 0 and ex(n,H). Balogh, Bollobás, and Simonovits [1] formalized this
intuition by conjecturing that for every bipartite graph H that contains a cycle, there is a
positive constant c such that almost all H-free graphs of order n have at least c · ex(n,H)
and at most (1 − c) · ex(n,H) edges. So far this has been proved only for C4 [4, 13] and
partially (only the lower bound) for C6 [13, 16]. An immediate corollary of Theorem 4 proves
the lower bound in the case H = K3,3.

Corollary 5. Almost all K3,3-free graphs of order n have more than 1/20 · ex(n,K3,3) edges.

Given graphs G and H, let us define ex(G,H) = max{e(K) : H 6⊆ K ⊆ G}, where e(K)
denotes the size of K. As ex(n,H) = ex(Kn, H), where Kn denotes the complete graph on
n vertices, the above definition is a natural generalization of the Turán number. If we fix an
H and any graph sequence (Gn)n, a simple averaging argument implies that

lim inf
n→∞

ex(Gn, H)

e(Gn)
≥ 1− 1

χ(H)− 1
. (4)

Haxell, Kohayakawa, and  Luczak [15] conjectured that if e(Gn)→∞, the number of copies
NG(H) of H in Gn is larger than e(Gn), and these copies are “uniformly” distributed in Gn,
one has equality in (4) with lim inf replaced by lim.

Definition 6. A graph H is balanced if

max
H′⊆H

e(H ′)− 1

v(H ′)− 2
=
e(H)− 1

v(H)− 2
.
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Conjecture 7 ([15]). Let H be a fixed balanced graph and let G(n, p) denote the usual
binomial random graph of order n with edge probability p. Suppose that E

[
NG(n,p)(H)

]
≥

ωpn2 for some ω such that ω(n) → ∞ and n → ∞. Then with probability tending to 1 as
n→∞,

ex(G(n, p), H) =

(
1− 1

χ(H)− 1
+ o(1)

)
e(G(n, p)).

We prove the above conjecture for H = Km,m under an additional assumption on the
growth rate of ω.

Theorem 8. Fix a real number γ ∈ (0, 1]. There is a constant C such that, if p(n) ≥
Cn−m/(m

2−m+1)(log n)2, then with probability tending to 1,

ex(G(n, p), Km,m) < γ · e(G(n, p)).

In particular, if pnm/(m
2−m+1) � (log n)2, then asymptotically almost surely

ex(G(n, p), Km,m) = o
(
e(G(n, p))

)
. (5)

Remark 9. Note that in order to prove Conjecture 7, one would have to show that (5)
is still true if we only assume that pn2/(m+1) → ∞. Still, unless pn1/m → ∞, and hence
ex(n,Km,m) = o

(
E
[
e(G(n, p))

])
, the result proved by Theorem 8 is non-trivial.

In particular, proving Conjecture 7 for H = K3,3 would require showing that (5) holds
with high probability whenever p� n−1/2. Note that the assumptions on p in the statement
of Theorem 8 fall only a little short of that threshold.

Corollary 10. If p = p(n)� n−3/7(log n)2, then a.a.s.

ex(G(n, p), K3,3) = o
(
e(G(n, p))

)
.

As it will become clear in the proof of Theorem 8, our method allows us to prove (5) in
a stronger form. Namely, the little o in (5) can be replaced with an explicit function of n
and p. In the case of K2,2 (and all even cycles), this is done in [18], where sharp estimates
are obtained. For details, we refer the reader to [18].

Since our work was completed, Conlon and Gowers [9] and, independently, Schacht [23]
have proved Conjecture 7 in its full generality. In particular, their results imply that The-
orem 8 is still true if we only assume that pn2/(m+1) → ∞, but only with (5) in the weaker
little o form.

For a graph G, we denote its vertex and edge sets by V (G) and E(G), respectively. The
number of edges in G is e(G). For a vertex v ∈ V (G), we denote the set of its neighbors
by NG(v). The degree of v in G, denoted dG(v) or d(v), is the size of its neighborhood, i.e.,
dG(v) = d(v) = |NG(v)|. The minimum degree of G, denoted δ(G) is defined as δ(G) =
minv∈V (G) dG(v). For a set A of vertices of G, by N∗G(A) we will denote the set of common
neighbors of all vertices in A. Given an arbitrary set X, the power set of X, i.e., the family
of all subsets of X is denoted by P(X). For a non-negative integer k, the subfamily of P(X)
containing all k-element subsets is denoted by

(
X
k

)
. Finally, the term k-set abbreviates

the phrase k-element set. Also, throughout the paper log will always denote the natural
logarithm.

The paper is organized as follows. In Section 2 we formulate and prove a general counting
lemma, which is one of the basic building blocks of the proof of Theorem 2. The proof
of Theorem 2 is given in Section 3. Theorems 4 and 8 are proved in Sections 4 and 5,
respectively. Finally, Section 6 contains a few concluding remarks.
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2 Counting complete bipartite subgraphs

One of the most important ingredients in our proof of Theorem 2 is Lemma 14 – an es-
timate on the number of copies of the complete bipartite graph Km−1,m in a larger graph
with bounded minimum degree. Lemma 14 is a straightforward corollary of a more general
statement that we prove below. The proof of Lemma 11 relies on a classic double counting
argument in the spirit of Kövári, Sós, and Turán [20].

Lemma 11. Fix two integers s and t with 1 ≤ s ≤ t and a positive real ε such that
ε(1 + ε)t ≤ 1 . Let G be an n-vertex graph with minimum degree at least d, and A be any set
of a vertices of G, where a ≥ (1 + ε)(t− 1)

(
n
s

)
/
(
d
s

)
. Then the number of copies of Ks,t in G

with the larger partite set completely contained in A, denoted Ns,t(A), satisfies

Ns,t(A) ≥ β · at,

where

β = β(s, t, d, ε) =
εt

t!

(
d

s

)t
/

(
n

s

)t−1
.

Proof. Let U be an s-set of vertices of G and assume that U = {u1, . . . , us}. Let c(U) be
the number of common neighbors of u1, . . . , us in the set A, i.e.,

c(U) =
∣∣N∗G(U) ∩ A

∣∣.
Clearly, ∑

U

c(U) =
∑
w∈A

(
dG(w)

s

)
≥ a

(
δ(G)

s

)
≥ a

(
d

s

)
.

The number of copies of Ks,t in G with the larger partite set contained in A satisfies

Ns,t(A) =
∑
U

(
c(U)

t

)
≥
(
n

s

)(
a
(
d
s

)
/
(
n
s

)
t

)
,

where the above inequality follows from convexity of the function Bt defined by

Bt(x) =

{
0 if x ≤ t− 1,(
x
t

)
if x > t− 1,

and the assumption that a
(
d
s

)
/
(
n
s

)
> t− 1. It follows that

Ns,t(A) ≥
(
n

s

)
· 1

t!

t−1∏
i=0

(
a
(
d
s

)(
n
s

) − i) =

(
n

s

)
·

(
a
(
d
s

)(
n
s

) )t

· 1

t!

t−1∏
i=0

(
1− i

(
n
s

)
a
(
d
s

))

≥ at

t!

(
d

s

)t
/

(
n

s

)t−1
·
t−1∏
i=0

(
1− i

(1 + ε)(t− 1)

)
≥ at

t!

(
d

s

)t
/

(
n

s

)t−1
·
(

1− 1

1 + ε

)t−1
≥ εt

t!

(
d

s

)t
/

(
n

s

)t−1
· at,

where the last inequality follows from the fact that ε(1 + ε)t−1 ≤ 1.
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3 Proof of Theorem 2

Let G be a Km,m-free graph on n vertices and let v be a vertex of minimum degree in
G. Furthermore, let G′ = G − {v} and let d = d(v) − 1. Clearly G′ is Km,m-free and
δ(G′) ≥ δ(G) − 1 = d. Arguing along these lines one can find an ordering v1, . . . , vn of all
the vertices of G, such that if we denote the subgraph induced on {v1, . . . , vi} by Gi, then

δ(Gi) ≥ dGi+1
(vi+1)− 1 for all i ∈ {1, . . . , n− 1}.

In other words, every n-vertex Km,m-free graph can be obtained from a single vertex by
successively adjoining a vertex of degree d + 1 to a graph with minimum degree at least
d, for some d (which can obviously change as the graph grows). The general idea in the
proof is to show that the number of ways in which one can obtain a Km,m-free graph of
order i + 1 from some i-vertex Km,m-free graph in the above process of adjoining vertices

of minimum degree is 2O(i1−1/m), and therefore the number of labeled Km,m-free graphs on n
vertices satisfies

fn(Km,m) ≤ n! ·
n−1∏
i=1

2O(i1−1/m) = 2O(n2−1/m).

For the remainder of the proof, fix some positive integer d and an n-vertex Km,m-free

graph G with minimum degree at least d. In the sequel, we will give an 2O(n1−1/m) bound
on f(G; d,m) – the number of ways to adjoin to G a vertex v of degree d + 1, so that the
resulting graph is still Km,m-free. Clearly,

f(G; d,m) ≤
(

n

d+ 1

)
≤ nd+1 = 2(d+1) log2 n, (6)

and so if d+ 1 ≤ n1−1/m/ log2 n, then f(G; d,m) ≤ 2n
1−1/m

. Therefore, from now on we can
assume that d is “large”, i.e., d > n1−1/m/(2 log n).

Since δ(G) ≥ d � n1−1/(m−1), G contains numerous and evenly distributed copies of
Km−1,m. More precisely, larger partite sets of copies of Km−1,m in G constitute a big propor-
tion of m-subsets of every large enough A ⊆ V (G). Obviously we cannot make v adjacent to
all vertices in any such m-set, since that would create a copy of Km,m in the graph G∪ {v}.
Hence, it is clear that making v adjacent to some of the vertices in G will forbid many other
adjacencies. In fact, we will prove that choosing as few as O

(
(log n)m

2+1
)

neighbors for v
restricts the remaining choices (for neighbors of v) to a set of rather small size. Now we will
formalize these intuitions.

Definition 12. Let B = {w1, . . . , wm} be a set of m vertices of G and let N∗G(B) be the
set of their common neighbors, i.e., N∗G(B) =

⋂
w∈B NG(w). We say that B is dangerous if

|N∗G(B)| ≥ m − 1, i.e., G contains a copy of Km−1,m, in which B is the larger partite set.
For a set A ⊆ V (G), we denote the number of its dangerous m-subsets by Dm(A). In other
words,

Dm(A) =
∣∣{B ⊆ A : |B| = m and B is dangerous}

∣∣.
Observation 13. Let B ⊆ V (G) be a dangerous m-set. Then the adjoined vertex v can be
connected to at most m− 1 vertices in B.
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Lemma 14. Fix some positive ε satisfying ε(1 + ε)m ≤ 1 and let A be any set of a vertices
in G, where a ≥ (1 + ε)(m − 1)

(
n

m−1

)
/
(

d
m−1

)
. If d ≥ d0, where d0 is a constant depending

only on m, then the number of dangerous m-sets in A satisfies

Dm(A) ≥ α · am,

where

α = α(m, d, ε) =
εm

(m!)2
· d

m(m−1)

n(m−1)2 . (7)

Proof. Since G is Km,m-free, every dangerous m-set is the larger partite set of exactly one
copy of Km−1,m in G, and therefore, by Lemma 11,

Dm(A) = Nm−1,m(A) ≥ β(m− 1,m, d, ε) · am,

where β(m− 1,m, d, ε) is as defined in the statement of Lemma 11. It suffices to prove that
β ≥ α. First let us observe that

lim
d→∞

(1−m/d)m−1 = 1,

and hence there is a d0 (depending only on m) such that if d ≥ d0, then

m · (d−m)m(m−1) ≥ dm(m−1).

It follows that if d ≥ d0, then

β =
εm

m!

(
d

m− 1

)m
/

(
n

m− 1

)m−1
≥ εm

m!
·
(

(d−m)m−1

(m− 1)!

)m
·
(

(m− 1)!

nm−1

)m−1
≥ εm

m!
· dm(m−1)

m(m− 1)!n(m−1)2 = α.

Fix some function ε such that limn→∞ ε(n) = 0 and ε(n) � (log n)−1, and let t0 =
(log n)/α. The key step in the proof is to show that there is a map

ψ :

(
V (G)

(m− 1)t0

)
→ P

(
V (G)

)
satisfying |ψ(X)| ≤ (1 + 2ε)(m− 1)(n/d)m−1 such that the following holds.

Claim 15. Let G′ be a Km,m-free graph obtained from G by adjoining a vertex v of degree
d+ 1. Then there is an X ⊆ NG′(v) of size (m− 1)t0 such that NG′(v) ⊆ ψ(X).

Before we start proving Claim 15, let us first show how it implies an upper bound on the
number of ways to connect a vertex v of degree d+ 1 to our graph G.

Corollary 16. With our assumptions on G, d, and ε,

log2 f(G; d,m) ≤ ((1 + 2ε)(m− 1))1/mCm · n1−1/m + o(n1−1/m), (8)

where Cm is as defined in Definition 1.
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Proof. By Claim 15, for every G′ counted by f(G; d,m), we can find some X ⊆ NG′(v) ⊆
V (G) of size (m− 1)t0, such that NG′(v) ⊆ ψ(X). Since for a fixed X, ψ(X) depends only
on G and not on G′, we have

f(G; d,m) ≤
∑
X

(
|ψ(X)|
d+ 1

)
≤
(

n

(m− 1)t0

)
·max

X

(
|ψ(X)|
d+ 1

)
. (9)

Since we assumed that d > n1−1/m/(2 log n), we have

t0 =
log n

α
=

log n · (m!)2n(m−1)2

εmdm(m−1) ≤ (m!)2 · (2 log n)m
2+1. (10)

Using (10), we can bound the first term in (9) as follows:(
n

(m− 1)t0

)
≤ n(m−1)t0 ≤ 2(log2 n)·(m−1)(m!)2(2 logn)m

2+1 � 2n
1−1/m

. (11)

Bounding the second term in (9) requires a little more work. First we note that(
|ψ(X)|
d+ 1

)
≤ n ·

(
|ψ(X)|
d

)
≤ n ·

(
(1 + 2ε)(m− 1)(n/d)m−1

d

)
,

and then, using the well-known estimate relating binomial coefficients with the binary en-
tropy function (see, e.g., [21, Lemma 9]),

1

n+ 1
· 2nH(k/n) ≤

(
n

k

)
≤ 2nH(k/n),

where H is the binary entropy function, we further estimate

log2

(
|ψ(X)|
d+ 1

)
≤ log2 n+ (1 + 2ε)(m− 1)(n/d)m−1 ·H

(
dm

(1 + 2ε)(m− 1)nm−1

)
. (12)

Let x = dm/
(
(1 + 2ε)(m− 1)nm−1

)
and note that x ∈ (0, 1). Rewriting (12) yields

log2

(
|ψ(X)|
d+ 1

)
≤ log2 n+

(
(1 + 2ε)(m− 1)

)1/m · H(x)

x1−1/m
· n1−1/m. (13)

Recall that Cm = supx∈(0,1)
(
x−1+1/mH(x)

)
. Clearly, (11) and (13) imply (8).

In order to complete the proof, we show the existence of a map ψ satisfying Claim 15.
Recall that d is an integer and G is a fixed Km,m-free graph of order n with minimum degree
at least d. We are going to describe an algorithm A that works as follows:

• INPUT: A set N ⊆ V (G) of size d+ 1, such that joining a new vertex v to all vertices
in N yields a Km,m-free graph of order n+ 1.

• OUTPUT: A pair of sets (A,X), such that A contains N − X and has size at most
(1 + ε)(m− 1)

(
n

m−1

)
/
(

d
m−1

)
, and X is a subset of N with exactly (m− 1)t0 elements.
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Most importantly, A will depend solely on X, i.e., if for some two inputs our algorithm A
outputs the same set X, it also produces the same A. Hence putting ψ(X) = A ∪ X for
every output (A,X) of A uniquely defines an appropriate map ψ, as by the assumption
d > n1−1/m/(2 log n) and (10),

|ψ(X)| ≤ (m− 1)t0 + (1 + ε)(m− 1)

(
n

m− 1

)
/

(
d

m− 1

)
≤ (m− 1) · (m!)2(2 log n)m

2+1 + (1 + ε)(m− 1)nm−1/(d−m)m−1

≤ (1 + 2ε)(m− 1)(n/d)m−1

whenever n ≥ n0(m).

We now describe the algorithm A:

1. Set A0 = V (G) and X0 = ∅.

2. For t = 0, . . . , t0 − 1, do the following:

(a) Set A0
t = At and S

0
t = ∅.

(b) For i = 0, . . . ,m− 2, do the following:

i. List all the vertices in Ait as w1
t,i, . . . , w

|Ait|
t,i in a unique way so that for each

j, the vertex wj+1
t,i is the vertex with the minimum label among all vertices in

Ait − {w1
t,i, . . . , w

j
t,i} belonging to the maximum number of dangerous sets B

that contain Sit and the remaining m − i vertices of B all come from the set
Ait − {w1

t,i, . . . , w
j
t,i}.

ii. Let j(t, i) be the smallest j such that wjt,i ∈ N .

iii. Set Ai+1
t = Ait − {w1

t,i, . . . , w
j(t,i)
t,i } and Si+1

t = Sit ∪ {w
j(t,i)
t,i }.

(c) Let Ft be the set of all vertices w ∈ Am−1t such that {w} ∪ Sm−1t is a dangerous set.
Set At+1 = Am−1t − Ft and Xt+1 = Xt ∪ Sm−1t .

3. Set A = At0 and X = Xt0 . Return (A,X).

To make the analysis of A a somewhat clearer, let us have one more definition. For
fixed t ∈ {0, . . . , t0 − 1} and i ∈ {0, . . . ,m − 1}, let us say that an (m − i)-set C ⊆ Ait is

(t, i)-dangerous if the m-set C ∪ {wj(t,0)t,i , . . . , w
j(t,i−1)
t,i } is dangerous. For a subset A′ ⊆ Ait,

define
Di
t(A

′) =
∣∣{C ⊆ A′ : |C| = m− i and C is (t, i)-dangerous}

∣∣.
Suppose we run the algorithm A on some input N . An easy induction on t and i proves the
following statement.

Claim 17. If 0 ≤ t < t0 and 0 ≤ i < m, then the following assertions are satisfied:

• Sit ⊆ N ,

• N −Xt − Sit ⊆ Ait,

• Ft is disjoint from N , and

9



• |Xt| = (m− 1)t.

It follows that X ⊆ N , |X| = (m− 1)t0, and N −X ⊆ A.

Since, given a fixed graph G, the sequence
(
j(t, i)

)
t,i

uniquely determines both X and A,

it should be clear that A cannot output two pairs (X,A) and (X,A′) with A 6= A′. As we
have already mentioned, this allows us to define ψ(X) = A ∪ X, where (X,A) ranges over
all possible outputs of A. In order to complete the proof of Claim 15, it remains to prove
the following claim.

Claim 18. Suppose we run the algorithm A on some input N . Then

|A|+ |X| ≤ (1 + 2ε)(m− 1)(n/d)m−1. (14)

The key step in proving Claim 18 is the following estimate.

Lemma 19. If 0 ≤ t < t0 and 0 ≤ i < m, then the following holds. Suppose that Di
t(A

i
t) ≥

γ|Ait|m−i for some γ ∈ (0, 1]. Then

|Ft|+
m−2∑
k=i

j(t, k) ≥ γ|Ait|. (15)

Proof. For a fixed t, we prove the Lemma by reverse induction on i. Since |Ft| = Dm−1
t (Am−1t ),

inequality (15) is vacuously true if i = m − 1. Suppose that i < m − 1 and (15) holds for

i + 1. For the sake of brevity, let a = |Ait|. Each of w1
t,i, . . . , w

j(t,i)−1
t,i belongs to at most

am−i−1 (m− i)-subsets of Ait, and hence

Di
t(A

i
t − {w1

t,i, . . . , w
j(t,i)−1
t,i }) ≥ Di

t(A
i
t)− (j(t, i)− 1) · am−i−1 (16)

≥ γam−i − (j(t, i)− 1) · am−i−1.

If j(t, i) ≥ γa, then (15) holds, so we may suppose that the reverse inequality is true, and

therefore the rightmost term in (16) is positive. Since we have selected w
j(t,i)
t,i to maximize

Di+1
t (Ait − {w1

t,i, . . . , w
j(t,i)−1
t,i , w}) over all w ∈ Ait − {w1

t,i, . . . , w
j(t,i)−1
t,i },

Di+1
t (Ai+1

t ) ≥ m− i
a− j(t, i) + 1

·Di
t(A

i
t − {w1

t,i, . . . , w
j(t,i)−1
t,i }) (17)

≥ m− i
a− j(t, i) + 1

· (γam−i − (j(t, i)− 1) · am−i−1)

≥ γa− j(t, i) + 1

a− j(t, i) + 1
· am−i−1 ≥ γa− j(t, i)

a− j(t, i)
· |Ai+1

t |m−(i+1),

where the last inequality holds since |Ai+1
t | ≤ |Ait| = a and γ ≤ 1. Hence, by the inductive

assumption, with ’γ = (γa− j(t, i))/(a− j(t, i))’,

|Ft|+
m−2∑
k=i+1

j(t, k) ≥ γa− j(t, i)
a− j(t, i)

· |Ai+1
t | = γa− j(t, i).

10



Recall the definition of α from Lemma 14. The following statement is a straightforward
corollary of Lemma 19.

Corollary 20. If |At| ≥ (1 + ε)(m− 1)
(

n
m−1

)
/
(

d
m−1

)
, then |At+1| ≤ (1− α)|At|.

Proof. Recall that At+1 = Am−1t − Ft and hence

|At+1| = |A0
t | −

m−2∑
i=0

(
|Ait| − |Ai+1

t |
)
− |Ft| = |At| −

m−2∑
i=0

j(t, i)− |Ft|. (18)

The assumed lower bound on |At| guarantees that Lemma 14 can be applied and hence

D0
t (A

0
t ) = Dm(At) ≥ α|At|m.

By (18) and Lemma 19, where we set γ = α and i = 0, we get

|At+1| ≤ |At| − α|A0
t | = (1− α)|At|.

Proof of Claim 18. Note that by Corollary 20,

|At0| ≤ max

{
(1− α)t0|A0|, (1 + ε)(m− 1)

(
n

m− 1

)
/

(
d

m− 1

)}
, (19)

and recall that t0 = (log n)/α. Therefore

(1− α)t0 |A0| ≤ exp(−αt0) · |V (G)| = exp(− log n) · n = 1.

This implies that the second term in the maximum in (19) is larger than the first, and so

|At0| ≤ (1 + ε)(m− 1)

(
n

m− 1

)
/

(
d

m− 1

)
≤ (1 + ε)(m− 1)

nm−1

(d−m)m−1

≤ (1 + 2ε)(m− 1)(n/d)m−1,

provided that n ≥ n0(m); recall that d > n1−1/m/(2 log n).

To complete the proof of Theorem 2, observe that, since G is Km,m-free, δ(G) ≤ cmn
1−1/m

for some absolute constant cm. By (6) and Corollary 16, the number of ways to adjoin to G
a vertex of degree d+ 1 ≤ δ(G) + 1, so that the resulting graph is Km,m-free, is

f(G;m) =
∑
d≤δ(G)

f(G; d,m) ≤
∑

d+1≤n1−1/m

log2 n

f(G; d,m) +
∑

d>n1−1/m

2 logn

f(G; d,m)

≤ n1−1/m

log2 n
· 2n1−1/m

+ cmn
1−1/m · 2(1+o(1))(m−1)1/mCm·n1−1/m

≤ 2(1+o(1))(m−1)1/mCm·n1−1/m

.

Hence,

log2 fn(Km,m) ≤ log2(n!) + (1 + o(1))(m− 1)1/mCm ·
n∑
k=1

k1−1/m

≤ (1 + o(1)) · m(m− 1)1/m

2m− 1
Cm · n2−1/m.

11



4 Proof of Theorem 4

For the sake of brevity, let µ = m/(m2−m+ 1). As it was remarked at the beginning of the
proof of Theorem 2, every n-vertex graph G can be constructed from an isolated vertex v1
by successively connecting a vertex vi+1 to some di vertices in G[{v1, . . . , vi}] in such a way
that

di = δ
(
G[{v1, . . . , vi+1}]

)
≤ δ
(
G[{v1, . . . , vi}]

)
+ 1

for all i ∈ {1, . . . , n − 1}. Call the sequence (di)
n−1
i=1 a degeneracy sequence of G and note

that e(G) =
∑n−1

i=1 di.
Recall from the proof of Theorem 2, that f(G; d,m) is the number of ways one can adjoin

to a Km,m-free graph G with δ(G) ≥ d a new vertex of degree d+1, so that the graph remains
Km,m-free. Clearly, all subgraphs of a Km,m-free graph are also Km,m-free, and hence, if we
let

f(i; d,m) = sup
{
f(G; d,m) : G is a Km,m-free graph of order i with δ(G) ≥ d

}
,

then

fn,s(Km,m) ≤ n! ·
∑
(di)

n−1∏
i=1

f(i; di − 1,m) (20)

where the above sum is taken over all degeneracy sequences (di)
n−1
i=1 with sum s.

If d ≤ n1−µ(log n)2/3 and n ≥ n0, then we give a rather crude bound:

f(i; d,m) ≤
(

i

d+ 1

)
≤ n

(
n

d

)
≤ n

(en
d

)d
≤ exp

(
n1−µ(log n)5/3

)
. (21)

Suppose now that d > n1−µ(log n)2/3, and let α(m, d, 1/(2m− 2)) be as in Lemma 14. Since

t0 =
log n

α
=

log n · (m!)2n(m−1)2

(2m− 2)−mdm(m−1) ≤ m4m · n1−µ(log n)1−
2
3
m(m−1) � n1−µ ≤ d,

Claim 15 can be applied, and reasoning along the lines of Corollary 16, see (9), we show that
for large enough n,

f(i; d,m) ≤ i(m−1)t0 ·
(
m(i/d)m−1

d

)
≤ nn

1−µ ·
(
emnm−1

dm

)d
(22)

≤ exp

(
n1−µ log n+ d log

emnm−1

dm

)
.

Finally, fix some degeneracy sequence (di)
n−1
i=1 with sum s, let I = {i : di > n1−µ(log n)2/3},

and let s′ =
∑

i∈I(di − 1). Combining inequalities (21) and (22) yields

n−1∏
i=1

f(i; di − 1,m) ≤ exp

(
n2−µ(log n)5/3 +

∑
i∈I

(di − 1) log
emnm−1

(di − 1)m

)
. (23)

The function [0,∞) 3 x 7→ x log x ∈ R is convex, and so Jensen’s inequality gives∑
i∈I

(di − 1) log(di − 1) ≥ |I| · (s′/|I|) log(s′/|I|) ≥ s′ · log(s′/n).
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This yields∑
i∈I

(di − 1) log
emnm−1

(di − 1)m
≤ s′ log(emnm−1)−ms′ log(s′/n) = s′ log

emn2m−1

s′m
. (24)

Since d
dx

(x log(y/x)) = log(y/x)− 1, s− s′ = n− 1 +
∑

i 6∈I(di− 1) ≤ n+ n2−µ(log n)2/3, and

s� n2−µ(log n)5/3, we get the estimate∣∣∣∣s′ log
emn2m−1

s′m
− s log

emn2m−1

sm

∣∣∣∣ = O
(
(s− s′) log n

)
= o(s),

which combined with (23) and (24) gives

n−1∏
i=1

f(i; di,m) ≤ exp

(
n2−µ(log n)5/3 + s log

emn2m−1

sm
+ o(s)

)
. (25)

Since
s� n2−µ(log n)5/3, e < 3, s ≤ ex(n,Km,m) ≤ n2−1/m,

and there are at most n! degeneracy sequences, combining (20) with (25) yields

fn,s(Km,m) ≤
(

3mn2m−1

sm

)s
,

whenever n is large enough.

5 Proof of Theorem 8

The proof is a rather straightforward application of Theorem 4 and the first moment method.
We let C = C(γ) = 3/γ and s = (γ/3)pn2 ≥ n2−m/(m2−m+1) log2 n. Recall that for any fixed
positive ε, the random graph G(n, p) asymptotically almost surely has at least (1/2− ε)pn2

edges. Hence,
s < γ · e(G(n, p)) (26)

holds asymptotically almost surely. Conditioning on (26), the event

ex(G(n, p), Km,m) ≥ γ · e(G(n, p)) (27)

implies that G(n, p) contains a Km,m-free subgraph with s edges. But the expected number
of copies of such a graph in G(n, p) is

fn,s(Km,m)ps ≤
(

3m
n2m−1

sm
p

)s
=

(
3m+1m

γm
· p

npm

)s
≤
(

3m+1m

γm
· 1

n1/(m2−m+1)

)s
= o(1).

We conclude that
P
(

ex(G(n, p), Km,m) ≥ γ · e(G(n, p))
)

= o(1).
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6 Concluding remarks

Unfortunately, the technique used in the proof of Theorem 2 fails to yield an 2O(n2−1/s) bound
on the number of Ks,t-free graphs when we assume that 2 ≤ s < t. If we were to directly
transfer the ideas from the proof of Theorem 2 to this new setting, we would similarly try to
bound the number of ways to adjoin a vertex of degree d+ 1 to an n-vertex Ks,t-free graph
G with minimum degree δ(G) ≥ d, so that the new graph is still Ks,t-free. The case when

d + 1 ≤ n1−1/s/(log2 n) can be dealt with easily; the main problem is to give an 2O(n1−1/s)

bound in the case d ≥ n1−1/s/(2 log n). One can again introduce the notion of a dangerous
set, which now is the larger partite set in a copy of Ks−1,t in G (the other possibility, i.e.,
looking for copies of Ks,t−1, can be ruled out quite easily – under our assumptions on d, the
double counting argument used in Lemma 11 cannot even prove existence of a single copy
of Ks,t−1 in G; this should not come at a surprise, as we know that ex(n,Ks−1,t) � n2−1/s

and most likely ex(n,Ks,t−1) = Θ(n2−1/s)). Using Lemma 11, we prove that every set of a
vertices of G contains at least α · at ≈ d(s−1)t/n(s−1)(t−1) · at dangerous sets, provided that
a ≥ t

(
n
s−1

)
/
(
d
s−1

)
. Then with the help of an algorithm very similar to A, one could try to

reprove versions of Claim 15 and Corollary 16, which would imply the desired upper bound.
Here lies the difficulty. The set X ⊆ NG′(v) would have to be of size about (t−1) · (log n)/α,
and one can see that this is optimal, since one iteration of A adds (t − 1) elements to X,
shrinks the set A by multiplicative factor 1− α, and in the end we clearly want |A| = o(n).
A simple computation shows that now |X| � (t − 1)dt−s ≥ (t − 1)d ≥ |NG′(v)|, which is
impossible.

Since our work was completed, we have managed to overcome these difficulties and gen-
eralize Theorems 2 and 4 to all complete bipartite graphs. In [5], we construct a new, much
more sophisticated algorithm for encoding neighborhoods of vertices in Ks,t-free graphs with
large minimum degree. One of the main new ideas is that this algorithm encodes a super-
constant number of neighbors in a single iteration, which allows to shrink the set A by a
multiplicative factor significantly smaller than 1− α. For details, we refer the reader to [5].

Let H be a bipartite graph obtained from the complete bipartite graph Km,m by growing
a tree out of each vertex so that all the trees are pairwise vertex-disjoint. Since in a graph G
with large minimum degree, one can find a copy of any fixed-size tree T , even requiring of T
to be rooted at a specified vertex and of the vertex set of T to avoid a specified small subset
of the set of vertices of G, it is straightforward to reprove Lemma 11 with Km,m replaced
with H. Consequently, one can reprove Lemma 14 with appropriately defined dangerous
sets. Following the proof of Theorem 2 from there on gives

log2 fn(H) ≤ (1 + o(1))
m(m− 1)1/m

2m− 1
Cm · n2−1/m.

Finally, in [1] it is said that any bound on the number of K3,3-free graphs of small size
that is similar to the one we obtained as Corollary 5 seems to be the only missing ingredient
needed to prove Conjecture 31 from [1] with a0 = a1 = 3. The conjecture says that given
integers a0, . . . , ap with a0 ≤ . . . ≤ ap, the vertex set of almost every K(a0, . . . , ap)-free graph
G of order n admits a partition (U1, . . . , Up) where G[U1] is K(a0, a1)-free, and if i > 1, then
the graph G[Ui] has maximum degree less than a1.
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A Estimating the constant Cm

Let m be a positive integer with m ≥ 2 and let fm(x) = x−1+1/mH(x) for all x ∈ (0, 1),
where H is the binary entropy function. Recall from Definition 1 that we defined Cm =
supx∈(0,1) fm(x). Observe that the function fm is non-negative, continuous on (0, 1), and

lim
x→0

fm(x) = lim
x→1

fm(x) = 0.

Hence, there exists an xm ∈ (0, 1) such that f ′m(xm) = 0 and Cm = supx∈(0,1) fm(x) = fm(xm).
Solving f ′m(xm) = 0 yields

Cm = fm(xm) =
m

m− 1
· x1/mm H ′(xm) =

m

m− 1
· x1/mm log2

1− xm
xm

.

It follows that

Cm ≤ sup
x∈(0,1)

(
m

m− 1
· x1/m log2

1− x
x

)
≤ m

m− 1
· sup
x∈(0,1)

(
x1/m log2

1

x

)
(28)

=
m

m− 1
· sup
z∈(0,1)

(
z log2

1

zm

)
=

m2

m− 1
· sup
z∈(0,1)

(
z log2

1

z

)
=

m2

m− 1
· log2 e

e
.
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On the other hand, since

H(x) = x log2

1

x
+ (1− x) log2

1

1− x
≥ x log2

1

x
,

then

Cm ≥ sup
x∈(0,1)

(
x1/m log2

1

x

)
= m · log2 e

e
. (29)

Putting (28) and (29) together yields the desired bounds on Cm:

m · log2 e

e
≤ Cm ≤ (m+ 2) · log2 e

e
.
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