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Abstract

In this paper, we address the problem of packing large trees in Gn,p. In particular, we prove the
following result. Suppose that T1, . . . , TN are n-vertex trees, each of which has maximum degree
at most (np)1/6/(log n)6. Then with high probability, one can find edge-disjoint copies of all the
Ti in the random graph Gn,p, provided that p > (log n)36/n and N 6 (1 − ε)np/2 for a positive
constant ε. Moreover, if each Ti has at most (1−α)n vertices, for some positive α, then the same
result holds under the much weaker assumptions that p > (log n)2/(cn) and ∆(Ti) 6 cnp/ log n
for some c that depends only on α and ε. Our assumptions on maximum degrees of the trees are
significantly weaker than those in all previously known approximate packing results.

1 Introduction

A collection of graphs G1, . . . , Gt is said to pack into a graph G if there exist edge-disjoint

subgraphs H1, . . . ,Ht of G such that Hi is isomorphic to Gi for every i. The case when all the

Gi are trees has attracted particular interest in the last few decades. The following conjecture,

known as the Tree Packing Conjecture, appears in a paper of Gyárfás and Lehel from 1976.

Conjecture 1.1 ([14]). Any collection T1, . . . , Tn of trees with v(Ti) = i for each i packs into Kn.

A closely related conjecture had been posed by Ringel in 1963.

Conjecture 1.2 ([21, Problem 25]). For every tree T with n + 1 vertices, 2n + 1 copies of T pack

into K2n+1.

If true, both conjectures would be tight. Indeed, in both cases the hypothetical embedding of the

trees would have to use all the edges of the host graph. Several cases of both conjectures have been

established, see, e.g., [8, 9, 10, 14, 15, 22], but they all assume special structure of the trees. Perhaps

the first attempt to resolve Conjecture 1.1 for arbitrary trees is due to Bollobás [5], who showed that

one can pack the bn/
√

2c smallest trees. He also remarked that this could be improved to b
√

3n/2c,
provided that the notoriously difficult Erdős–Sós conjecture on embedding trees in graphs with large

average degree is true (a solution of the conjecture was announced by Ajtai, Komlós, Simonovits,

and Szemerédi in the early 1990s). At the other end of the spectrum, Balogh and Palmer [3] have
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recently proved that one can pack the bn1/4/10c largest trees into Kn+1, that is, if one is allowed to

use an extra vertex. Moreover, they have shown that if one bounds the maximum degree of the trees

by 2n2/3, then one can pack the bn1/3/4c largest trees into Kn. It thus appears that packing large

trees is a much harder task than packing small ones. On the other hand, it seems that imposing

bounds on the maximum degrees of the trees makes the problem more tractable.

Following this direction, Böttcher, Hladký, Piguet, and Taraz [6] showed that if T1, . . . , TN are

trees with at most n vertices and maximum degree bounded by a constant, then they pack into

Kd(1+ε)ne, provided that e(T1) + . . . + e(TN ) 6 (1 − ε)
(
n
2

)
. Generalising this result, Messuti, Rödl,

and Schacht [19] proved that the same conclusion holds under the weaker assumption that all the

Ti belong to some fixed minor-closed family. Recently, Ferber, Lee, and Mousset [11] improved this

result by showing that these graphs can be packed into Kn. Even more recently, Kim, Kühn, Osthus,

and Tyomkyn [17] extended the result of [11] to arbitrary graphs with bounded maximum degree.

These developments imply the following approximate versions of Conjectures 1.1 and 1.2.

Corollary 1.3. For all positive ε and ∆, if n is sufficiently large, then:

(i) Every collection Tdεne, . . . , Tn of trees with v(Ti) = i and ∆(Ti) 6 ∆ packs into Kn.

(ii) At least (2− ε)n copies of each tree T with v(T ) = n+ 1 and ∆(T ) 6 ∆ pack into K2n+1.

While we were writing these lines, Joos, Kim, Kühn, and Osthus [16] announced a proof of a

general result about decompositions of dense quasi-random graphs into graphs with bounded degree

which implies both the Tree Packing Conjecture and Conjecture 1.2 for all bounded degree trees.

Moreover, at about the same time, Adamaszek, Allen, Grosu and Hladký [1] proved an approximate

version of Conjecture 1.2 for the case that ∆(T ) = O(n/ log n).

In this paper, we strengthen the result of [6] in a somewhat different direction. We address the

problem of packing trees with unbounded maximum degree into a random host graph. We work with

the usual binomial random graph Gn,p, that is, the graph obtained from the complete graph Kn by

keeping each edge with probability p, independently at random.

Our first result addresses the problem of packing a collection of spanning trees. We show that

a.a.s. (asymptotically almost surely) one can pack into Gn,p a given collection of n-vertex trees,

provided that the total number of edges of these trees does not exceed (1 − ε)-proportion of the

(expected) number of edges of the host graph and the maximum degree of each tree in the collection

is bounded by a small power of the (expected) average degree of the host graph.

Theorem 1.4. Let ε be a positive constant and suppose that p > (log n)36/n and N 6 (1− ε)np/2.

If T1, . . . , TN are n-vertex trees with maximum degree at most (np)1/6/(log n)6, then a.a.s. T1, . . . , TN
pack into Gn,p.

Note that unlike in some of the previously mentioned results, in Theorem 1.4 we assume that

all the trees have the same size. Even though it might seem somewhat restrictive, one may always

“cut and paste” the trees together. For example, in the setting of Conjecture 1.1, one may merge

Ti+1 with Tn−i by identifying two arbitrarily chosen leaves to obtain a tree with n vertices, whose

maximum degree does not exceed max{∆(Ti+1),∆(Tn−i)}. Therefore, it seems natural to determine

conditions guaranteeing that a large collection of n-vertex trees packs into Kn, or perhaps into

K(1+ε)n. In our setting, as the host graph is Gn,p, which typically has about
(
n
2

)
p edges, one cannot

expect to pack more than np/2 spanning trees. Moreover, as Gn,p is a.a.s. not connected unless

p > (log n + ω(1))/n, one can see that our Theorem 1.4 is approximately optimal with respect to
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both the number of trees N (up to a 1 − o(1) multiplicative factor) and the edge probability p (up

to a polylogarithmic factor). It is worth mentioning that our bound on the maximum degree of the

trees is not optimal; we shall discuss it in more detail in Section 6.

Our second result addresses the problem of packing a collection of almost spanning trees. In this

case, we can pack trees with much larger maximum degrees.

Theorem 1.5. Let ε be a positive constant and suppose that p� (log n)2/n and N 6 (1− ε)np/2.

If T1, . . . , TN are trees, each of which has at most (1 − ε)n vertices and maximum degree at most

(ε/8)8np/ log n, then a.a.s. T1, . . . , TN pack into Gn,p.

At the heart of the proof of both Theorems 1.4 and 1.5 lies the following technical generalisation

of the latter, which is the main result of this paper. While the derivation of Theorem 1.5 from

this result is fairly straightforward, our proof of Theorem 1.4 requires several additional ingredients.

Therefore, we postpone both arguments to Section 4.

Theorem 1.6. Suppose that α, ε, p ∈ (0, 1/2) and integers ∆ and n satisfy

150(log n)2

αεn
6 p 6

εα4

128
and ∆ 6 min

{
α,

ε

log(1/α)

}
· εnp

1600 log n
. (1)

Suppose that T1, . . . , TN , where N 6 (1− ε)np/2, is a collection of trees, each of which has at most

(1 − α)n vertices and maximum degree at most ∆. Then with probability at least 1 − n−7, the trees

T1, . . . , TN pack into Gn,p.

Moreover, denote the edge-disjoint embeddings of T1, . . . , TN by ϕ1, . . . , ϕN , respectively. For each

s ∈ [N ], let vs be an arbitrary vertex of Ts and let Ws be the set of vertices of Gn,p not covered by

ϕs(Ts) plus the vertex ϕs(vs). If we additionally assume that p > 30 log n/(α2n), then with probability

at least 1− n−7, for every pair of distinct vertices u and w,

N∑
s=1

1[{u,w} ⊆Ws] ·
1

|Ws|
6

2p

n
·max

s
|Ws|.

The proof of Theorem 1.6 utilises and extends the “online sprinkling” technique introduced by

the first author and Vu [13]. Roughly speaking, we embed our trees and expose Gn,p together, edge

by edge, making sure that the trees are embedded disjointly and each discovered edge of Gn,p is used

in the embedding.

The proof of Theorem 1.4 relies heavily on ideas from an elegant short paper of Krivelevich [18]

and a beautiful recent paper of Montgomery [20], which essentially resolves the problem of embedding

a given n-vertex tree into Gn,p. We shall actually require a slight generalisation of the main results

of [18, 20], Theorem 1.7 below. It determines a sufficient condition for the edge probability that

ensures that with high probability a given n-vertex tree can be embedded into a random subgraph

of an n-vertex graph that is almost complete. Even though one may derive Theorem 1.7 by carefully

following the arguments of [18, 20], with some obvious modifications, we shall do it in full detail

in Section 3 for the convenience of the reader. Following standard practice, given a graph G and

a p ∈ [0, 1], we shall denote by Gp the random subgraph of G obtained by keeping each edge with

probability p, independently of other edges, which we shall refer to as the p-random subgraph of G.

Theorem 1.7. Let T be a tree with n vertices and maximum degree ∆ and let v be an arbitrary

vertex of T . Let G be an n-vertex graph with δ(G) > n − n/(∆(log n)5) and let x ∈ V (G). If

p > ∆(log n)5/n and n > n0 for some absolute constant n0, then with probability at least 1 − n−3,

there is an embedding of T into Gp that maps v to x.

3



1.1 Outline of our paper

Our paper is organised as follows. In Section 2, we describe several auxiliary results which we

shall later use in our arguments. In particular, in Section 2.1, we present the main concentration

inequality that is used in our proofs. In Section 2.2, we prove a useful lemma about partitioning a

tree into two subtrees. In Sections 2.3, we relate the number of leaves in a tree to the number of its

so-called long bare paths. In Section 2.4, we describe an ordering of the vertices of a tree related

to the Breadth First Search algorithm. In Section 2.5, we establish basic expansion properties of a

typical Gn,p. In Section 3, we show how to modify the main results of [18, 20] in order to obtain

Theorem 1.7. In Section 4, we derive Theorems 1.4 and 1.5 from Theorems 1.6 and Theorem 1.7.

Finally, in Section 5, we prove our main result, Theorem 1.6. To this end, we describe a randomised

algorithm that tries to embed a given collection of trees randomly while generating Gn,p at the same

time. Our main goal is to show that each tree in the collection is embedded in a somewhat uniform

fashion. The precise statement is given by Lemma 5.4, which is the heart of our argument (and

the most technical part of this paper). We close the paper with several concluding comments and

remarks, in Section 6.

2 Preliminaries

2.1 A concentration result

In our proofs, we shall make use of the following straightforward generalisation of Bennett’s

inequality [4] (see also [7, Chapter 2]) to sums of weakly dependent random variables. Since this

generalisation can be proved using the ideas of [4] and a standard Azuma-type estimate, we postpone

the proof to Appendix A.

Lemma 2.1. Let X1, . . . , XN be real-valued random variables such that

0 6 Xi 6M, E[Xi | X1, . . . , Xi−1] 6 µ, and E[X2
i | X1, . . . , Xi−1] 6 σ2

for every i ∈ [N ] and some M , µ, and σ. Then for every positive t,

Pr

(
N∑
i=1

Xi > Nµ+ t

)
6 exp

(
− t2

2(Nσ2 +Mt/3)

)
.

2.2 Partitioning trees

In the proof of Theorem 1.4, we shall require the following folklore result about partitioning trees

with bounded degree into subtrees.

Lemma 2.2. Let T be a tree with n vertices and maximum degree ∆. For every 0 6 α < 1,

there are subtrees S and L of T sharing exactly one vertex such that E(T ) = E(L) ∪ E(S) and

bαnc+ 1 6 |V (S)| 6 2bαnc.

Proof. Root T at an arbitrary vertex r. For every vertex u of T , denote by T (u) the subtree of T

rooted at u and let |T (u)| denote the number of vertices of T (u). (In other words, T (u) is the subtree

of T induced by all vertices w for which the unique path from r to w contains u, including u itself.)

Let v be a vertex of maximum distance from r among all vertices satisfying |T (v)| > bαnc. Note that
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such a vertex exists as by the assumption α < 1 we have that the root r satisfies |T (r)| > bαnc. Let

u1, . . . , ud be the children of v in T . Observe that for every j ∈ {1, . . . , d} we have |T (uj)| 6 bαnc
and that, since |T (v)| > bαnc, also

∑
j |T (uj)| > bαnc. Let 1 6 i 6 d be the smallest index for which

s :=
∑i

j=1 |T (uj)| > bαnc. Clearly, s 6 2bαnc − 1, and therefore, we may let S be the subtree of T

induced by the set {v} ∪
⋃i
j=1 V (T (uj)) and L = T − T (u1)− . . .− T (ui) = T − (V (S) \ {v}).

2.3 Bare paths versus leaves

In the proof of Theorem 1.7, we shall use the following lemma due to Krivelevich [18], which

relates the number of leaves in a tree to the number of its long bare paths. A bare path in a tree T

is a path whose all inner vertices are of degree exactly two in T .

Lemma 2.3 ([18]). Let k, `, and n be postive integers and let T be a tree with n vertices. If T has

at most ` leaves, then it contains a collection of at least n/(k+1)− (2`−2) vertex-disjoint bare paths

of length k each.

We shall only invoke the above lemma in the following form, setting ` = n/4k.

Corollary 2.4. Let n and k be positive integers. A tree with n vertices has either at least n/4k

leaves or a collection of at least n/4k vertex-disjoint bare paths of length k each.

2.4 Breadth First Search ordering

In two of our proofs, we shall be considering the ordering of the vertices of an m-vertex tree T ,

rooted at an arbitrary vertex v0, as v0, . . . , vm−1, according to the time of the first visit of the Breadth

First Search algorithm (BFS for short) executed on T , rooted at v0. For more details on the BFS

algorithm, we refer the reader to [24, Page 99]. In the sequel, we shall call this ordering the BFS

ordering of T . We now note the following two simple properties of this ordering:

(O1 ) The children of each vertex vi are assigned consecutive labels larger than i.

(O2 ) If i1 < i2, then the children of vi1 appear before the children of vi2 in the ordering.

Finally, let J ⊆ {0, . . . ,m − 1} be the set of indices of all non-leaf vertices (including the root v0,

even if v0 has degree one in T ). Moreover, for each i ∈ J :

• Let di be the number of children of vi; that is, d0 = degT v0 and di = degT vi − 1 for i > 0.

• Let i ↓ be the smallest label of a child of vi; the children of vi are vi↓, . . . , vi↓+di−1.

• Let i− and i+ be the largest label in J that is smaller than i (the predecessor of i in J) and

the smallest label in J that is larger than i (the successor of i in J), respectively.

Observe that for each i ∈ J \ {0},⋃
j<i,j∈J

(
{vj} ∪NT (vj)

)
= {v0, . . . , vi↓−1}.

5



2.5 Expansion in random graphs

In the proof of Theorem 1.7, we shall rely on some basic facts about expansion properties of

random graphs, stated in Proposition 2.6 below. Since we shall be working with random subgraphs

of almost complete graphs rather than the usual Gn,p model, we include a (standard) proof of these

facts.

Definition 2.5. Given a graph G and a set W ⊆ V (G), we say that G d-expands into W if

(E1 ) |NG(X,W )| > d|X| for all X ⊆ V (G) with 1 6 |X| < |W |
2d and

(E2 ) eG(X,Y ) > 0 for all disjoint X,Y ⊆ V (G) with |X|, |Y | > |W |
2d .

Proposition 2.6. Let n and w be positive integers, let G be an n-vertex graph, and let W be a set

of w vertices of G. Let d > 1 and suppose that δ(G) > n − w/(8d). If p > 500d log n/w, then with

probability at least 1− n−7, the random graph Gp d-expands into W .

Proof. Let G, W , d, p, and w be as in the statement of the proposition. Note first that every vertex

of G has at least 7w/8 neighbours in the set W . Therefore, standard estimates on tail probabilities

of binomial random variables (such as Lemma 2.1) imply that for every v ∈ V (G),

Pr
(

degGp(v,W ) < 2wp/3
)
6 exp (−wp/50) < n−9.

In particular, with probability at least 1 − n−8, each vertex of Gp has at least 2wp/3 neighbours

in W . Assuming that this event holds, if (E1 ) fails, then there are sets X,Y ⊆ V (G) such that

2wp

3d
6 |X| < w

2d
, |Y | < d|X|, and eGp(X,Y ) >

2|X|wp
3

> E[eGp(X,Y )] +
|X|wp

6
.

By standard estimates on tail probabilities of binomial random variables (such as Lemma 2.1) and

the union bound, the probability P of this event satisfies

P 6
∑

x>2wp/(2d)

(
n

x

)(
n

dx

)
exp

(
−xwp

40

)
6

∑
x>2wp/(2d)

exp
(
dx ·

(
2 log n− wp

40d

))
< n−8.

Finally, the probability Q that (E2 ) fails may be bounded from above as follows:

Q 6

(
n

w/(2d)

)2

(1− p)w2/(4d2) 6 exp
(w
d
·
(

log n− wp

4d

))
< n−8.

This completes the proof of the proposition.

3 Embedding spanning trees into random graphs

In this section, we consider the problem of embedding an n-vertex tree T into a random subgraph

of an n-vertex graph that is nearly complete and prove Theorem 1.7. As in many previous works

on embedding trees in random graphs, we shall distinguish two cases, depending on the number of

leaves of T . First, we deal with the easier case when T contains at least n/(log n)3 many leaves,

which was resolved several years ago by Krivelevich [18]. Our argument here closely follows that

of [18], with a few minor modifications.
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Theorem 3.1. Let T be a tree with n vertices and maximum degree ∆. Suppose that T has at

least n/(log n)3 many leaves and let v be an arbitrary vertex of T . Let G be an n-vertex graph with

δ(G) > n − n/(∆(log n)5) and let x ∈ V (G). If p > ∆(log n)5/n and n > n0 for some absolute

constant n0, then with probability at least 1− n−4, there is an embedding of T into Gp that maps v

to x.

Before proving the theorem, we would like to remind the reader that, as defined in Section 2.4,

our non-standard notation i ↓ stands for the smallest label of a child of vi in the giving ordering of

the tree.

Proof. Given a tree T and a v ∈ V (T ) as in the statement of the theorem, let L denote a set of

exactly n/(2(log n)3) leaves of T such that v 6∈ L and let M denote the set of parents of the leaves

in L. Let T ′ = T − L and let m = n− |L|. Let v0, . . . , vm−1 be the BFS ordering of T ′ with v0 = v

and let J and (di)i∈J be as in Section 2.4. Suppose that p > ∆(log n)5/n and let G be an n-vertex

graph with minimum degree at least n−n/(∆(log n)5). We shall show that with probability at least

1 − n−4, there is an embedding ϕ of T into Gp satisfying ϕ(v) = x, provided that n > n0 for some

absolute constant n0, which we shall from now on tacitly assume. Let q be the unique positive real

defined by 1− p = (1− q)2 and note that q > p/2. As Gp has the same distribution as the union of

two independent copies of Gq, we may construct the embedding in two stages. First, we show that

with probability at least 1− n−5, there is an embedding ϕ of T ′ into the first copy of Gq satisfying

ϕ(v) = x. Second, we show that with probability at least 1 − n−5, we can embed all the leaves in

L using the edges between the sets ϕ(M) and V (G) \ ϕ(V (T ′)) in the second copy of Gq. This is

equivalent to finding an appropriate generalised matching in the q-random subgraph of the bipartite

subgraph of G induced by some two sets of sizes |M | and |L|, respectively.

Stage 1. This stage consists of |J | rounds, indexed by the elements of J ; in round i ∈ J , we wish

to embed the children of vi. We start with ϕ being the empty map and set ϕ(v0) = x. Suppose

that we are at the beginning of round i and v0, . . . , vi↓−1 are already embedded. We wish to embed

vi↓, . . . , vi↓+di−1, the children of vi. To this end, let Ui = V (G) \ ϕ({v0, . . . , vi↓−1}) and expose all

edges of Gq between ϕ(vi) and Ui. (Note that each of these edges is being exposed for the first

time.) Denote their number by Xi. If Xi > di, we may map vi↓, . . . , vi↓+di−1 to arbitrarily chosen di
neighbours of ϕ(vi) in Ui and proceed to the next round. Since Xi ∼ Bin(|Ui|, q) and

|Ui| > δ(G)− i > δ(G)−m = |L| − (n− δ(G)) > n/(2(log n)3)− n/(∆(log n)5),

standard estimates on tail probabilities of binomial random variables (such as Lemma 2.1) yield

Pr(Xi < di) 6 Pr(Xi < ∆) 6 Pr(Xi < q|Ui|/2) = exp(−q|Ui|/10) 6 n−6.

In particular, the probability that we fail to embed T ′ into Gq is at most |J |n−6.
Stage 2. Let M ′ = ϕ(M) and L′ = V (G) \ ϕ(V (T ′)). Our goal in this stage is to complete the

embedding by finding images for the leaves in L in the set L′. Let B denote the bipartite subgraph

of G induced by the sets M ′ and L′. The embedding ϕ can be completed if and only if the graph Bq
contains a generalised matching, where each vertex y ∈M ′ has dy := degT (ϕ−1(y), L) neighbours in

L′. Construct an auxiliary graph B′ by blowing up each vertex y ∈ M ′ into a set Ay of dy vertices,

replacing each edge yz of B with the complete bipartite graph between Ay and z. Let r = q/∆ and

note that 1− q 6 (1− r)dy for each y ∈M ′, as dy 6 ∆ by our assumption on T . In particular, if we

let B∗ be the random subgraph of B such that yz ∈ B∗ if and only if y′z ∈ B′r for some y′ ∈ Ay, then
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there is an obvious coupling of B∗ and Bq such that B∗ ⊆ Bq. It follows that Bq contains the required

generalised matching if and only if the graph B′r contains a perfect matching. By construction,

δ(B′) > |L| −∆(n− δ(G)) >

(
1− 2

(log n)2

)
|L|.

As r = p/(2∆) > (log n)2/(4|L|), a standard argument (see, e.g., [12, Claim 3.6] or [23, Theorem 2.3])

combined with Proposition 2.6 (applied twice, once with W ← L and once with W ← V (B′) \ L, to

the graph obtained from B′ by adding to it all 2
(|L|

2

)
edges contained in either L or V (B′)\L) shows

that with probability at least 1− n−5, the graph B′r satisfies Hall’s condition.

Second, we deal with trees T which contain fewer than n/(log n)3 leaves. Our argument here

closely follows that of Montgomery [20], with a few minor modifications.

Theorem 3.2. Let T be a tree with n vertices and maximum degree ∆. Suppose that T has at

most n/(log n)3 many leaves and let v be an arbitrary vertex of T . Let G be an n-vertex graph with

δ(G) > n − n/(∆(log n)5) and let x ∈ V (G). If p > ∆(log n)5/n and n > n0 for some absolute

constant n0, then with probability at least 1− n−3, there is an embedding of T into Gp that maps v

to x.

The main ingredient in the proof of Theorem 3.2 is the following theorem due to Montgomery [20],

which enables one to find vertex-disjoint paths connecting given pairs of vertices in a graph with

good expansion properties.

Theorem 3.3 ([20, Theorem 4.3]). Let n be a sufficiently large integer and suppose that ` is a divisor

of n satisfying ` > 103(log n)2. Let G be an n-vertex graph, let {(xi, yi) : 1 6 i 6 n/`} be a collection

of pairwise disjoint vertex pairs, and let W = V (G) \
⋃
i{xi, yi}. Let d = 1010(log n)4/(log log n) and

suppose that G d-expands into W . Then one can cover the vertex set of G with n/` vertex-disjoint

paths P1, . . . , Pn/` of length `− 1 each, so that each Pi has endpoints xi and yi.

Proof of Theorem 3.2. Let T and v be as in the statement of the theorem and assume that n > n0
for some absolute constant n0. Since T has at most n/(log n)3 many leaves, Corollary 2.4 implies

that it must contain at least 5n/(4(log n)3) vertex-disjoint bare paths of length ` := (log n)3/5 each.

In particular, there is a collection {Pi : 1 6 i 6 n/(log n)3} of such paths, none of which contains v.

Replace each such path with an edge (by removing all the interior vertices) to obtain a tree T ′ with

at most 5n/6 vertices.

Let q be the unique positive real defined by 1−p = (1− q)2 and note that q > p/2. As Gp has the

same distribution as the union of two independent copies of Gq, we may construct an embedding of

T into Gp in two stages. First, we show that with probability at least 1−n−4, there is an embedding

ϕ of T ′ into the first copy of Gq satisfying ϕ(v) = x. Second, we show that with probability at

least 1− n−4, using the edges of the second copy of Gq, we may connect the endpoints of all the Pi
by vertex-disjoint paths (of length ` each) covering the set V (G) \ ϕ(V (T ′)), which completes the

embedding.

Stage 1. We proceed exactly as in Stage 1 of the proof of Theorem 3.1, obtaining the required

embedding ϕ of T ′ into the first copy of Gq with probability at least 1− n−5.
Stage 2. Let W = V (H) \ ϕ(V (T ′)) and let {(xi, yi)}i be the collection of endpoints of all the Pi.

Let U = W ∪
⋃
i{xi, yi} and let G′ = G[U ]. Since |W | > n/6 and

δ(G′) = |U | − (n− δ(G)) > |U | − n/(∆(log n)5),
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Proposition 2.6 invoked with d = 1010(log n)4/(log log n) implies that with probability at least 1−n−6,
the graph G′q d-expands into the set W . It now follows from Theorem 3.3 that with such high

probability, we may complete the embedding ϕ using the edges of the second copy of Gq.

4 Derivation of Theorems 1.4 and 1.5

Derivation of Theorem 1.5. First, we may assume that n is sufficiently large and that ε < 1 or

otherwise there is nothing to prove. Suppose that p � (log n)2/n and N 6 (1 − ε)np/2 and let

T1, . . . , TN be trees satisfying the assumptions of the theorem. If p 6 ε5/212, then the assertion of

the theorem follows directly from Theorem 1.6 invoked with ε ← ε/2 and α ← ε/2. Therefore, we

shall assume that p > ε5/212. Let K be the smallest integer for which p/K 6 ε5/212, and observe

that K 6 212/(ε5). Let c : E(Kn) → [K] be a random colouring of the edges of Kn obtained by

assigning to each edge a uniformly chosen element of [K], independently of other edges.

Now, for each i ∈ [K], let Gi denote the random subgraph of Gn,p comprising all edges that the

random map c assigned the color i. Observe that each Gi is distributed as Gn,q, where q = p/K.

Let us partition the collection T1, . . . , TN into K disjoint batches, denoted T1, . . . , TK , each of which

contains bN/Kc or dN/Ke trees.

Finally, invoke Theorem 1.6 with p← q, ε← ε/2, α← ε/2, and the collection T1, . . . , TN replaced

by Ti for each i ∈ [K] to conclude that with probability at least 1− n−7, all trees in Ti pack into Gi.

By the union bound,

Pr
(
Ti cannot be packed into Gi for some i

)
6 Kn−7 6 n−6.

As G1, . . . , GK are edge-disjoint subgraphs of Gn,p, this completes the proof.

An argument analogous to the one given above can be used to derive Theorem 1.4 from the

following, seemingly weaker, statement.

Theorem 4.1. Let ε be a positive constant and suppose that (log n)12/n 6 p 6 n−2/3 and N 6
(1 − ε)np/2. If T1, . . . , TN are n-vertex trees with maximum degree at most (np)1/2/(log n)6, then

with probability at least 1− 2n−2, the trees T1, . . . , TN pack into Gn,p, provided that n > n0 for some

absolute constant n0.

Proof. Fix a positive ε, suppose that p and N satisfy the assumptions of the theorem, let ∆ =

(np)1/2/(log n)6, and let T1, . . . , TN be n-vertex trees with maximum degree at most ∆. Furthermore,

suppose that n > n0 for some sufficiently large absolute constant n0. Let α = ε/(8∆(log n)5) and for

each s ∈ [N ], invoke Lemma 2.2 to find a partition of the edges of Ts into two subtrees Ls and Ss
that share precisely one vertex, denoted vs, and satisfy |V (Ls)| 6 (1−α)n and αn 6 |V (Ss)| 6 2αn.

Let q = εp/2, let p′ be the unique positive real satisfying 1 − p = (1 − q)(1 − p′), and note that

p′ > (1 − ε/2)p. As Gn,p has the same distribution as the union of independent copies of Gn,p′

and Gn,q, we may construct the edge-disjoint embeddings ϕ1, . . . , ϕN of T1, . . . , TN into Gn,p in two

stages. First, using Theorem 1.6, we show that with probability at least 1−n−6, the trees L1, . . . , LN
pack into Gn,p′ in a certain uniform fashion which we specify below. Second, using Theorem 1.7, we

show that with probability at least 1− n−2, the edges of Gn,q that were not covered by the packing

of the Ls can be used to extend this packing to a packing of the Ts by appropriately embedding the

Ss.
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Stage 1. Since each Ls is a tree with at most (1−α)n vertices and maximum degree at most ∆ and

N 6 (1− ε)np/2 6 (1− ε/2)np′/2, we may invoke Theorem 1.6 with ε← ε/2 to conclude that with

probability at least 1 − n−7, there exist pairwise edge-disjoint embeddings ϕ1, . . . , ϕN of the trees

L1, . . . , LN , respectively, into the graph Gn,p′ . Denote by Ws the set of vertices of Gn,p′ not covered

by ϕs(Ls) plus the vertex ϕs(vs) and observe that

αn 6 |Ws| = |V (Ss)| 6 2αn. (2)

As p > 30 log n/(α2n), by Theorem 1.6 we may additionally assume that the sets Ws are somewhat

uniformly distributed, that is,

N∑
i=1

1[{x, y} ⊆Ws] ·
1

|Ws|
6

2p

n
·max

s
|Ws| 6 4αp. (3)

Last but not least, let H1 denote the union of all ϕs(Ls). Since clearly H1 ⊆ Gn,p′ and p′n� log n,

standard estimates on the tail probabilities of binomial random variables (such as Lemma 2.1) imply

that with probability at least 1− n−7, the maximum degree of H1 is at most 2np.

Stage 2. We shall describe an algorithm that with probability at least 1−n−2 finds for each s ∈ [N ]

an embedding ϕ′s of Ss into the subgraph of Gn,q induced by the set Ws such that:

• the vertex vs is mapped to ϕ(vs), which was defined in Stage 1, and

• all ϕ1(L1), . . . , ϕN (LN ) and ϕ′1(S1), . . . , ϕ
′
N (SN ) are pairwise edge-disjoint.

Clearly, this will complete the proof of the theorem.

Algorithm. Let H2 be the empty graph with the same vertex set as Gn,q and for each s ∈ [N ], do

the following:

1. If the maximum degree of H2 exceeds np, we abort the algorithm.

2. Let Gs be the subgraph of Kn \ (H1 ∪H2) induced by the set Ws and note that by (2),

δ(Gs) > |Ws| −∆(H1)−∆(H2)− 1 > |Ws| − 3np > (1− 3p/α)|Ws|.

Moreover, observe that Gs is disjoint from ϕ1(L1), . . . , ϕN (LN ) and ϕ′1(S1), . . . , ϕ
′
s−1(Ss−1).

3. Let qs = ∆(logn)5/|Ws|. If there is an embedding ϕ′s of the |Ws|-vertex tree Ss into an

independent copy of the graph Gsqs such that ϕ′s(vs) = ϕs(vs), then continue. Otherwise, abort

the algorithm.

4. Add to H2 all the edges of ϕ′s(Ss).

We first claim that the union G∗ of all Gsqs is a subgraph of Gn,q. Indeed, since the graphs

G1
q1 , . . . , G

N
qN

were independent, then for every pair of distinct vertices x and y, recalling (3),

Pr ({x, y} 6∈ G∗) =

N∏
s=1

(1− qs · 1[{x, y} ⊆Ws]) > 1−
N∑
s=1

1[{x, y} ⊆Ws] · qs

= 1−
N∑
s=1

1[{x, y} ⊆Ws] ·
∆(log n)5

|Ws|
> 1− 4αp ·∆(log n)5 = 1− q.

10



independently of all other pairs. Second, we claim that the algorithm fails with probability at most

n−2. As at all times, H2 ⊆ G∗ ⊆ Gn,q and q = εp/2 � (log n)/n, standard estimates on the tail

probabilities of binomial random variables (such as Lemma 2.1) imply that with probability at least

1 − n−3, the maximum degree of H2 is at most np. Moreover, as 3p/α 6 1/(∆(log n)4) by our

assumptions on p and ∆, Theorem 1.7 implies that the probability that the algorithm is aborted in

step 3 of a given iteration of the main loop is at most n−3. It follows that the algorithm succeeds

with probability at least 1− n−2.

5 Proof of Theorem 1.6

Suppose that α, ε, ∆, p, and n satisfy

ε 6 1/2,
150(log n)2

αεn
6 p 6

εα4

126
, and ∆ 6 min

{
α,

ε

log(1/α)

}
· εnp

1600 log n
.

Let N 6 (1 − ε)np2 and let m = (1 − α)n. Suppose that T1, . . . , TN is a collection of trees, each of

which has at most m vertices and maximum degree at most ∆.

Our goal is to pack all the Ti into Gn,p. In order to do so, we shall describe a randomised algorithm

that tries to greedily construct a packing of T1, . . . , TN into the complete graph Kn whose edges are

labeled with elements of the interval [0, 1]. We shall then prove that if the labels are independent

uniform [0, 1]-valued random variables, then with probability at least 1−n−7 our algorithm constructs

a packing of T1, . . . , TN with the additional property that the labels of all the edges used by this

packing do not exceed p. Denote the above event by S. As the subgraph comprising all edges whose

labels fall into [0, p] has the same distribution as Gn,p, we will be able to conclude that

Pr(T1, . . . , TN pack into Gn,p) > Pr(S) > 1− n−7.

Our embedding algorithm will try to embed the trees T1, . . . , TN one-by-one in N consecutive rounds.

During each round, it embeds the given tree Ts vertex-by-vertex, while considering the vertices in

the BFS ordering described in Section 2.4.

We find it illustrative to think that each edge e of the complete graph is equipped with an alarm

clock that will ring at (random) time te. The clock associated with e shows time ce ∈ [0, 1]. At the

beginning of the algorithm ce = 0 for each e. The clocks will normally be stopped, but in each step

of the algorithm, we will run a collection of them simultaneously until some number of them ring,

that is, when ce reaches te for a number of different e. All the edges whose clocks have just rung will

be used in the embedding. We shall accomplish this by only running the clocks whose edges can be

immediately used. Moreover, a clock that has rung permanently stops at ce = te.

Let us fix an s ∈ [N ], let T = Ts, and let m denote the number of vertices of T . (For the sake of

brevity, we shall suppress the implicit index s from our notation.) We let v0 be an arbitrary vertex

of T and we root T at v0. We label the remaining vertices of T as v1, . . . , vm−1 according to the BFS

ordering of T , which we defined in Section 2.4; we also let J and (di)i∈J be as in Section 2.4.

We may now describe the embedding algorithm. Suppose that we have already embedded

T1, . . . , Ts−1. For each edge e of Kn, the clock associated with it shows some time ce ∈ [0, te].

Moreover, ce = te if and only if e ∈ ϕ1(T1) ∪ . . . ∪ ϕs−1(Ts−1). Let v0, . . . , vm−1 be the ordering of

the vertices of Ts specified above. We map the root v0 of Ts to a uniformly chosen random vertex

of Kn. Let i ∈ J and suppose that v0, . . . , vi↓−1 have already been embedded. In particular, vi is
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already mapped to some vertex u. We now try to embed the children of vi, that is, vi↓, . . . , vi↓+di−1.

To this end, we shall run the clocks associated with all the edges uw such that (i) w has not yet been

used in the embedding of Ts and (ii) the clock associated with uw still has not rung (i.e., cuw < tuw
or, equivalently, the edge uw does not belong to ϕ1(T1) ∪ . . . ∪ ϕs−1(Ts−1)) until some di of them

ring. We map vi↓, . . . , vi↓+di−1 to those w for which the clock associated with uw has just rung (in

the exact same order as the di clocks have just rung). We remark here that the clocks will be run at

marginally different rates in order to assure that each of them has an equal chance of ringing.

We now give a formal description of the embedding algorithm. Denote the set of vertices of the

host graph Kn by V .

Algorithm. For each edge e of Kn, define a new variable ce and set it to 0. Moreover, let te ∈ [0, 1]

be the (random) label of e. In each round s = 1, . . . , N , do the following:

1. Let T = Ts and let v0, . . . , vm−1 be the BFS ordering of the vertices of T (rooted at an arbitrary

vertex); let J = Js and (di)i∈J be as in Section 2.4.

2. Map v0 to a uniformly chosen random vertex u ∈ V . In other words, let ϕ = ϕs be the empty

map and set ϕ(v0) = u.

3. For each i ∈ J do the following:

(a) Let u ∈ V be the vertex where we have already mapped vi, that is, u = ϕ(vi).

(b) Let Ui = U si ⊆ V be the set of vertices not yet used in the partial embedding of Ts, that

is, Ui = V \ ϕ({v0, . . . , vi↓−1}) and observe that |Ui| = n− i ↓.
(c) Define, for each τ > 0,

Ni(τ) = N s
i (τ) = {w ∈ Ui : cuw < tuw 6 cuw + (1− cuw)τ}

and note that Ni(0) = ∅ and Ni(1) = {w ∈ Ui : cuw < tuw}.
(d) Let us say that w ∈ Ui enters Ni at time τ if w ∈ Ni(τ) but w 6∈ Ni(τ

′) for all τ ′ < τ .

(Observe that with probability one, no two vertices enter Ni at the same time.)

(e) Let τi = τs,i be the earliest time when di vertices have entered Ni, that is,

τi = min{τ > 0: |Ni(τ)| > di}.

(Observe that with probability one, |Ni(τi)| = di, provided that |Ni(1)| > di.)

(f) Denote the di vertices that have entered Ni until τi by u1, . . . , udi (in this exact order).

Map vi↓, . . . , vi↓+di−1, which are the di children of vi in T , to u1, . . . , udi , respectively.

(g) For every w ∈ Ui, update cuw ← min{tuw, cuw + (1− cuw)τi}.

4. If the maximum degree of ϕ1(T1) ∪ . . . ∪ ϕs(Ts) exceeds 2np, we terminate the algorithm.

For every s ∈ {0, . . . , N}, denote by Ds the event that the maximum degree of the graph ϕ1(T1)∪
. . . ∪ ϕs(Ts) does not exceed 2np, so that D0 holds always and for every s ∈ [N ], our algorithm

terminates at the end of round s if and only if Ds does not hold.

Claim 5.1. For every s ∈ [N ], if Ds−1 holds, then in the sth round of the algorithm,

|N s
i (1)| > n− i ↓ − 2np > αn− 2np

for each i ∈ Js. In particular, |N s
i (1)| > ∆ > ∆(Ts) > di.

12



Proof. Fix an s ∈ [N ], let H = ϕ1(T1) ∪ . . . ∪ ϕs−1(Ts−1), fix an i ∈ Js, and let u = ϕs(vi). Observe

that for every w ∈ Ui, we have tuw 6 cuw (actually, tuw = cuw) precisely when uw ∈ H. In particular,

Ni(1) contains precisely those vertices w ∈ Ui for which uw 6∈ H. Therefore,

|Ni(1)| > |Ui| −∆(H) = n− i ↓ −∆(H).

The claimed inequality follows as on the event Ds−1, the maximum degree of H is at most 2np.

Claim 5.2. If the algorithm has not terminated, it has constructed a packing of T1, . . . , TN into Kn.

Moreover, the labels of the edges used in the packing do not exceed maxe ce.

Proof. The description of the algorithm guarantees that each ϕs is an injection, see 3b. In particular,

ϕs is an embedding of Ts into Kn. More importantly, an edge uv of Kn is used in the embedding if

and only if tuw belongs to one of the intervals
(
cuw, cuw + (1 − cuw)τi

]
. This can happen only once

during the entire execution of the algorithm as at the end of each round where uw was considered,

cuw is increased to either tuw or cuw + (1− cuw)τi. The second assertion follows as at the end of the

execution of the algorithm, ce = te for every edge e used in the embedding.

Therefore, it will be sufficient to show that

Pr
(
DN ∨max

e
ce > p

)
6 n−7, (4)

which we shall do in the remainder of this section. For each e ∈ Kn and s ∈ [N ], let τe,s denote the

total time that the clock associated with e was running during round s of the algorithm, disregarding

the rate at which the clock was running. As the rate is never more than one, one easily sees that

ce 6 τe,1 + . . .+ τe,N for each e at the end of the algorithm. With view of this, we shall be interested

in bounding the probability that maxe τe,1 + . . . + τe,N exceeds p. Eventually, a sufficiently strong

bound on this probability will follow from Lemma 2.1. Unfortunately, as the distributions of the

random variables τe,s seem difficult to describe explicitly, we shall first need some preparations.

Given an s ∈ [N ] and i ∈ Js, we shall refer to the execution of 3a–3g during round s for this

particular i as step (s, i). For every pair of distinct u,w ∈ V , every s and i as above, let

Ei,u,w = Esi,u,w =
{
ϕs(vi) = u and w ∈ N s

i (1)
}
.

In particular, one of Esi,u,w and Esi,w,u holds if and only if the clock associated with uw is running

when we are trying to embed the children of vi in round s. It is now easy to convince oneself that

τuw,s =
∑
i∈Js

(1[Esi,u,w] + 1[Esi,w,u]) · τs,i. (5)

Moreover, as the events
⋃
i∈Js{E

s
i,u,w, E

s
i,w,u} are pairwise disjoint, we also have

τ2uw,s =
∑
i∈J

(1[Esi,u,w] + 1[Esi,w,u]) · τ2s,i. (6)

Given an s ∈ [N ], let Fs denote the σ-algebra generated by what happened in the algorithm by

the start of round s. Moroever, given an i ∈ Js, let Fs,i denote the σ-algebra generated by what

happened in the algorithm by the start of step (s, i), that is, right before the children of the vertex

vi are embedded. The following two key lemmas will allow us to use the representations (5) and (6)

to bound the (conditional) expectations of τe,s and τ2e,s for all s and e.
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Lemma 5.3. For every s and i ∈ Js and every positive integer k, letting d = di and r = |N s
i (1)|,

E
[
τks,i | Fs,i

]
=

k∏
j=1

d+ j − 1

r + j
,

provided that d 6 r. Moreover, conditioned on Fs,i, the sequence (u1, . . . , ud) defined in 3f of step

(s, i) is a uniform random d-element ordered subset of N s
i (1).

Proof. Observe first that conditioned on the clock at e not having rung until ce, the random vari-

able te is uniformly distributed on the interval (ce, 1]. Therefore, conditioned on Fs,i, the variable

τs,i has the same distribution as the dth smallest value among r independent uniform [0, 1]-valued

random variables1. Denote this random variable by τ . The probability density function of τ is

t 7→ d
(
r
d

)
td−1(1− t)r−d and hence

E[τk] = d

(
r

d

)∫ 1

0
td+k−1(1− t)r−d dt = d

(
r

d

)
B(d+ k, r + 1− d)

=
r!

(d− 1)!(r − d)!
· (d+ k − 1)!(r − d)!

(r + k)!
=

k∏
j=1

d+ j − 1

r + j
,

where B : Z2
+ → R is the Euler beta function, which is defined by

B(x, y) =

∫ 1

0
tx−1(1− t)y−1 dt =

(x− 1)!(y − 1)!

(x+ y − 1)!
.

The second part of the lemma follows by symmetry.

The second lemma, which is really the heart of the argument, provides upper bounds on the

(conditional) probabilities of the events Esi,u,w that appear in (5) and (6). Let δ = 21p/α4 and note

that

eδ > 1 + δ > 1 + 21p >
n

n− 1
and e2δ 6 1 + 3δ 6 1 + 63p/α4 6 1 + ε/2. (7)

Lemma 5.4. For every pair of distinct u,w ∈ V and all s ∈ [N ] and i ∈ Js, the following holds.

Pr
(
Esi,u,w ∧ Ds−1 | Fs

)
6
n− i ↓
n2

· eδ. (8)

The proof of Lemma 5.4 is quite technical and therefore we postpone it to the end of the section.

Before proceeding with our proof, it would be useful to understand the intuition behind (8). By the

description of our embedding algorithm, ϕ(v0) is a uniformly chosen random vertex in V . Moreover,

by Lemma 5.3, for every j ∈ J , conditioned on ϕs(v0), . . . , ϕs(vj↓−1), the images of the dj children

of vj form a uniform random dj-element ordered subset of N s
j (1). It follows that if N s

j (1) = U sj
for every j ∈ J , then ϕs(v0), . . . , ϕs(vm−1) would form a uniform random m-element ordered subset

of V . In particular, Pr
(
E1
i,u,w | F1

)
= n−i↓

n(n−1) 6
n−i↓
n2 · eδ.

Unfortunately, this is true only if s = 1, as in reality N s
j (1) contains only those vertices w of U sj

for which the edge {ϕs(vj), w} has not already appeared in H = ϕ1(T1) ∪ . . . ∪ ϕs−1(Ts−1). Clearly,

|U sj \ N s
j (1)| 6 ∆(H) for every j and hence one would expect that if ∆(H) is not too large, then

1This is often referred to as the dth order statistic.
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the distribution of ϕs(v0), . . . , ϕs(vm−1) is not very far from uniform. The content of (8) is that the

above intuition is indeed true (in some precise quantitative sense).

For every s ∈ [N ] and every e ∈ E(Kn), let cse denote the value of ce at the end of the sth round

of the algorithm (so that ce = cNe ). Similarly as before, one easily sees that cse 6 τe,1 + . . .+ τe,s. As

D0 holds always, our main probabilistic estimate, inequality (4), will easily follow from the following

statement.

Lemma 5.5. For every s′ ∈ [N ], the following holds:

Pr
(
Ds′−1 and

(
max
e
cs
′
e > p or Ds′

))
6 3n−8. (9)

Indeed, as the event D0 holds trivially, we have DN =
⋃N
s=1Ds ∩ Ds−1 and hence by Lemma 5.5,

Pr
(
DN
)
6

N∑
s=1

Pr
(
Ds−1 ∩ Ds

)
6 N · 3n−8 (10)

Since DN clearly implies DN−1 and ce = cNe , then again by Lemma 5.5,

Pr
(
DN ∧max

e
ce > p

)
6 Pr

(
DN−1 ∧max

e
cNe > p

)
6 3n−8. (11)

Finally, (10) and (11) immediately give (4).

Proof of Lemma 5.5. Fix an s′ ∈ [N ] and an e ∈ E(Kn) and recall that cs
′
e 6 τe,1 + . . . + τe,s′ . As

a preparation to invoke Lemma 2.1, we first estimate, for each s ∈ [s′] and each pair uw ∈ E(Kn),

the conditional expectations of τuw,s and τ2uw,s given Fs (on the event Ds−1 ⊇ Ds′−1). To this end,

recall first that (i) the events Esi,u,w, Esi,w,u, and Ds−1 are all in Fs,i and (ii) on the event Ds−1, the

set N s
i (1) has at least n− i ↓−2np elements, see Claim 5.1. It now follows from (5) and Lemmas 5.3

and 5.4 that

E [τuw,s · 1[Ds−1] | Fs] =
∑
i∈Js

E
[(
1[Esi,u,w] + 1[Esi,w,u]

)
· τs,i · 1[Ds−1] | Fs

]
=
∑
i∈Js

E
[(
1[Esi,u,w] + 1[Esi,w,u]

)
· E [τs,i | Fs,i] · 1[Ds−1] | Fs

]
6
∑
i∈Js

di
n− i ↓ − 2np

·
(
Pr
(
Esi,u,w ∧ Ds−1 | Fs

)
+ Pr

(
Esi,w,u ∧ Ds−1 | Fs

))
6
∑
i∈Js

di
n− i ↓ − 2np

· n− i ↓
n2

· 2eδ 6 2eδ

n2
· αn

αn− 2np
·
∑
i∈Js

di

=
2eδ

n2
· α

α− 2p
· |E(Ts)| 6

2

n
· eδ+

2p
α−2p 6

2

n
· e2δ 6 2 + ε

n
,

where the final inequality is (7). In a similar fashion, it follows from (6) that

E
[
τ2uw,s · 1[Ds−1] | Fs

]
6
∑
i∈Js

di(di + 1)

(n− i ↓ − 2np)2
· n− i ↓

n2
· 2eδ 6 4eδ

n2
·
∑
i∈Js

d2i
n− i ↓

·
(

α

α− 2p

)2

6
4e2δ

n2
·
∑
i∈Js

d2i
n− i ↓

6
5

n2
·∆(Ts) ·

∑
i∈Js

di
n− i ↓

6
5∆ log(1/α)

n2
,
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where the final inequality is (30). Furthermore, let

τ̄ =
εp

60 log n
and τ ′uw,s = min{τuw,s, τ̄} · 1[Ds−1].

Observe that for each pair uw ∈ E(Kn), the random variables τ ′uw,1, . . . , τ
′
uw,s′ satisfy the assumptions

of Lemma 2.1 with

M ← τ̄ , µ← 2 + ε

n
, and σ2 ← 5∆ log(1/α)

n2
.

In particular, letting t = εp/4, we see that

p− s′µ > p−Nµ > p− (1− ε)np
2
· 2 + ε

n
=

(
1− (1− ε)(2 + ε)

2

)
p =

ε− ε2

2
p > t

and also

2s′σ2 6 2Nσ2 6 np · 5∆ log(1/α)

n2
=

5p∆ log(1/α)

n
6

ε2p2

320 log n
and

2Mt

3
6

ε2p2

320 log n
.

Therefore, it follows from Lemma 2.1 that

Pr
(
τ ′uw,1 + . . .+ τ ′uw,s′ > p

)
6 exp

(
− t2

2(s′σ2 +Mt/3)

)
6 n−10. (12)

Now, observe that if τe,s = τ ′e,s for all s ∈ [s′] and e ∈ E(Kn), then cs
′
e 6 τ ′e,1 + . . . + τ ′e,s′ . Since

each τe,s equals either zero or τs,i for some i ∈ Js, the former event holds precisely when τs,i 6 τ̄ for

all s ∈ [s′] and i ∈ Js. In particular, it follows from (5), (5), and the union bound that

Pr
(
Ds′−1 ∧max

e
cs
′
e > p

)
6 n−8 +

s′∑
s=1

∑
i∈Js

Pr(Ds′−1 ∧ τs,i > τ̄). (13)

In order to estimate the right-hand side of (13), note that Ds′−1 ⊆ Ds−1 for every s ∈ [s′] and hence

by Claim 5.1, on Ds′−1, the set N s
i (1) has at least αn− 2np elements. Therefore, by Lemma 5.3, for

every s and i as above and every positive integer k, using Markov’s inequality,

Pr (Ds′−1 ∧ τs,i > τ̄) 6 Pr
(
Ds−1 ∧ τks,i > τ̄k

)
6 τ̄−k · E

[
τks,i · 1[Ds−1]

]
6 τ̄−k

k∏
j=1

di + j − 1

αn− 2np+ j
6

(
∆ + k

τ̄ · (α− 2p)n

)k
6

(
120(∆ + k) log n

εαnp

)k
6

(
1

4
+
k log n

εαnp

)k
.

(14)

Substituting k = d10 log2 ne 6 εαnp/(4 log n) into (14) yields

Pr (Ds′−1 ∧ τs,i > τ̄) 6 n−10,

which together with (13) gives

Pr
(
Ds′−1 ∧max

e
cs
′
e > p

)
6 n−8 + s′ · n · n−10 6 2n−8. (15)
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Finally, we estimate the probability of Ds′−1 ∧ maxe c
s′
e 6 p ∧ Ds′ . To this end, note that the

graph ϕ1(T1) ∪ . . . ∪ ϕs′(Ts′) is contained in the graph comprising all edges f with tf 6 maxe c
s′
e . In

particular,

Pr
(
Ds′ ∧max

e
cs
′
e 6 p

)
6 Pr (∆(Gn,p) > 2np) 6 n · exp (−np/4) , (16)

where the last inequality is a standard estimate for the upper tail of the binomial distribution that

can be easily derived using Lemma 2.1. As np/4 > 9 log n, inequalities (15) and (16) immediately

yield (9).

In order to complete the proof we shall now prove Lemma 5.4.

Proof of Lemma 5.4. We first handle the easy case i = 0. Since conditioned on Fs, the vertex ϕs(v0)

is chosen uniformly at random from V , then

Pr(Es0,u,w | Fs) 6 Pr(ϕs(v0) = u | Fs) =
1

n
6
n− 1

n2
· eδ,

where the last inequality follows form (7). Therefore, for the remainder of the proof, we shall

assume that i > 0. Let ji be the index of the parent of vi in Ts, so that ji ↓ 6 i < ji ↓ + dji .

Next, let H = ϕ1(T1) ∪ . . . ∪ ϕs−1(Ts−1), let B = NH(u) ∪ NH(w), and note that |B| 6 2∆(H).

Without loss of generality, we may assume that (i) u,w 6∈ B, as otherwise uw ∈ H and consequently

Pr(Esi,u,w | Fs) = 0, and that (ii) ∆(H) 6 D = 2np holds always, as otherwise the left-hand side

of (8) is zero.

Let A−1 denote the event that ϕs(v0) 6∈ {u,w} and for every j ∈ J \ {ji}, let Aj denote the event

that u,w 6∈ {ϕs(vj↓), . . . , ϕs(vj↓+dj−1)}, that is, u and w are not among the images of the dj children

of vj in Ts. Finally, denote by Aji the event that ϕ(vi) = u and w 6∈ {ϕs(vji↓), . . . , ϕs(vji↓+dji−1)}.
Observe that the event Esi,u,w can be expressed as an intersection of a sequence of events Aj , namely

Esi,u,w = A−1 ∩
⋂

j∈J,j<i
Aj . (17)

With foresight, for every j ∈ J , define

Pj =


(

1− dj
n−j↓

)2
, if j < ji,

e2D/(αn)

n−j↓ ·
(

1− dj
n−j↓

)
, if j = ji,

1− dj
n−j↓ , if j > ji.

(18)

A good way to digest (18) is to observe the following. If ϕs(v0), . . . , ϕs(vm−1) formed a uniform

random m-element ordered subset of V , then Pk would be (approximately) equal to the conditional

probability of the event Ak occurring, conditioned on
⋂
j<k Aj occurring. In particular, we have the

following identity: ∏
j∈J,j<i

Pj = e2D/(αn) · n− i ↓
(n− 1)2

. (19)

To see (19), note first that j ↓+ dj = j+ ↓ for every j ∈ J (recall that j+ is the successor of j in J)

and hence for every k ∈ J ,∏
j∈J,j<k

(
1− dj

n− j ↓

)
=

∏
j∈J,j<k

n− j+ ↓
n− j ↓

=
n− k ↓
n− 0 ↓

=
n− k ↓
n− 1

.
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Denoting the left-hand side of (19) by P , we now see that

P =
e2D/(αn)

n− ji ↓
·
∏

j∈J,j<ji

(
1− dj

n− j ↓

)
·
∏

j∈J,j<i

(
1− dj

n− j ↓

)
= e2D/(αn) · n− i ↓

(n− 1)2
.

Therefore, in order to bound Pr(Esi,u,w | Fs), it will be enough to bound the “conditional probability

Pr(Ak |
⋂
j<k Aj)” from above by Pk (times a small error term) for each k 6 i and then use the chain

rule for conditional probabilities.

We now formalise the above discussion. If j ∈ J \ {ji}, then by Lemma 5.3,

Pr(Aj | Fs,j) =

(
1− dj
|N s

j (1)|

)
1[u∈Ns

j (1)]
(

1− dj
|N s

j (1) \ {u}|

)
1[w∈Ns

j (1)]

6

(
1− dj
|U sj |

)
1[u∈Ns

j (1)]+1[w∈Ns
j (1)]

.

(20)

where the inequality holds as N s
j (1) ⊆ U sj . Recall (e.g., from the proof of Claim 5.1) that an x ∈ V

belongs to N s
j (1) if and only if x ∈ U sj and ϕs(vj) 6∈ NH(x) and hence,

1[u ∈ N s
j (1)] + 1[w ∈ N s

j (1)] > 1[u ∈ U sj ] + 1[w ∈ U sj ]− 2 · 1[ϕs(vj) ∈ B]. (21)

Putting (20) and (21) together yields, recalling that |U sj | = n− j ↓,

Pr(Aj | Fs,j) 6
(

1− dj
n− j ↓

)
1[u∈Usj ]+1[w∈Usj ]−2·1[ϕs(vj)∈B]

. (22)

As dj 6 ∆ 6 αn/1600 and n− j ↓ > n−m > αn, we can estimate(
1− dj

n− j ↓

)−1
6 exp

(
3dj

2(n− j ↓)

)
. (23)

Substituting (23) into (22), we obtain

Pr(Aj | Fs,j) 6
(

1− dj
n− j ↓

)
1[u∈Usj ]+1[w∈Usj ]

· exp

(
3 · 1[ϕs(vj) ∈ B] · dj

n− j ↓

)
. (24)

In the remaining case j = ji, Lemma 5.3 implies that

Pr(Aji | Fs,ji) =

(
1− dji
|N s

ji
(1)|

)
1[w∈Ns

ji
(1)]

·
1[u ∈ N s

ji
(1)]

|N s
ji

(1) \ {w}|
. (25)

Similarly as above, the first term in the right-hand side of (25) may be estimated as follows:(
1− dji
|N s

ji
(1)|

)
1[w∈Ns

ji
(1)]

6

(
1− dji

n− ji ↓

)
1[w∈Usji ]−1[ϕs(vji )∈B]

6

(
1− dji

n− ji ↓

)
1[w∈Usji ]

· exp

(
3 · 1[ϕs(vji) ∈ B] · dji

n− ji ↓

)
.

(26)
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To estimate the second term, we may use Claim 5.1 and the inequality n− ji ↓ > n−m+1 > αn+1:

1[u ∈ N s
ji

(1)]

|N s
ji

(1) \ {w}|
6

1

n− ji ↓ −D − 1
6

αn+ 1

αn−D
· 1

n− ji ↓
6
e2D/(αn)

n− ji ↓
, (27)

where the last inequality holds as D = 2np 6 αn/63. Putting (25), (26), and (27) together yields

Pr(Aji | Fs,ji) 6
e2D/(αn)

n− ji ↓
·
(

1− dji
n− ji ↓

)
1[w∈Usji ]

· exp

(
3 · 1[ϕs(vji) ∈ B] · dji

n− ji ↓

)
. (28)

If the set B was empty, the somewhat annoying exponential error terms involving 1[ϕs(vj) ∈ B]

would disappear from both (24) and (28) and one could easily derive the claimed upper bound on

the probability of Esi,u,w arguing similarly as in the proof of (19). Unfortunately this is true only

if s = 1 and the treatment of the general case (B 6= ∅), which is the main business of this lemma,

requires considerable effort.

First, let us define, for every I ⊆ J ,

XI = exp

(
3
∑
k∈I

1[ϕs(vk) ∈ B] · dk
n− k ↓

)
,

so that the exponential terms in the right-hand sides of (24) and (28) are simply X{j} and X{ji},

respectively. The following estimate is key.

Claim 5.6. For every j ∈ J and I ⊆ {j ↓, . . . , j ↓+ dj − 1}, the followings holds.

(i) If j 6= ji, then

E
[
1[Aj ] ·XI | Fs,j

]
6

(
1− dj

n− j ↓

)
1[u∈Usj ]+1[w∈Usj ]

·X{j} · exp

(
8D

α3
·
∑
k∈I

dk
(n− k ↓)2

)
.

(ii) If j = ji, then

E
[
1[Aji ] ·XI | Fs,j

]
6
e2D/(αn)

n− ji ↓
·
(

1− dji
n− ji ↓

)
1[w∈Usji ]

·X{ji} · exp

(
8D

α3
·
∑
k∈I

dk
(n− k ↓)2

)
.

In order to prove Claim 5.6, we first argue that for all I ⊆ J ,

XI 6 1 + α−3 ·
∑
k∈I

1[ϕs(vk) ∈ B] · dk
n− k ↓

. (29)

Indeed, (29) follows from the fact that ex 6 1 + ea · x for all x ∈ [0, a] and the inequality

∑
k∈I

dk
n− k ↓

6
∑
k∈J

dk
n− k ↓

6
∑
k∈J

dk−1∑
d=0

1

n− k ↓ − d
=

m−1∑
d=1

1

n− d

= Hn−1 −Hn−m 6 log
n− 1

n−m
6 log

1

α
,

(30)

where Hd =
∑d

i=1
1
d is the dth harmonic number and we used the well-known fact that d 7→ Hd−log d

is monotonically decreasing.
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Fix a j ∈ J and assume that I ⊆ {j ↓, . . . , j ↓+dj−1}. By Lemma 5.3, conditioned on Fs,j , each

ϕs(vk) with k ∈ I is a uniformly chosen random element of the set N s
j (1) and hence (29) yields

E[XI − 1 | Fs,j ] 6 α−3 ·
∑
k∈I

|B|
|N s

j (1)|
· dk
n− k ↓

6 α−3 ·
∑
k∈I

2D

n− j ↓ −D
· dk
n− k ↓

6
4D

α3
·
∑
k∈I

dk
(n− k ↓)2

,

(31)

where in the second and the third inequalities we used Claim 5.1 and the inequalities k ↓ > j ↓ and

n− j ↓ −D > (n− j ↓)/2 (which follows as 2D 6 αn 6 n− j ↓), respectively.

Now, given a j ∈ J \{ji} and an I as above, we estimate the conditional expectation of 1[Aj ] ·XI ,

conditioned on Fs,j . To this end, note first that XI > 1 and hence 1[Aj ] ·XI 6 1[Aj ] +XI − 1. In

particular, we may invoke (24) and (31) directly to obtain

E
[
1[Aj ] ·XI | Fs,j

]
6

(
1− dj

n− j ↓

)
1[u∈Usj ]+1[w∈Usj ]

·X{j} +
4D

α3
·
∑
k∈I

dk
(n− k ↓)2

. (32)

Now, item (i) of Claim 5.6 is a straightforward consequence of (32), the simple estimate(
1− dj

n− j ↓

)
1[u∈Usj ]+1[w∈Usj ]

·X{j} >
(

1− dj
n− j ↓

)2

>

(
1− ∆

αn

)2

>
1

2
, (33)

and the inequality 1 + x 6 ex.

We now estimate the conditional expectation of 1[Aji ] ·XI . Unfortunately, a bound akin to (33)

does not hold for Pr(Aji | Fs,j) and hence in order to obtain a suitable upper bound for E
[
1[Aji ]·XI

]
,

we need to argue somewhat differently, reiterating some of the above computations. As Aji implies

that ϕs(vi) = u, it follows from (29) that

1[Aji ] · (XI − 1) 6 α−3 ·
∑
k∈I

1[ϕs(vi) = u ∧ ϕs(vk) ∈ B] · dk
n− k ↓

. (34)

By Lemma 5.3, conditioned on Fs,ji , for each k ∈ I \ {i}, the pair
(
ϕs(vi), ϕs(vk)

)
is a uniformly

chosen random 2-element ordered subset of N s
ji

(1). In particular, by (27),

Pr
(
ϕs(vi) = u ∧ ϕs(vk) ∈ B | Fs,ji

)
6

1

|N s
ji

(1)|
· |B|
|N s

ji
(1)| − 1

6
e2D/(αn)

n− ji ↓
· |B|
|N s

ji
(1)|

, (35)

holds for each k. Indeed, when k = i, then (35) holds trivially, as we assumed that u 6∈ B and hence

the left-hand side of (35) is zero. Substituting (35) into (34) and using (31), we obtain

E
[
1[Aji ] · (XI − 1) | Fs,j

]
6
e2D/(αn)

n− ji ↓
· 4D

α3
·
∑
k∈I

dk
(n− k ↓)2

. (36)

Finally, as 1[Aji ] ·XI = 1[Aji ] · (XI − 1) + 1[Aji ], combining (28) with (36) with yields

E
[
1[Aji ] ·XI | Fs,j

]
6
e2D/(αn)

n− ji ↓
·

[(
1− dji

n− ji ↓

)
1[w∈Usji ]

·X{ji} +
4D

α3
·
∑
k∈I

dk
(n− k ↓)2

]
. (37)
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Now, item (ii) of Claim 5.6 is a simple consequence of (37), the simple estimate(
1− dji

n− ji ↓

)
1[w∈Usji ]

·X{ji} >
1

2
,

cf. (33), and the inequality 1 + x 6 ex. This completes the proof of Claim 5.6.

With Claim 5.6 now in place, define for every k ∈ J and every I ⊆ J ,

Zk,I = 1[A−1] ·
∏

j∈J,j<k
1[Aj ] ·XI

and note that if I ⊆ {0, . . . , k ↓ − 1}, then Zk,I is Fs,k-measurable. We shall prove the following

estimate using induction on k.

Claim 5.7. For every k ∈ J and every I ⊆ J ∩ {k, . . . , k ↓ − 1},

E[Zk,I | Fs] 6
∏

j∈J,j<k
Pj · exp

8D

α3
·

∑
j∈(J∩{0,...,k−1})∪I

dj
(n− j ↓)2

 . (38)

As the statement of Claim 5.7 might look somewhat mysterious at first sight, let us now show

how it implies the bound on Pr(Esi,u,w, | Fs) claimed in the statement of Lemma 5.4. To this end,

observe that

∑
j∈J,j<i

dj
(n− j ↓)2

6
∑
j∈J

dj
(n− j ↓)2

6
∑
j∈J

dj−1∑
d=0

1

(n− j ↓ − d)2
=

m−1∑
d=1

1

(n− d)2

6
m−1∑
d=1

1

(n− d)(n− d− 1)
=

1

n−m
− 1

n− 1
6

1

αn
.

(39)

Now, as Zi,∅ = 1[Esi,u,w], then Claim 5.7, (19), and (39) yield (recalling that D = 2np),

Pr(Esi,u,w | Fs) 6
∏

j∈J,j<i
Pj · exp

8D

α3
·
∑

j∈J,j<i

dj
(n− j ↓)2

 6
n− i ↓

(n− 1)2
· exp

(
2D

αn
+

8D

α4n

)

6
n− i ↓
n2

· exp

(
4p

α
+

16p

α4
+

2

n− 1

)
6
n− i ↓
n2

· eδ.

Therefore, in order to complete the proof, it suffices to prove Claim 5.7.

We prove the claim using induction on k. For the base case k = 0, note that 0 ↓ = 1 and fix some

I ⊆ {0}. Clearly, Z0,I 6 XI and hence (38) follows directly from (31) and the inequality 1 + x 6 ex.

Assume now that k > 0 and fix an I as above. Let ` = k− be the predecessor of k in J in the BFS

ordering (so that ` ↓+ d` = k ↓) and let I ′ = I ∩ {` ↓, . . . , ` ↓+ d` − 1}. Note that

Zk,I = Z`,I\I′ · 1[A`] ·XI′

and that I \ I ′ ⊆ {k, . . . , ` ↓ − 1}. In particular, Z`,I\I′ is Fs,`-measurable and consequently,

E[Zk,I | Fs] = E[E[Zk,I | Fs,`] | Fs] = E[Z`,I\I′ · E[1[A`] ·XI′ | Fs,`] | Fs]. (40)
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Let A∗<` = A−1 ∩
⋂
j<`Aj . Observe that if ` 6 ji, then A∗<` implies that u ∈ U s` . Similarly, if ` 6 i,

then A∗<` implies that w ∈ U s` . In particular if ` < i, then on A∗<`, we have 1[u ∈ U s` ] + 1[w ∈ U s` ] =

1 + 1[` < ji]. Recalling (18) and considering separately the three cases: ` < ji, ` = ji, and ` > ji,

one can easily see that Claim 5.6 implies that

E[1[A`] ·XI′ | Fs,`] 6 P` ·X{`} · exp

8D

α3
·
∑
j∈I′

dj
(n− j ↓)2

 .

Substituting the above into (40), we obtain

E[Zk,I | Fs] 6 P` · exp

8D

α3
·
∑
j∈I′

dj
(n− j ↓)2

 · E[Z`,I\I′∪{`} | Fs].

As I\I ′∪{`} ⊆ J∩{`, . . . , ` ↓−1}, we may use the inductive assumption with k ← ` and I ← I\I ′∪{`}
to obtain

E[Zk,I | Fs] 6
∏

j∈J,j<`
Pj · P` · exp

8D

α3
·

∑
j∈(J∩{0,...,`−1})∪(I\I′)∪{`}∪I′

dj
(n− j ↓)2

 ,

which is exactly the claimed inequality, as ` ∈ J and ` = k−.

Finally, we establish the second assertion of Theorem 1.6. We first argue that a fairly straight-

forward modification of the proof of Lemma 5.4 gives the following estimate.

Lemma 5.8. For every s ∈ [N ] and every pair of distinct u,w ∈ V , the following holds:

Pr
(
u,w /∈ ϕs(V (Ts)) ∧ Ds−1 | Fs

)
6

(
n− |V (Ts)|

n− 1

)2

· eδ. (41)

Proof sketch. We argue almost exactly as in the proof of Lemma 5.4 with just a few minor modifi-

cations. Let Es denote the event u,w 6∈ ϕs(V (Ts)). We define A−1 to be the event ϕs(v0) 6∈ {u,w}
and for every j ∈ J , we let Aj denote the event that u,w 6∈ {ϕs(vj↓), . . . , ϕs(vj↓+di−1)}, that is, u

and w are not among the images of the dj children of vj in Ts. One immediately sees that

Es = A−1 ∩
⋂
j∈J

Aj .

Item (i) of Claim 5.6 is still valid and hence a straightforward modification of Claim 5.7 and of the

argument following it gives the estimate

E[Es | Fs] 6
∏
j∈J

Pj · exp

8D

α3
·
∑
j∈J

dj
(n− j ↓)2

 ,

where now Pj =
(

1− dj
n−j↓

)2
for each j ∈ J . We conclude as in the proof of Lemma 5.4, noting

additionally that with our new definition of Pj , we have the identity∏
j∈J

Pj =

(
n− |V (Ts)|

n− 1

)2

.

This completes the proof.
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We also observe that for every s ∈ [N ], every v ∈ V (Ts), and every pair of distinct u,w ∈ V ,

Pr
(
ϕs(v) ∈ {u,w} ∧ Ds−1 | Fs

)
6

3

αn
. (42)

Indeed, this is clear when v = v0, as ϕs(v0) is a uniformly chosen random element of V and hence the

left-hand side of (42) is at most 2/n. Otherwise, v is the child of some vj with j ∈ J and therefore

by Claim 5.1,

Pr
(
ϕs(v) ∈ {u,w} ∧ Ds−1 | Fs

)
= Pr

(
ϕs(v) ∈ {u,w} ∧ Ds−1 | Fs,j

)
=
1[u ∈ N s

j (1)] + 1[w ∈ N s
j (1)]

|N s
j (1)|

6
2

αn− 2np
6

3

αn
.

Let Ws be the set defined in Theorem 1.6 and observe that |Ws| = n−|V (Ts)|+1 > αn. Combining

Lemma 5.8 and (42), we obtain

Pr
(
{u,w} ⊆Ws ∧ Ds−1 | Fs

)
6

(
|Ws| − 1

n− 1

)2

eδ +
3

αn
6 2

(
|Ws|
n

)2

. (43)

Finally, for each s ∈ [N ] and all pairs of distinct u,w ∈ V , we define

Yuw,s = 1[{u,w} ⊆Ws ∧ Ds−1] ·
1

|Ws|
.

As Yuw,s is clearly Fs+1-measurable, inequalities (43) and |Ws| > αn readily imply that the random

variables Yuw,1, . . . , Yuw,N satisfy the assumptions of Lemma 2.1 with

M ← 1

αn
, µ← 2 maxs |Ws|

n2
, and σ2 ← 2

n2
.

Furthermore, letting t = p ·maxs |Ws|/n, we see that

2p

n
·max

s
|Ws| −Nµ >

(1 + ε)p

n
·max

s
|Ws| > t

and also
Mt

3
6
p ·maxs |Ws|

3αn2
and Nσ2 6

np

2
· 2

n2
=
p

n
6
p ·maxs |Ws|

αn2
.

Therefore, it follows from Lemma 2.1 that

Pr

(
Yuw,1 + . . .+ Yuw,N >

2p

n
·max

s
|Ws|

)
6 exp

(
− t2

2(Nσ2 +Mt/3)

)
6 exp

(
−pα ·maxs |Ws|

3

)
6 exp

(
−pα

2n

3

)
6 n−10,

provided that p > 30 log n/(α2n). In particular, with probability at least 1− n−8, on the event DN ,

every pair of distinct vertices u,w ∈ V satisfies (recall that Ds−1 ⊆ DN for every s ∈ [N ]),

N∑
s=1

1[{u,w} ⊆Ws] ·
1

|Ws|
6

2p

n
·max

s
|Ws|.

Finally, as the event DN holds with probability at least 1 − 3n−8, see (10), the second assertion of

Theorem 1.6 follows.
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6 Concluding remarks

• The main contribution of this work is the description and the analysis of a randomised algorithm

that packs a collection of at most (1−ε)np/2 trees, each of which has at most (1−α)n vertices

and maximum degree at most ∆ into the binomial random graph Gn,p. It is natural to ask how

well our algorithm performs and how tight our analysis is. In the case when both α and ε are

constant, we manage to find a packing under the rather weak assumption that ∆ < cnp/ log n

for some positive c that depends only on α and ε. In fact, this is the natural limit of our

method (and very likely, also the limit of many other randomised packing strategies), as we

shall now argue.

Suppose that we run our randomised packing algorithm (described in Section 5) on a family of

bnp/4c trees, each of which has between n/2 and 3n/4 vertices, whose all degrees are either 1

or ∆ := dnp/ωe for some ω = ω(n) > 4; clearly, such trees exist. We argue that our algorithm

will fail to pack these trees into Gn,p unless ω(n) > c log n for some positive constant c. To

see this, note that each tree in the collection contains at least ω/(3p) vertices of degree ∆. In

particular, in any packing of the trees into an n-vertex graph, an ω/(3pn)-proportion of the

vertices of the host graph will have degree ∆ in the image of any given tree. Now, observe that

our randomised packing algorithm has the following nice property. In each of the rounds, a

given vertex of the currently embedded tree is mapped to a given vertex of the host graph with

probability at most around 1/n, independently of the earlier rounds; this is an easy consequence

of Lemma 5.4. It follows that in each of the rounds, most vertices of the host graph are the

images of a vertex of degree ∆ with probability at least ω/(4np). Therefore, for a typical vertex

v in the host graph, the probability that v serves as a vertex of degree ∆ more than 2ω times

is at least e−Cω for some absolute constant C. Hence, if ω � log n, then some vertices in the

host graph will accumulate total degree of at least 2ω ·∆ > 2np, which clearly does not usually

happen in Gn,p.

• While writing the proof of Theorem 1.6, we were much less concerned with the optimality of

the assumptions listed in (1) with respect to α and ε, settling for a polynomial dependence on

both these parameters, which then results in an upper bound of the form (np)c/(log n)C on the

maximum degree of the trees in Theorem 1.4. The current value c = 1/6 could be improved

to any constant smaller than 1/5 if one replaced the 3/2 in the estimate (23) by a smaller

constant larger than 1. We decided not to do this for the sake of clarity of the presentation.

One could most likely improve the estimate (30) by using the inequality |I| 6 dj 6 ∆. Again,

we decided not to pursue this direction, as this could only really affect the case ∆ �
√
n. It

would be extremely interesting to relax the assumption ∆� (np)1/2 of Theorem 4.1, even for

small values of p, as this would most likely require far-reaching improvements of our packing

strategy.

• It is plausible that one could improve our algorithm to produce a packing of trees with maximum

degree as large as Θ(np) in Gn,p. For example, one can try, in each time step, to map vertices of

“high” degrees in the tree to vertices of “small” degrees in the current embedding. This would

prevent vertices from becoming images of high degree vertices too often, and could potentially

remove the 1/ log n factor from the current upper bound on ∆. Having said that, the analysis

of such an algorithm would most likely differ significantly from our current analysis (and would

probably be much more complicated). Since anyway we do not believe that such a naive random
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procedure will resolve Conjecture 1.1, we did not try to continue this argument. Still, it would

be very interesting to see a clean analysis of an algorithm of a similar type.

• Our embedding scheme relies very strongly on the fact that we embed only graphs that are 1-

degenerate (recall that a graph H is d-degenerate if and only if there exists a labeling v1, . . . , vm
of V (H) for which every vi has at most d neighbours among v1, . . . , vi−1). Indeed, following

such an ordering, in each time step we try to embed a new vertex by exposing exactly one

new edge, and therefore the algorithm is not “wasteful” and leaves us a lot of “randomness”

for later steps. It would be very interesting to find random embedding schemes employing the

“online sprinkling” idea for general graphs or, at the very least, for almost-spanning graphs

with bounded maximum degree.
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[19] S. Messuti, V. Rödl, and M. Schacht, Packing minor-closed families of graphs into complete

graphs, J. Combin. Theory Ser. B 119 (2016), 245–265.

[20] R. Montgomery, Embedding bounded degree spanning trees in random graphs, arXiv:1405.6559

[math.CO].

[21] G. Ringel, Theory of graphs and its applications, Proceedings of the Symposium Smolenice,

1963, p. 162.

[22] Y. Roditty, Packing and covering of the complete graph. III. On the tree packing conjecture, Sci.

Ser. A Math. Sci. (N.S.) 1 (1988), 81–85.

[23] Benny Sudakov and V. H. Vu, Local resilience of graphs, Random Structures Algorithms 33

(2008), 409–433.

[24] D. B. West, Introduction to graph theory, Prentice Hall, Inc., Upper Saddle River, NJ, 1996.

A Proof of Lemma 2.1

In the proof of Lemma 2.1, we shall use the following (conditional version of the) estimate on the

moment generating function of a bounded random variable with bounded second moment.

Lemma A.1 ([4]; see also [7, Theorem 2.9]). Let X be a random variable satisfying

0 6 X 6M, E[X | F ] 6 µ, and E[X2 | F ] 6 σ2

for some σ-field F and reals M , µ, and σ. Then, for all λ ∈ R,

E
[
eλX | F

]
6 exp

(
µλ+

σ2

M2
φ(Mλ)

)
.

where φ(x) = ex − x− 1.
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Proof of Lemma 2.1. Suppose that X1, . . . , XN and M , µ, and σ satisfy the assumptions of the

lemma. We prove the claimed upper tail estimate using a standard Azuma-type argument. We

first derive an upper bound on the moment generating function of
∑N

i=1Xi. As in the statement of

Lemma A.1, let φ(x) = ex − x− 1.

Claim A.2. For all λ > 0 and i ∈ {0, . . . , N}, we have

E

exp

λ i∑
j=1

Xj

 6 exp

(
µλ+

σ2

M2
φ(Mλ)

)i
. (44)

We prove the claim by induction on i. For i = 0, there is nothing to prove, so assume that i > 1

and that (44) holds with i replaced by i− 1. Note that

E

exp

λ i∑
j=1

Xj

 = E

exp

λ i−1∑
j=1

Xj

 · E [eλXi | X1, . . . , Xi−1

] . (45)

Using Lemma A.1 to bound the conditional expectation in the right-hand side of (45), we obtain

E

exp

λ i∑
j=1

Xj

 6 E

exp

λ i−1∑
j=1

Xj

 · exp

(
µλ+

σ2

M2
φ(Mλ)

) ,
which together with our inductive assumption immediately gives (44).

With the upper bound (45) in place, we use the Cramér–Chernoff method to obtain the claimed

estimate for the upper tail. Indeed, for all positive λ and t, by Markov’s inequality,

Pr

 N∑
j=1

Xj > Nµ+ t

 = Pr

exp

λ N∑
j=1

Xj

 > eλ(Nµ+t)


6 e−λ(Nµ+t)E

exp

λ N∑
j=1

Xj

 6 exp

(
Nσ2

M2
φ(Mλ)− λt

)
,

where the last inequality is (44) with i = N . Letting u = Mt/(Nσ2) and λ = log(1 + u)/M , we

obtain

Pr

 N∑
j=1

Xj > Nµ+ t

 6 exp

(
−Nσ

2

M2
·
(
(1 + u) log(1 + u)− u

))
. (46)

Finally, the claimed estimate follows from the following easy-to-prove inequality:

(1 + u) log(1 + u)− u >
u2

2(1 + u/3)
for all u > 0.
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