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Abstract

Denote by fn(H) the number of (labeled) H-free graphs on a fixed vertex set of size
n. Erdős conjectured that whenever H contains a cycle, fn(H) = 2(1+o(1)) ex(n,H), yet
it is still open for every bipartite graph, and even the order of magnitude of log2 fn(H)
was known only for C4, C6, and K3,3. We show that for all s and t satisfying 2 ≤ s ≤ t,
fn(Ks,t) = 2O(n2−1/s), which is asymptotically sharp for those values of s and t for which
the order of magnitude of the Turán number ex(n,Ks,t) is known. Our methods allow
us to prove, among other things, that there is a positive constant c such that almost all
K2,t-free graphs of order n have at least 1/12 ·ex(n,K2,t) and at most (1−c) ex(n,K2,t)
edges. Moreover, our results have some interesting applications to the study of some
Ramsey- and Turán-type problems.

1 Introduction

Let H be an arbitrary graph. We say that a graph G is H-free if G does not contain H as a
(not necessarily induced) subgraph. Denote by fn(H) the number of labeled H-free graphs on
a fixed vertex set of size n. Let ex(n,H) denote the Turán number for H, i.e., the maximum
size of an H-free graph on n vertices. Extending the classical theorem of Turán [35], Erdős
and Stone [13] proved that if H is not bipartite, then the order of magnitude of ex(n,H)
depends only on the chromatic number of H, i.e.,

ex(n,H) =

(
1− 1

χ(H)− 1

)
n2

2
+ o(n2).

Since every subgraph of an H-free graph is also H-free, it follows that fn(H) ≥ 2ex(n,H).
Erdős, Frankl, and Rödl [12] proved that this crude lower bound is in fact tight whenever
χ(H) ≥ 3, namely

fn(H) = 2(1+o(1))·ex(n,H). (1)
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For a brief survey and some related results, also on the (different) problem of induced con-
tainment, see, e.g., [1, 3, 4, 5, 27, 33].

The picture changes dramatically when one drops the χ(H) ≥ 3 assumption. Erdős
asked [9] if (1) is still true if H is a bipartite graph containing a cycle, but his question
remains unanswered for all such graphs and for most such H, not even the correct order of
magnitude of log2 fn(H) is known. The only results in this direction are due to Kleitman and
Winston [24], who proved that log2 fn(C4) ≤ 2.17 · ex(n,C4), Kleitman and Wilson [23], who
showed that log2 fn(C6) = Θ(ex(n,C6)), and the authors, who showed [7] that log2 fn(K3,3) ≤
3.30 · ex(n,K3,3). It is worth mentioning that the 2O(n5/4) bound on the number of C8-free

graphs obtained by Kleitman and Wilson [23] as well as the 2O(n2−1/m) bound on fn(Km,m)
obtained by the authors [7] may turn out to be asymptotically tight once the orders of the
Turán numbers ex(n,C8) and ex(n,Km,m) in the case m ≥ 4 are determined.

Here we prove the best possible result that one can expect for all complete bipartite
graphs.

Definition 1. The binary entropy function H : [0, 1]→ R is defined as

H(x) := −x log2 x− (1− x) log2(1− x).

For every positive integer s with s ≥ 2, let

Cs := sup
x∈(0,1)

(
x−1+1/sH(x)

)
and observe that Cs ∈ [sγ, (s+2)γ], where γ = (log2 e)/e ≈ 0.531, which can be shown using
elementary calculus.

Theorem 2. For all s and t with 2 ≤ s ≤ t, the number of labeled Ks,t-free graphs on n
vertices satisfies

log2 fn(Ks,t) ≤ (1 + o(1))
s(t− 1)1/s

2s− 1
Cs · n2−1/s.

Erdős conjectured [11] that ex(n,Ks,t) = Θ(n2−1/s) for all s and t with 2 ≤ s ≤ t. If this
conjecture is true, Theorem 2 would be asymptotically sharp for all pairs (s, t). So far it has
been resolved in the affirmative in the case when s ≤ 3 (see [8, 15, 16]) or t > (s− 1)! (see
[2, 28]). Therefore, Theorem 2 is sharp for ‘most’ pairs (s, t).

Füredi [15] proved that if t ≥ 2, then ex(n,K2,t) = 1
2

√
t− 1 · n3/2 + O(n4/3). Together

with Theorem 2, it implies the following.

Corollary 3. If t ≥ 2, then the number of K2,t-free graphs of order n satisfies

ex(n,K2,t) ≤ log2 fn(K2,t) ≤ (2.16384 + o(1)) · ex(n,K2,t).

Let fn,m(H) denote the number of H-free graphs on a fixed n-element vertex set, having
exactly m edges. The methods used in the proof of Theorem 2 also give an upper bound on
fn,m(Ks,t).

Theorem 4. For every s and t with 2 ≤ s ≤ t, let

µs,t =
1

s
+

s− 1

s2(t− 1)(t− s+ 1) + s
.
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There is an n0 (depending on s and t) such that for all n and m with n ≥ n0 and m ≥
n2−µs,t(log n)3t/s+2, the number fn,m(Ks,t) of labeled Ks,t-free graphs of order n and size m
satisfies

fn,m(Ks,t) ≤
(

3tn2s−1

ms

)m
.

Remaining interesting bipartite graphs, for which Erdős’ conjecture is still wide open
include C2k for k ≥ 5, Q3 – the graph of the 3-dimensional cube and the universal graphs
U(k). Recall that for a positive integer k, the universal graph U(k) is the bipartite graph
with parts A := 2[k] and B := [k], and edge set defined as follows:

E
(
U(k)

)
:=
{
{a, b} : a ∈ A, b ∈ B and b ∈ a

}
.

The remainder of this paper is organized as follows. Section 2 studies various corollaries
of Theorems 2 and 4. In Section 3 we introduce some notation and state a general counting
lemma, which is one of the basic building blocks in the proof of Theorem 2, given in Section 4.
Theorem 4 is proved in Section 5.

2 Implications of the main results

The main results of this paper, Theorems 2 and 4, have various interesting consequences,
some of which we list below. Most of the statements in this section are straightforward
applications of the main results, and hence their proofs are omitted.

2.1 Balogh-Bollobás-Simonovits conjecture

Let H be a fixed non-bipartite graph. For every positive constant ε, almost all H-free graphs
on n vertices have between (1

2
−ε) ex(n,H) and (1

2
+ε) ex(n,H) edges. It is not known whether

a similar concentration around one half still occurs when H is bipartite. Nevertheless, one
would expect that the number of edges in a ‘typical’ H-free graph is at least bounded away
from the extremal values, 0 and ex(n,H). Balogh, Bollobás, and Simonovits [3] formalized
this intuition by stating the following conjecture.

Conjecture 5 ([3]). For every bipartite graph H that contains a cycle, there is a positive
constant cH such that almost all H-free graphs on n vertices have at least cH ex(n,H) and
at most (1− cH) ex(n,H) edges.

So far, Conjecture 5 has been proved only in the case H = C4 [6, 14] and partially (only
the lower bound) for C6 [14, 23] and K3,3 [7]. In [3], the precise structure of almost all
octahedron-free (K2,2,2-free) graphs was characterized. The main obstacle to extending that
result to other complete multipartite graphs was the lack of results establishing the lower
bound in Conjecture 5 for complete bipartite graphs other than C4. An immediate corollary
of Theorem 4 provides such a lower bound.

Corollary 6. Let s and t be integers satisfying s ∈ {2, 3} and t ≥ s, or s > 3 and t > (s−1)!.
There exists a positive constant cs,t such that almost all Ks,t-free graphs of order n have at
least cs,t ex(n,Ks,t) edges. Moreover, if t ≥ 2, then we may choose c2,t = 1/12.
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Combining the methods developed in the proof of Theorem 2 to obtain an upper bound
on the number of one-vertex extensions of a K2,t-free graph with the argument used in [6],
one gets the following.

Theorem 7. There exists a positive constant ε such that for every t with t ≥ 2, almost all
K2,t-free graphs of order n have at most (1− ε) · ex(n,K2,t) edges.

The proof of Theorem 7 in the case t > 2 is virtually identical to the proof for the case
t = 2 in [6]. The only non-trivial change is reformulating [6, Lemma 5] and reproving it
using the coding algorithm developed in the proof of Theorem 2.

2.2 Haxell-Kohayakawa- Luczak conjecture

Given two graphs G and H, let us define the generalized Turán number for H in G,

ex(G,H) := max{e(K) : H * K ⊆ G}.

A simple averaging argument implies that for every positive integer k, an arbitrary graph G
has a k-partite subgraph with at least (1− 1/k) · e(G) edges. It follows that for every G and
H,

ex(G,H) ≥
(

1− 1

χ(H)− 1

)
· e(G) ≈ ex(n,H)(

n
2

) · e(G).

It is natural to ask for which graphs G the above inequality becomes an equality. Haxell,
Kohayakawa, and  Luczak [21] conjectured that whenever p is large enough, so that the
random graph G(n, p) has many uniformly distributed copies of H, then asymptotically
almost surely, ex(G(n, p), H) = (1− 1

χ(H)−1 + o(1)) · e(G(n, p)).

Definition 8. Let H be a fixed graph. The 2-density of H, denoted d2(H), is defined by

d2(H) := max

{
|E(K)| − 1

|V (K)| − 2
: K ⊆ H, |V (K)| ≥ 3

}
.

Conjecture 9 ([21]). Let H be a fixed balanced graph and let G(n, p) denote the Erdős-Rényi
random graph of order n with edge probability p. If p(n) � n−1/d2(H), then with probability
tending to 1 as n→∞,

ex(G(n, p), H) =

(
1− 1

χ(H)− 1
+ o(1)

)
· e(G(n, p)).

So far Conjecture 9 has been proved for all cycles [21, 22], K4 [26], and K5 [20]. Some
partial results are also known for larger complete graphs. Recently, Conlon and Gowers [10]
and, independently, Schacht [34] have announced that they have proved Conjecture 9 in its
full generality and extended it to the setting of random uniform hypergraphs. A straight-
forward application of Theorem 4 and the first moment method gives the following relaxed
version of Conjecture 9 when H is a complete bipartite graph.

Corollary 10. Assume that 2 ≤ s ≤ t and let µs,t be as in the statement of Theorem 4. If
pnµs,t � (log n)3t/s+2, then asymptotically almost surely

ex(G(n, p), Ks,t) = o
(
e(G(n, p))

)
. (2)
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Note that in order to prove Conjecture 9, one has to show that (2) is still true if we only as-

sume that pn
s+t−2
st−1 →∞. Still, unless pn1/s →∞, and hence ex(n,Ks,t) = o

(
E
[
e(G(n, p))

])
,

the result proved in Corollary 10 is non-trivial. The proof for the case s = t given in [7]
works for all s and t.

Actually, Theorem 4 allows us to prove (2) in a stronger form. Namely, the little o in (2)
can be replaced with an explicit function of n and p.

Corollary 11. Assume that 2 ≤ s ≤ t and let µs,t be as in the statement of Theorem 4. There
exists a constant C (depending only on s and t) such that if p(n) ≥ Cn1−sµs,t(log n)3t+2s,
then asymptotically almost surely

ex(G(n, p), Ks,t) ≤ Cp1/sn2−1/s. (3)

Since for arbitrary graphs G and H, one trivially has ex(G,H) ≥ e(G)/
(
n
2

)
· ex(n,H),

if Erdős’ conjecture is true and ex(n,Ks,t) = Θ(n2−1/s), then for some positive constant c,
asymptotically almost surely

ex(G(n, p), Ks,t) ≥ cpn2−1/s. (4)

Closing the gap between (3) and (4) remains an interesting problem. In the case of K2,2 (and
all even cycles), this is done in [25], where sharp estimates are obtained for certain range of
p.

2.3 Kohayakawa- Luczak-Rödl conjecture

Let G be a bipartite graph with parts V1 and V2. For two sets V ′1 ⊆ V1 and V ′2 ⊆ V2, we
define the density of the bipartite graph induced by the pair (V ′1 , V

′
2), denoted d(V ′1 , V

′
2), to

be the quantity e(V ′1 , V
′
2)/(|V ′1 ||V ′2 |), where e(V ′1 , V

′
2) is the number of edges of G between V ′1

and V ′2 . We say that G is ε-regular if for all sets V ′1 ⊆ V1 and V ′2 ⊆ V2 that satisfy |V ′1 | ≥ ε|V1|
and |V ′2 | ≥ ε|V2|, the density d(V ′1 , V

′
2) differs from the density d(V1, V2) of G by at most ε.

Definition 12. For a graph H, let G(H,n,m) be the family of graphs on the vertex set⋃
x∈V (H) Vx, where Vx are pairwise disjoint sets of vertices of size n, whose edge set is⋃
{x,y}∈E(H)Ex,y, where Ex,y ⊆ Vx × Vy and |Ex,y| = m. Let G(H,n,m, ε) denote the set

of graphs in G(H,n,m) in which each (Vx ∪ Vy, Ex,y) is an ε-regular graph.

A graph G ∈ G(H,n,m, ε) looks like H in which every vertex has been replaced by an
independent set of size n and every edge – by a set of m edges which form an ε-regular bipar-
tite graph. Kohayakawa,  Luczak, and Rödl [26] conjectured that whenever these bipartite
graphs are dense enough, only a small fraction of graphs in G(H,n,m, ε) does not contain a
copy of H.

Conjecture 13. Let H be a fixed graph. For any positive β, there exist positive constants
ε, C, and n0 such that for all m and n satisfying m ≥ Cn2−1/d2(H) and n ≥ n0, we have

|{G ∈ G(H,n,m, ε) : H 6⊆ G}| ≤ βm
(
n2

m

)|E(H)|

.

Conjecture 13 is known to be true when H is a tree, a cycle [17], or a complete graph
on three [30], four [19], or five vertices [20]. Some partial results are also known for larger
complete graphs [18]. A straightforward application of Theorem 4 gives the following relaxed
version of Conjecture 13 in the case when H is a complete bipartite graph.
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Corollary 14. Let s and t be integers satisfying 2 ≤ s ≤ t, and let µs,t be as in the statement
of Theorem 4. For any positive β and ε, there exist positive constants C and n0 such that
for all n and m satisfying m ≥ Cn2−µs,t(log n)3t/s+2 and n ≥ n0, we have

|{G ∈ G(Ks,t, n,m, ε) : Ks,t 6⊆ G}| ≤ βm
(
n2

m

)|E(Ks,t)|

. (5)

Note that in order to prove Conjecture 13, one would have to show that (5) is still true

if we only assume that m ≥ Cn2− s+t−2
st−1 .

2.4 Random Ramsey graphs

A graph G is Ramsey with respect to H, G → H, if every two-coloring of the edges of G
results in a monochromatic subgraph isomorphic to H. Unsurprisingly, the smallest graphs
that are Ramsey with respect to the four-cycle are saturated by C4’s. Erdős and Faudree
asked (see [14]) whether this is always the case, i.e., if there exists a graph G such that
G→ C4, but G does not contain a K2,3. Answering this question, Füredi [14] proved a much
stronger result – whenever m is large enough, there are K2,3-free graphs with m edges, whose
largest C4-free subgraph has only m1−c edges, where c ≥ 1/51+o(1). Clearly, all such graphs
are Ramsey with respect to C4. He also asked if similar results can be proved for other pairs
of graphs. Using the random graph argument from [14] combined with Theorem 4, we can
give an answer to this question. We would also like to remark that the problem of Erdős
and Faudree mentioned above was independently solved by Nešetřil and Rödl [32].

Corollary 15. For all integers s and t with 2 ≤ s ≤ t, there exist an integer u with u > t and
a positive constant c such that for all large enough m, there exists a Ks,u-free graphs G with
m edges, whose largest Ks,t-free subgraph has only m1−c edges. In particular, if s = t = 3,
then one can take u = 4.

3 Notation and preliminaries

For a graph G, we denote its vertex and edge sets by V (G) and E(G), respectively. The
number of edges in G is e(G). For a vertex v ∈ V (G), we denote the set of its neighbors by
NG(v) or simply N(v) whenever G is clear from the context. The degree of v in G, denoted
dG(v), is the size of its neighborhood, i.e., dG(v) := |NG(v)|. The minimum degree of G is
δ(G). For a set A of vertices of G, by N∗G(A) we will denote the set of common neighbors of
all vertices in A, i.e., N∗G(A) :=

⋂
v∈ANG(v), and refer to such sets as |A|-fold neighborhoods

in G.
When k is a nonnegative integer, the term k-set (or k-subset) abbreviates the phrase

k-element set (or k-element subset).
For a hypergraph H, we denote its vertex and edge sets by V (H) and E(H), respectively.

We say that H is k-uniform if E(H) consists only of k-subsets of V (H). The number of
edges in H is e(H). For an arbitrary X ⊆ V (H), the subhypergraph induced on X is the
hypergraph H[X] with V (H[X]) = X and E(H[X]) = {D ∈ E(H) : D ⊆ X}. Given a
subset S ⊆ V (H), H− S abbreviates H[V (H)− S].

For a subset W ⊆ V (H), the degree of W in H, denoted degH(W ), is the number of edges
of H that W is contained in, i.e., degH(W ) :=

∣∣{D ∈ E(H) : W ⊆ D}
∣∣. Given a vertex
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w ∈ V (H), we denote the degree of w by degH(w). For a positive integer `, the maximum
`-degree of H is

∆`(H) := max{degH(W ) : W ⊆ V (H) with |W | = `}.

The maximum degree of H, denoted ∆(H), is its maximum 1-degree, ∆1(H). Clearly, for
every positive integer `,

∆(H) ≤ |V (H)|`−1 ·∆`(H). (6)

Given a hypergraph H on a linearly ordered vertex set V , the max-degree ordering of the
vertices of H is the unique ordering w1, . . . , w|V | of V such that for each j, if we let Wj =
{w1, . . . , wj}, then wj+1 is the vertex with the smallest label among all vertices in V −Wj

minimizing degH[V−Wj ]
(wj+1).

Finally, σ(H) will denote the minimum size of a set of vertices that covers more than
half of the edges of H, i.e.,

σ(H) := min{|S| : e(H− S) < e(H)/2}.

Since one vertex covers no more than ∆(H) edges of H, one clearly has

σ(H) >
e(H)

2∆(H)
. (7)

Throughout the paper, log will always denote the natural logarithm.

One of the key ingredients in the proof of Theorem 2 is the following lemma, whose proof,
a double counting argument in the spirit of Kövári, Sós, and Turán [29], can be found in [7].

Lemma 16. Fix two integers s and t with 1 ≤ s ≤ t and a positive real ε such that
ε(1 + ε)t ≤ 1 . Let G be an n-vertex graph with minimum degree at least d, and A be any set
of a vertices of G, where a ≥ (1 + ε)(t− 1)

(
n
s

)
/
(
d
s

)
. Then the number of copies of Ks,t in G

with the larger partite set completely contained in A, denoted Ns,t(A), satisfies

Ns,t(A) ≥ β · at,

where

β = β(s, t, n, d, ε) =
εt

t!

(
d

s

)t
/

(
n

s

)t−1
.

4 Proof of Theorem 2

Let G be a Ks,t-free graph of order n and let v be a vertex of minimum degree in G.

Furthermore, let Ĝ = G − {v}. Clearly, Ĝ is Ks,t-free and δ(Ĝ) ≥ δ(G) − 1 = dG(v) − 1.
It easily follows that one can find an ordering v1, . . . , vn of V (G), such that if we let Gi :=
G[{v1, . . . , vi}], then

δ(Gi) ≥ dGi+1
(vi+1)− 1 for all i ∈ {1, . . . , n− 1}.

In other words, every n-vertex Ks,t-free graph can be obtained from a single vertex by
successively adjoining a vertex of degree d + 1 to a graph with minimum degree at least d,
for some d. The general idea of the proof is showing that the number of ways in which one
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can obtain a Ks,t-free graph of order i + 1 from some i-vertex Ks,t-free graph in the above

process of adjoining vertices of minimum degree is 2O(i1−1/s), and therefore the number of
labeled Ks,t-free graphs of order n satisfies

fn(Ks,t) ≤ n! ·
n−1∏
i=1

2O(i1−1/s) = 2O(n2−1/s).

We start by introducing some notation. For a fixed n-vertex Ks,t-free graph G, let
f(G;Ks,t) denote the number of ways we can extend G to a Ks,t-free graph of order n + 1
by adjoining to G a new vertex of degree at most δ(G) + 1. Then, we let

f(n;Ks,t) := sup
G
f(G;Ks,t),

where the supremum is taken over all Ks,t-free graphs with n vertices.
The core of the proof is the description and analysis of an algorithm that encodes the

aforementioned one-vertex extensions in an economical way, i.e., using only few bits. Pre-
cisely, we will achieve the following goal.

Goal. Construct an algorithm A meeting the following specification:

• INPUT: An n-vertex Ks,t-free graph G and a set N ⊆ V (G) of size at most δ(G) + 1
such that the addition of a new vertex v with N(v) = N yields a Ks,t-free graph of
order n+ 1.

• OUTPUT: A bitstring of length at most (1 + o(1))(t − 1)1/sCs · n1−1/s that uniquely
encodes N .

By saying that A uniquely encodes N , we mean that there is another algorithm B, which
given G and A(G,N), the code of N in G produced by A, outputs N . Although we will not
explicitly construct such B, it will become clear that one can obtain such an algorithm by
slightly modifying A. In particular, the existence of such coding and decoding procedures
implies that for a fixed Ks,t-free graph G, the map A(G,−) is an injection of the set of all
possible Ks,t-free extensions of G by a single vertex of degree at most δ(G) + 1 into a set of

size 2(1+o(1))(t−1)1/sCs·n1−1/s
. It then follows that for every n-vertex Ks,t-free graph G,

f(G;Ks,t) ≤ 2(1+o(1))(t−1)1/sCs·n1−1/s

,

and hence

log2 fn(Ks,t) ≤ log2

(
n! ·

n−1∏
i=1

f(i;Ks,t)

)
≤ (1 + o(1))(t− 1)1/sCs ·

n−1∑
i=1

i1−1/s

= (1 + o(1))
s(t− 1)1/s

2s− 1
Cs · n2−1/s.

In the remainder of the proof, we will describe and analyze an algorithm that meets our
requirements. To begin with, let us fix some valid input for A, i.e., an n-vertex Ks,t-free
graph G and a set N ⊆ V (G) with |N | ≤ δ(G)+1 such that making a new vertex v adjacent
to all of N yields a Ks,t-free graph G′ of order n+ 1. Furthermore, let d := |N | − 1 and note
that δ(G) ≥ d by our assumption.
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Since |V (G)| = n, we may clearly assume that there is an injective mapping of V (G)
into the set {0, 1}dlog2 ne or, in other words, a distinct dlog2 ne-bit code for each vertex of G.
To simplify notation, from now on we will generally not distinguish vertices of G from their
codes.

For the most part, the output of our algorithm will be a sequence of vertex codes
interwound with numbers and short ‘control sequences’ (strings like LOW DEGREE VERTEX,
PREPROCESSING, etc.) coming from a constant sized set. Since all the numbers involved will
come from the set {0, . . . , n−1}, in order to avoid confusion, let us agree that by outputting
a number we will mean outputting its unique code of fixed length dlog2 ne, e.g., the binary
representation of the number. Same convention applies to ‘control sequences’ – each of them
will be assigned a unique code of length dlog2 ne.

Recall that d+ 1 = |N | and δ(G) ≥ d. If d ≤ n1−1/s/dlog2 ne, then A will simply output
LOW DEGREE VERTEX, followed by d+ 1 and the list of all d+ 1 elements of N in an arbitrary
order. Clearly, the length of the output string is precisely (d + 3)dlog2 ne, which does not
exceed (1 + o(1))n1−1/s.

After having handled the easy case, for the remainder of this section we will restrict our
attention to the more interesting case d > n1−1/s/dlog2 ne. Since G′, which we recall is the
graph obtained from G by adjoining v to the vertices in N , is Ks,t-free, whenever a t-set
D ⊆ V (G) is the larger partite set in a copy of Ks−1,t in G, N does not contain D, i.e.,
|N ∩D| ≤ t− 1. Since d ≥ n1−1/s/(2 log n)� n1−1/(s−1), Lemma 16 implies that G contains
many copies of Ks−1,t. Vaguely, this means that N cannot be an arbitrary (d+ 1)-subset of
V (G), but is very restricted, and hence its entropy is much lower than log2

(
n
d+1

)
. Below, we

try to make this intuition precise. For the sake of brevity, let us first introduce the following
definition.

Definition 17. A t-set D ⊆ V (G) is dangerous if |N∗(D)| = s − 1, i.e., D is the larger
partite set in a copy of Ks−1,t in G. In other words, a t-set D is dangerous if and only if
D ⊆ N∗(U) for some (s− 1)-set U ⊆ V (G).

The starting point in designing of the algorithm are the following three simple observations
and an estimate on the number of dangerous sets.

Observation 18. No dangerous set is fully contained in N .

Observation 19. Let U ⊆ V (G) be an arbitrary (s−1)-set of vertices. Then |N∩N∗(U)| ≤
t− 1.

Observation 20. Let W ⊆ V (G) be an arbitrary s-set of vertices. Then |N∗(W )| ≤ t − 1
and hence N∗(W ) contains at most

(
t−1
s−1

)
different (s− 1)-subsets.

Lemma 21. Fix some positive ε satisfying ε(1 + ε)t ≤ 1 and let A be any set of a vertices
in G with a ≥ (1 + ε)(t − 1)

(
n
s−1

)
/
(
d
s−1

)
. There is a d0 such that for all d with d ≥ d0, the

number D(A) of dangerous t-sets in A satisfies

D(A) ≥ α · at,

where

α = α(s, t, n, d, ε) =
εt

s!t!
· d(s−1)t

n(s−1)(t−1) .

9



Proof. Since G is Ks,t-free, every dangerous t-set is the larger partite set of exactly one copy
of Ks−1,t in G, and therefore by Lemma 16,

D(A) = Ns−1,t(A) ≥ β(s− 1, t, n, d, ε) · at,

where β(s − 1, t, n, d, ε) is defined in the statement of Lemma 16. It suffices to prove that
β ≥ α. First let us observe that

lim
d→∞

(1− s/d)(s−1)t = 1,

and hence there is a d0 (depending only on s and t) such that if d ≥ d0, then

s · (d− s)(s−1)t ≥ d(s−1)t.

It follows that if d ≥ d0, then

β =
εt

t!

(
d

s− 1

)t
/

(
n

s− 1

)t−1
≥ εt

t!
·
(

(d− s)s−1

(s− 1)!

)t
·
(

(s− 1)!

ns−1

)t−1
≥ εt

t!
· d(s−1)t

s(s− 1)!n(s−1)(t−1) = α.

Next, let us sketch the rough idea of how our algorithm works. Although this description
is not very formal or precise and misses out a lot of technical details, we hope that it will
make the understanding of the pseudocode of A somewhat easier.

At all times, A will maintain a list of already encoded elements of N (neighbors of v),
denoted by Q, and a set A containing the remaining neighbors – the set N − Q. We will
refer to A as the set of eligible vertices and Q – the set of already encoded vertices. Our goal
will be to shrink the eligible set A as much as we can without growing Q too much at the
same time. This will be achieved by moving to Q only very carefully chosen vertices from
N . Since, as we will later see, encoding one element of Q requires approximately log2 n bits,
at all times we can encode the entire set N using roughly |Q| log2 n+ log2

( |A|
|N−Q|

)
bits. Once

we are done shrinking A, this number will be small enough for our purposes.
Before we proceed with the explanation, let us define a few parameters. Let

ε = ε(n) := 1/ log n, ω = ω(n) := (log n)3, and b := d
t−s

t−s+1 .

The target size of the eligible set A, i.e., the maximum number of elements we would like A
to have at the very end, is a0, defined as

a0 := (1 + ε)(t− 1)

(
n

s− 1

)
/

(
d

s− 1

)
.

Note that a0 is the lower bound on the cardinality of a set A that surely contains a lot of
dangerous t-subsets (see Lemma 21).

The algorithm will work in steps. During a single step, A will lose many elements, whereas
Q (and the length of the code generated by A) will grow very little. Each step starts with
preprocessing of the eligible set A, a procedure which makes sure that A is ‘well-behaved’
in terms of the sizes of induced (s − 1)-fold neighborhoods. In step 3a, we simply remove

10



from A all (s − 1)-fold neighborhoods larger than ω|A|/d, and encode (and move to Q) all
neighbors of v (elements of N) that those large neighborhoods contain (Observation 19 says
that there are at most t − 1 neighbors of v in each such neighborhood). This will be of
extremely high importance later, when we analyze the algorithm.

When A no longer contains very large (s− 1)-fold neighborhoods, then we run the core
part ofA. In step 3c, we pick out a carefully chosen sequence of subsets Qt, . . . , Qs+1 ⊆ N−Q
of size b each that we encode and move to Q. At the same time, we construct a sequence
Ht, . . . ,Hs, where each Hr is an r-uniform hypergraph on the vertex set A with

E(Hr) ⊆
{
D ⊆ A : {wt, . . . , wr+1} ∪D is dangerous for some wt ∈ Qt, . . . , wr+1 ∈ Qr+1

}
.

The key property of each Hr is that not only none of its edges is fully contained in N
(see Observation 19), but also the fact that Hr can be computed from only G and the sets
Qt, . . . , Qr+1, without the full knowledge of N (this will allows us to decode A(G,N) later).
Our ultimate goal in the for loop 3c is to maximize the number of edges in Hs. Since the
edges of the r-uniform hypergraph Hr are neighbors in the (r+ 1)-uniform hypergraph Hr+1

of the vertices from Qr+1, i.e., D ∈ E(Hr) if D ∪ {w} ∈ E(Hr+1) for some w ∈ Qr+1, we
try to achieve this goal by maximizing e(Hr) in turn for all r ∈ {t − 1, . . . , s}. In order to
do that, we try to add to Qr+1 vertices with highest degrees in Hr+1. Since Qr+1 ⊆ N , our
choices are quite limited and it might happen that very few of the high-degree vertices in
Hr+1 belong to N . In this case, we will not be able to make e(Hr) very large, but we can
use the extra information about N (the fact that N contains very few vertices that have
high degree in Hr+1) to shrink the eligible set – we simply delete from A all the high-degree
non-neighbors of v, which we keep listed in the set Y . Finally, the existence of very few
vertices not belonging to N that cover most of the edges of Hr+1 would get us into trouble
as only deleting them from A would not shrink the eligible set well enough. We overcome
this obstacle by keeping the maximum degree of each Hr bounded – the auxiliary set X
serves this purpose.

By definition, the edges of the s-uniform hypergraph Hs will have the nice property that
none of them is fully contained in N . In the for loop 3d, we will exploit this fact to shrink
the eligible set by working with Hs with the use of methods developed in [7]. The rough
idea is the following. If many vertices of N have high degree in Hs, and hence some (s− 1)b
of them almost-cover many edges, i.e., many edges of Hs contain s − 1 of these (s − 1)b
vertices from N , then we can remove all the uncovered vertices in these almost-covered
edges from A. Otherwise, very few of the high-degree vertices in Hs are members of N
and we can significantly shrink A by deleting all the high-degree non-neighbors of v from
A. More precisely, we will repeat the following b times. Using Hs, we construct a sequence
Hs−1, . . . ,H1, where each Hr is an r-uniform hypergraph that can be computed from only G
and Q and has the property that none of its edges is fully contained in N . In particular, each
edge of H1 has empty intersection with N and hence we can remove it from A. Similarly as
before, either H1 has many edges or in the process of computing the sequence Hs−1, . . . ,H1,
we gain some extra information about N that we can use to shrink the eligible set. Either
way, we will delete many elements from A.

After this lengthy introduction, we present the algorithm in the “high-degree” case, i.e.,
when d > n1−1/s/(2 log n). Recall the definition of the max-degree ordering given in Section 3.

1. Output “HIGH DEGREE VERTEX”.

2. Set A := V (G) and Q := ∅.

11



3. While |A| > a0, do the following:

(a) If there exists an (s−1)-set U ⊆ V (G) with |N∗(U)∩A| > ω|A|/d, do the following:

i. Let U = {u1, . . . , us−1} and N∗(U) ∩N = {w1, . . . , wk}.
ii. Set A := A−N∗(U) and Q := Q ∪ {w1, . . . , wk}.
iii. Output “PREPROCESSING : u1, ..., us−1, k, w1, ..., wk” and go to step 3.

(b) Let Ht := {D ⊆ A : |D| = t and D is dangerous}.
(c) For r = t− 1, . . . , s, do the following:

i. Set Qr+1 := ∅, X := ∅, and Y := ∅.
ii. Let Hr be an empty r-uniform hypergraph on A.

iii. For i = 1, . . . , b, do the following:

• Let wi1, . . . , w
i
|A−X−Y | be the max-degree ordering of the vertices ofHr+1[A−

X − Y ] and let W i
j = {wi1, . . . , wij} for every j.

• Let ji be the smallest j such that wij ∈ N .

• Hr := Hr ∪
{
D : {wiji} ∪D ∈ Hr+1[A−X − Y −W i

ji−1]
}

.

• Set Qr+1 := Qr+1 ∪ {wiji} and Y := Y ∪W i
ji

.

• Set X := X ∪ {w ∈ A : degHr
(w) > bt−rds−t|A|r−1}.

iv. Set Q := Q ∪Qr+1.

v. Suppose the vertices added to Qr+1 were w1, . . . , wb. Output “w1, ..., wb”.

vi. If |Y | ≥ σ(Hr+1)/2, then A := A− Y , output “SKIP” and go to step 3.

(d) For i = 1, . . . , b, do the following:

i. For r = s− 1, . . . , 1, do the following:

• Let wr1, . . . , w
r
|A| be the max-degree ordering of the vertices of Hr+1[A] and

let W r
j = {wr1, . . . , wrj} for every j.

• Let jr be the smallest j such that wrj ∈ N .

• Set A := A−W r
jr and Q := Q ∪ {wrjr}.

• Set Hr :=
{
D ⊆ A : {wrjr} ∪D ∈ Hr+1

}
.

ii. Let A := A−
{
w : {w} ∈ E(H1)

}
.

iii. Output “ws−1js−1
, ..., w1

j1
”.

4. Let N ′ := N −Q. Clearly N ′ ⊆ A. The set N ′ is one of the
( |A|
|N ′|

)
different |N ′|-subsets

of A. Output “REMAINDER : |A|, |N ′|”, followed by a dlog2

( |A|
|N ′|

)
e-bit code of N ′ in A.

For the remainder of this discussion, let us fix G and N with d = |N |−1 ≥ n1−1/s/(2 log n)
and assume that we run A on the pair (G,N). Note that given G and the output A(G,N),
one can reconstruct N . The key observation that reassures us that it is possible is noting
that the final sets A and Q can be recomputed step-by-step in the exact same way as they
were computed by A as all the necessary information about N that is needed for it appears
in A(G,N). Once we reconstruct A and Q, we can easily decode N = N ′ ∪Q using the last
fragment of A(G,N) starting with REMAINDER.

The non-trivial part of the analysis is proving an O(n1−1/s) bound on the size of the
output of A. Recall that our aim is to prove that the length of the output satisfies

|A(G,N)| ≤ (1 + o(1))(t− 1)1/sCs · n1−1/s.
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We start by looking at the preprocessing stage. Let p denote the total number of times A
preprocesses the eligible set A, i.e., the number of times an appropriate (s−1)-set U is found
in step 3a.

Claim 22. The total number of preprocessing steps satisfies p ≤ d logn
ω

+ 1.

Proof. Each time A preprocesses the eligible set, A loses more than ω|A|/d elements. Hence,
preprocessing the eligible set q times shrinks it by a factor of at most γ1, where

γ ≤
(

1− ω

d

)q
≤ e−q

ω
d .

Since A starts with |A| = n and after p−1 preprocessing steps A is still non-empty, it follows
that (p− 1)ω/d ≤ log n.

Let α be as in the definition in Lemma 21. Moreover, for each r ∈ {t, . . . , s− 1}, let

Br :=

(
4t

(
t− 1

s− 1

))r−t
and Dr := 3(t− s)(t− r). (8)

The core of our analysis will be the following lemma.

Lemma 23. Suppose that during some iteration of the main while loop, step 3, A does not
preprocess the eligible set. Then during that iteration, the eligible set A loses at least

Bs−1

(log n)Ds−1
· dt−sα · |A|

elements.

Let z be the total number of times A does not preprocess the eligible set A in an iteration
of the main while loop. The following corollary is an immediate consequence of Lemma 23.

Corollary 24. The total number of times A executes the main while loop without prepro-
cessing A,

z ≤ (log n)Ds−1+1

Bs−1
· ds−tα−1 + 1.

Proof. By Lemma 23, during each iteration of the main while loop, in which A does not
preprocess the eligible set, A loses at least

Bs−1

(log n)Ds−1
· dt−sα · |A|

elements. Hence, as a result of q such iterations, the eligible set shrinks by a factor of at
most γ, where

γ ≤
(

1− Bs−1

(log n)Ds−1
· dt−sα

)q
≤ exp

(
−q · Bs−1

(log n)Ds−1
· dt−sα

)
.

Since A starts with |A| = n and after z − 1 such iterations A is still non-empty,

(z − 1) · Bs−1

(log n)Ds−1
· dt−sα ≤ log n.

1The phrase “A shrinks by a factor of at most γ” means that the size of A drops from some a to at most
γ · a or, in other words, that A loses at least (1− γ) · a elements.
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Before we dive into the proof of Lemma 23, let us show how Corollary 24 implies that A
outputs short codes.

Lemma 25. For every input pair (G,N), the length of the output produced by A does not
exceed

(1 + o(1))(t− 1)1/sCs · n1−1/s. (9)

Proof. Note that by Observation 19, the k in the preprocessing step 3a never exceeds t− 1.
Hence the total length `1 of the output produced by A in step 3a satisfies

`1 ≤ p · (1 + (s− 1) + 1 + (t− 1)) · dlog2 ne ≤
(
d log n

ω
+ 1

)
· (s+ t)dlog2 ne, (10)

where the bound on the total number p of preprocessing steps comes from Claim 22. Since
ω = (log n)3 � log n · dlog2 ne, it follows that `1 = o(d).

Each of the z executions of the main while loop with no preprocessing outputs either
codes of at most (t− 1)b vertices or codes of at most (t− s)b vertices and the SKIP control
sequence. Either way, this is never more than tbdlog2 ne bits. Therefore the total length `2
of the output produced by A in steps 3c and 3d satisfies

`2 ≤ z · tbdlog2 ne ≤
(

(log n)Ds−1+1

Bs−1
· ds−tα−1 + 1

)
· tbdlog2 ne, (11)

where the second inequality comes from Corollary 24. Recall that ε = 1/ log n, and we are
in the ‘high-degree’, i.e., d > n1−1/s/(2 log n), case. Therefore,

ds−tα−1 = s!t! · (log n)t · n
(s−1)(t−1)

ds(t−1)
≤ 2s(t−1)s!t! · (log n)(s+1)t−s (12)

and hence `2 ≤ g(n) · b, where g(n) is polylogarithmic in n. It follows that `2 = o(d).
When A finally reaches step 4, then |A| ≤ a0 and hence the total length `3 of the output

produced by A in step 4 satisfies

`3 ≤ 3dlog2 ne+

⌈
log2

(
a0
|N ′|

)⌉
≤ 4 log2 n+ log2

(
a0 + |Q|
|N ′|+ |Q|

)
(13)

= 4 log2 n+ log2

(
a0 + |Q|
|N |

)
≤ 5 log2 n+ log2

(
a0 + |Q|

d

)
.

Next, note that for n large enough,

a0 = (1 + ε)(t− 1)

(
n

s− 1

)
/

(
d

s− 1

)
≤ (1 + ε)(t− 1)

ns−1

(d− s)s−1
(14)

≤ (1 + 2ε)(t− 1)
(n
d

)s−1
.

Since ex(n,Ks,t) = O(n2−1/s),

d ≤ 2e(G′)

n+ 1
≤ 2 ex(n+ 1, Ks,t)

n+ 1
= O(n1−1/s).
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Recall that Q gains at most t− 1 elements in each of the p preprocessing steps, and at most
(t − 1)b elements in each of the z non-preprocessing steps. From (10), (11), and (12) it
follows that

|Q| ≤ p(t− 1) + z(t− 1)b = O

(
d

(log n)2

)
= O

(
1

(log n)2

(n
d

)s−1)
. (15)

Recall again that ε = 1/ log n. Inequalities (14) and (15) imply that

a0 + |Q| ≤ (1 + 3ε)(t− 1)
(n
d

)s−1
. (16)

Using (13), (16), and the following well-known estimate relating binomial coefficients with
the binary entropy function (see, e.g., Lemma 9 in [31]):

1

n+ 1
· 2n·H(k/n) ≤

(
n

k

)
≤ 2n·H(k/n),

we further estimate

3dlog2 ne+

⌈
log2

(
a0
|N ′|

)⌉
≤ 5 log2 n+ log2

(
(1 + 3ε)(t− 1)

(
n
d

)s−1
d

)
(17)

≤ 5 log2 n+ (1 + 3ε)(t− 1)(n/d)s−1 ·H
(

ds

(1 + 3ε)(t− 1)ns−1

)
.

Substituting x := ds/
(
(1 + 3ε)(t− 1)ns−1

)
in (17) yields

3dlog2 ne+

⌈
log2

(
a0
|N ′|

)⌉
≤ 5 log2 n+

(
(1 + 3ε)(t− 1)

)1/s · H(x)

x1−1/s
· n1−1/s. (18)

Recall that Cs = supx
(
H(x)/x1−1/s

)
. Since the total size of the output, `1 + `2 + `3, is

bounded by the sum of the quantities in the right-hand sides of (10), (11), and (18), we get
(9).

Before we are able to prove Lemma 23, we need to make some preparations. For the
sake of brevity, by ith iteration of any for loop, we will denote the iteration, where the loop
variable takes the value i. The following claim explains why A constantly preprocesses the
eligible set and maintains the oddly defined set X.

Claim 26. Assume that during some iteration of the main while loop, step 3, at the time
we reach step 3c, the eligible set A has a elements. Then throughout this iteration, for all
r ∈ {s, . . . , t},

∆(Hr) ≤
(
t− 1

s− 1

)
bt−r

(ω
d

)t−s
· ar−1.

Proof. First observe that at all times during any iteration of the main while loop, for all
r ∈ {s, . . . , t}, the edges of Hr all come from the set{

D ⊆ A : {wt, . . . , wr+1} ∪D is dangerous for some wt ∈ Qt, . . . , wr+1 ∈ Qr+1

}
.

Consider first the case r ≥ t−s+1. Fix some wr, . . . , wt−s+1 ∈ A, let W := {wr, . . . , wt−s+1},
and note that by our assumption, |W | = r + s − t ≥ 1. The set W is contained in some
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D ∈ Hr only if there are wt ∈ Qt, . . . , wr+1 ∈ Qr+1, and an (s− 1)-set U ⊆ V (G) such that
{wt, . . . , wr+1} ∪D ⊆ N∗(U) ∩ A (recall Definition 17). Let W ′ := {wt, . . . , wt−s+1}. Then
clearly |W ′| = s and N∗(U) ⊇ W ′ or equivalently, N∗(W ′) ⊇ U . Hence by Observation 20,
when W ′ fixed, then there are at most

(
t−1
s−1

)
such sets U . Moreover, since |Qr′ | ≤ b for all

r′, the number of such W ′ that contain our fixed set W is at most b|W
′|−|W | = bt−r. Also,

because A is preprocessed, for every (s − 1)-set U , |N∗(U) ∩ A| ≤ ωa/d. Putting all these
inequalities together,

degHr
(W ) ≤ bt−r ·

(
t− 1

s− 1

)
·
(ωa
d

)r−|W |
=

(
t− 1

s− 1

)
bt−r

(ωa
d

)t−s
. (19)

Since the term in the right-hand side of (19) does not depend on a particular choice of W ,
it follows that

∆r+s−t(Hr) ≤
(
t− 1

s− 1

)
bt−r

(ω
d

)t−s
· at−s,

and hence by (6),

∆(Hr) ≤
(
t− 1

s− 1

)
bt−r

(ω
d

)t−s
· ar−1.

The case s ≤ r ≤ t − s is much more delicate. First, consider how much the Hr-degree
of a vertex w ∈ A can increase in one particular, say ith, iteration of the for loop 3(c)iii.
Since all edges added in the ith iteration contain wiji , degHr

(w) increases by no more than
the number of edges D ∈ Hr+1 containing both w and wiji . In order for such an (r+1)-set D
to be an edge of Hr+1, there ought to be some wt ∈ Qt, . . . , wr+2 ∈ Qr+2, and an (s− 1)-set
U ⊆ V (G) such that {wt, . . . , wr+2} ∪ D ⊆ N∗(U) ∩ A. Note that r + 2 ≤ t − s + 3 by
our assumption on r and let W ′ := {wt, . . . , wt−s+3, w

i
ji
, w}. Then clearly, |W ′| = s and

N∗(U) ⊇ W ′ or equivalently, N∗(W ′) ⊇ U . Hence by Observation 20, when W ′ fixed, then
there are at most

(
t−1
s−1

)
such sets U . Moreover, since |Qr′ | ≤ b for all r′, the number of such

W ′ that contain both wiji and w is at most b|W
′|−2 = bs−2. Also, because A is preprocessed,

for every (s− 1)-set U , |N∗(U) ∩ A| ≤ ωa/d. Putting all these inequalities together, we see
that degHr

(w) cannot change by more than

bs−2 ·
(
t− 1

s− 1

)
·
(ωa
d

)|D|−|{w,wi
ji
}|

= bs−2 ·
(
t− 1

s− 1

)
·
(ωa
d

)r−1
(20)

= ωr−1
(
t− 1

s− 1

)
dt−s−r+1

bt−s−r+2
· bt−rds−t · ar−1.

Recall that b = d
t−s

t−s+1 and note that the right-hand side of (20) is o(bt−rds−t · ar−1), as

dt−s−r+1

bt−s−r+2
=

1

d

(
d

b

)t−s−r+2

=
1

d
·
(
d

1
t−s+1

)t−s−r+2

=

(
1

d

) r−1
t−s+1

,

r−1
t−s+1

≥ s−1
t−s+1

> 0, d� n1/3, and ωr−1
(
t−1
s−1

)
is only polylogarithmic in n.

Every time a vertex w ∈ A lands in the set X of vertices with high degree in Hr, no more
edges containing w get added to Hr, since A looks only at the edges of Hr+1[A − X − Y ].
Hence the degree of w cannot exceed bt−rds−tar−1, i.e., the quantity from the definition of
X, by more than the right-hand side of (20). It follows that

∆(Hr) ≤ (1 + o(1))bt−rds−t · ar−1 ≤
(
t− 1

s− 1

)
bt−r

(ω
d

)t−s
· ar−1.
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The second key step in proving Lemma 23 is the following simple estimate on the number
of edges in Hr. Recall that the constants Br and Dr are defined in (8).

Claim 27. Assume that during some iteration of the main while loop, at the time we reach 3b,
the eligible set A has a elements. Then for every r, with t − 1 ≥ r ≥ s, either A outputs
SKIP by the end of the rth iteration of the for loop 3c or

e(Hr) ≥
Br

(log n)Dr
bt−rα · ar. (21)

Proof. By Lemma 21, (21) clearly holds when r = t. It suffices to prove that if (21) holds
for r + 1 and A does not output SKIP in the rth iteration of the for loop 3c, then (21) holds
for r.

Let x and y be the sizes of X and Y at the end of the rth iteration. There are two cases
to consider.

Case 1. x+ y ≥ σ(Hr+1).
Since A did not output SKIP, y < σ(Hr+1)/2, and hence by (7),

x >
σ(Hr+1)

2
≥ e(Hr+1)

4∆(Hr+1)
≥ Br+1

(log n)Dr+1
· dt−s

4
(
t−1
s−1

)
ωt−s

α · a,

where the last inequality follows from Claim 26 and the assumption that (21) holds for r+1.
Recall that for every w ∈ X, degHr

(w) > bt−rds−tar−1. Clearly,

e(Hr) ≥
1

r

∑
w∈X

degHr
(w) >

x

r
· bt−rds−tar−1 ≥ Br

(log n)Dr
· bt−rα · ar,

since Br ≤ (4r)−1
(
t−1
s−1

)−1 ·Br+1, Dr = Dr+1 + 3(t− s), and ω = (log n)3.

Case 2. x+ y < σ(Hr+1).
In particular, for all i ∈ {1, . . . , b}, during the rth iteration of the for loop 3c,

e(Hr+1[A−X − Y −W i
j ]) ≥ e(Hr+1)/2.

By the maximality of degHr+1[A−X−Y−W i
ji−1]

(wiji), in each iteration of the for loop 3(c)iii, Hr

acquires e′ edges, where

e′ ≥ r · e(Hr+1)/2

|A−X − Y −W i
ji−1|

≥ e(Hr+1)

a
≥ Br+1

(log n)Dr+1
· bt−r−1α · ar.

Unfortunately, some edges may get added to Hr more than once. How many times can we
add to Hr the same edge D? For each i ∈ {1, . . . , b}, let Di := D ∪ {wiji}. The set D
becomes an edge of Hr precisely when Di ∈ Hr+1 for some i. In particular, every such Di is
fully contained in some dangerous set, and hence there must be an (s − 1)-set U ⊆ V (G),
such that D ⊆ Di ⊆ N∗(U). Since |D| = r ≥ s, by Observation 20, there are at most

(
t−1
s−1

)
such U . Also, because for each i, wiji ∈ N , by Observation 19, for no (s − 1)-set U , N∗(U)
contains more than t− 1 different wijis. It follows that the maximum number of times D can

be added to Hr is (t− 1)
(
t−1
s−1

)
. Therefore,

e(Hr) ≥
1

(t− 1)
(
t−1
s−1

) · b · Br+1

(log n)Dr+1
· bt−r−1α · ar ≥ Br

(log n)Dr
· bt−rα · ar.
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Lemma 28 and its immediate consequence, Corollary 29, are the last missing ingredients
needed in the proof of Lemma 23.

Lemma 28. For every fixed i and r satisfying 1 ≤ i ≤ b and 0 ≤ r ≤ s − 1, the following
holds. Suppose that during the ith iteration of the for loop 3d, at the beginning of the rth

iteration of the for loop 3(d)i, e(Hr+1[A]) ≥ γar+1 for some γ and a with 0 < γ ≤ 1 and
a ≥ |A|. Then

e(H1) +
r∑
q=1

jq ≥ γa. (22)

Proof. For a fixed i, we prove the claim by induction on r. The inequality (22) holds trivially
when r = 0. Suppose that r > 0 and (22) holds for r − 1. Each of wr1, . . . , w

r
jr−1 clearly

belongs to no more than |A|r (r + 1)-subsets of A, and hence

e(Hr+1[A−W r
jr−1]) ≥ e(Hr+1[A])− (jr − 1)|A|r ≥ γar+1 − (jr − 1)ar. (23)

If jr ≥ γa, then (22) holds, so we may suppose that the reverse inequality is true, and
therefore the rightmost term in (23) is positive. Since we have selected wrjr to maximize its
degree in Hr+1[A−W r

jr−1], we have

e(Hr) = degHr+1[A−W r
jr−1]

(wrjr) ≥
r + 1

|A| − jr + 1
· e(Hr+1[A−W r

jr−1])

≥ r + 1

a− jr + 1
· (γa− jr + 1) · ar ≥ γa− jr + 1

a− jr + 1
· ar ≥ γa− jr

a− jr
· ar,

where the last inequality holds since γ ≤ 1, and hence γa − jr ≤ a − jr. By the inductive
assumption with ‘γ = γa−jr

a−jr ’,

e(H1) +
r−1∑
q=1

jq ≥
γa− jr
a− jr

· a ≥ γa− jr.

Corollary 29. Assume that at the beginning of the 1st iteration of the for loop 3d, A has a
elements. If at the beginning of the ith iteration, e(Hs[A]) ≥ βas for some positive β, then
in that iteration A loses at least βa elements.

Proof. During the ith iteration, we delete from A precisely e(H1) +
∑s−1

q=1 jq elements. Since
certainly a ≥ |A|, and we have assumed that e(Hs) ≥ βas, the statement of Corollary 29 is
just a direct application of Lemma 28.

Finally, we are ready to give the proof of Lemma 23.

Proof of Lemma 23. By Claim 27, either at the end of the sth iteration of the for loop 3c,

e(Hs) ≥
Bs

(log n)Ds
· bt−sα · |A|s, (24)
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or for some r with r ≥ s, A outputs SKIP at the end of the rth iteration. In the latter case,
at the end of the rth iteration, |Y | ≥ σ(Hr+1)/2. By Claims 26 and 27,

|Y | ≥ σ(Hr+1)/2 ≥
e(Hr+1)

2∆(Hr+1)
≥ Br+1

2
(
t−1
s−1

)
ωt−s(log n)Dr+1

· dt−sα · a

≥ Br

(log n)Dr
· dt−sα · a ≥ Bs−1

(log n)Ds−1
· dt−sα · |A|,

and since A outputs SKIP, the eligible set A loses exactly |Y | elements.
Therefore we can assume that (24) is true and A executes the for loop 3d. Similarly as

in the proof of Claim 27, there are two cases to consider.

Case 1. At the end of the bth iteration of the for loop 3d, e(Hs[A]) ≥ e(Hs)/2.
In particular, this is true in all the previous iterations. Hence, if a is the size of the eligible
set A at the beginning of the step 3d, by Corollary 29, as a result of a single iteration, A loses
at least e(Hs)

2as−1 elements (apply Corollary 29 with β := e(Hs)
2as

). Since there are b iterations,
altogether A loses a′ elements, where (recall that dt−s = bt−s+1)

a′ ≥ b · e(Hs)

2as−1
≥ Bs

2(log n)Ds
· bt−s+1α · a ≥ Bs−1

(log n)Ds−1
· dt−sα · |A|,

where the second inequality follows from (24).

Case 2. At the end of the bth iteration of the for loop 3d, e(Hs[A]) < e(Hs)/2.
It means that in the step 3d, A must have lost at least σ(Hs) elements and

σ(Hs) ≥
e(Hs)

2∆(Hs)
≥ Bs

(log n)Ds
· dt−s(

t−1
s−1

)
ωt−s

α · a ≥ Bs−1

(log n)Ds−1
dt−sα · |A|,

where the second inequality follows from (24) and Claim 26.

Since in Lemma 25 we have already shown how Lemma 23 implies that A outputs short
codes, the proof of Theorem 2 is now complete.

5 Proof of Theorem 4

As it was remarked at the beginning of the proof of Theorem 2, every n-vertex graph G can
be constructed from an isolated vertex v1 by successively connecting a vertex vi+1 to some
di vertices in G[{v1, . . . , vi}] in such a way that for all i ∈ {1, . . . , n− 1},

di = δ(G[{v1, . . . , vi+1}]) ≤ δ(G[{v1, . . . , vi}]) + 1.

Moreover, if G is Ks,t-free, so are all the intermediate graphs G[{v1, . . . , vi}]. Call the
sequence (di)

n−1
i=1 a degeneracy sequence of G and note that e(G) =

∑n−1
i=1 di.

Let f(G; d,Ks,t) be the number of ways one can adjoin to a Ks,t-free graph G, with
δ(G) ≥ d, a new vertex of degree d+ 1, so that the graph remains Ks,t-free. If we let

f(n; d,Ks,t) := sup
G
f(G; d,Ks,t),
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where the supremum is taken over all n-vertex Ks,t-free graphs whose minimum degree is at
least d, then

fn,m(Ks,t) ≤ n! ·
∑
(di)

n−1∏
i=1

f(i; di − 1, Ks,t), (25)

where the above sum is taken over all degeneracy sequences with sum m.
If d ≤ n1−µs,t(log n)3t/s and n ≥ n0, then we give a rather crude bound

f(i; d,Ks,t) ≤
(

i

d+ 1

)
≤ n

(
n

d

)
≤ n

(en
d

)d
≤ exp

(
n1−µs,t(log n)3t/s+1

)
. (26)

Suppose now that d > n1−µs,t(log n)3t/s and let α = α(s, t, n, d, 1/(3t−3)) be as in Lemma 21.
Suppose we run the “high-degree” case in the algorithm A from the proof of Theorem 2 on
some i-vertex Ks,t-free graph G and a set N of size d+ 1, where G and N satisfy our usual
assumptions. Note that Claim 22 and Corollary 24 are still true, since in their proofs we
have not used any assumptions on d. Reasoning along the lines of Lemma 25, we can see
that the total length of the output produced by A in the preprocessing step 3a is still o(d).

Moreover, recall that b = d
s−t

s−t+1 and hence

ds−tα−1b = s!t!(3t− 3)t · i
(s−1)(t−1)

ds(t−1)
· d

t−s
t−s+1 ≤ s!t!(3t− 3)t · n(s−1)(t−1)

ds(t−1)+
1

t−s+1

· d (27)

≤ s!t!(3t− 3)t · (log n)−
3t
s
·[s(t−1)+ 1

t−s+1 ] · d,

where the last inequality follows because µs,t satisfies

(s− 1)(t− 1) = (1− µs,t)
(
s(t− 1) +

1

t− s+ 1

)
.

By (11), the total length of the output produced by A in steps 3c and 3d is at most

tbdlog2 ie+ t

(
4t

(
t− 1

s− 1

))t−s+1

(log i)3(t−s)(t−s+1)+1dlog2 ie · ds−tα−1b.

By (27), this is clearly o(d), since bdlog2 ie = o(d) and

(log i)3(t−s)(t−s+1)+1dlog2 ie � (log n)
3t
s
·[s(t−1)+ 1

t−s+1 ].

By inequality (17), the total length of the output produced by A in step 4 is at most

5 log2 i+ log2

(
t
(
i
d

)s−1
d

)
≤ 5 log2 n+ log2

(
t
(
n
d

)s−1
d

)
≤ 5 log2 n+ d log2

(
etns−1

ds

)
.

Hence the total length of the output of A in the case d > n1−µs,t(log n)3t/s is

d log2

(
etns−1

ds

)
+ o(d).
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Since with G fixed, A outputs a unique code for every N , the above bound implies that if
d > n1−µs,t(log n)3t/s, then the total number of valid (d+ 1)-sets N satisfies

f(G; d,Ks,t) ≤ exp

(
d log

(
etns−1

ds

)
+ o(d)

)
. (28)

Let I := {i : di > n1−µs,t(log n)3t/s} and let m′ :=
∑

i∈I(di − 1). Since the term in the
right-hand side of (28) does not depend on G, it is also an upper bound on f(i; d,Ks,t) and
hence for every degeneracy sequence (di)

n−1
i=1 with sum m,

n−1∏
i=1

f(i; di − 1, Ks,t) ≤ exp

(
n2−µs,t(log n)3t/s+1 +

∑
i∈I

(di − 1) log

(
etns−1

(di − 1)s

)
+ o(m)

)
.

(29)
The function [0,∞) 3 x 7→ x log x ∈ R is convex, and so∑

i∈I

(di − 1) log(di − 1) ≥ |I| · (m′/|I|) log(m′/|I|) ≥ m′ · log(m′/n).

This yields∑
i∈I

(di − 1) log

(
etns−1

(di − 1)s

)
≤ m′ log(etns−1)−m′s log(m′/n) = m′ log

(
etn2s−1

(m′)s

)
. (30)

Since d
dx

(x log(y/x)) = log(y/x)− 1, m−m′ = n− 1 +
∑

i 6∈I(di − 1) ≤ n+ n2−µs,t(log n)3t/s,

and m� n2−µs,t(log n)3t/s+1, we get the estimate∣∣∣∣m′ log

(
etn2s−1

(m′)s

)
−m log

(
etn2s−1

ms

)∣∣∣∣ = O
(
(m−m′) log n

)
= o(m),

which combined with (29) and (30) gives

n−1∏
i=1

f(i; di − 1, Ks,t) ≤ exp

(
n2−µs,t(log n)3t/s+1 +m log

(
etn2s−1

ms

)
+ o(m)

)
. (31)

Since

m� n2−µs,t(log n)3t/s+1, e < 3, m ≤ ex(n,Ks,t) ≤
1

2
(t− 1)1/sn2−1/s +O(n),

and there are at most n! degeneracy sequences, combining (25) with (31) yields

fn,m(Ks,t) ≤
(

3tn2s−1

ms

)m
,

whenever n is large enough.
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