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Abstract. A set A of non-negative integers is called a Sidon set if all the sums a1+a2, with a1 ≤ a2

and a1, a2 ∈ A, are distinct. A well-known problem on Sidon sets is the determination of the
maximum possible size F (n) of a Sidon subset of [n] = {0, 1, . . . , n− 1}. Results of Chowla, Erdős,
Singer and Turán from the 1940s give that F (n) = (1 + o(1))

√
n. We study Sidon subsets of sparse

random sets of integers, replacing the ‘dense environment’ [n] by a sparse, random subset R of [n],
and ask how large a subset S ⊂ R can be, if we require that S should be a Sidon set.

Let R = [n]m be a random subset of [n] of cardinality m = m(n), with all the
(
n
m

)
subsets of [n]

equiprobable. We investigate the random variable F ([n]m) = max |S|, where the maximum is taken
over all Sidon subsets S ⊂ [n]m, and obtain quite precise information on F ([n]m) for the whole
range of m, as illustrated by the following abridged version of our results. Let 0 ≤ a ≤ 1 be a
fixed constant and suppose m = m(n) = (1 + o(1))na. We show that there is a constant b = b(a)

such that, almost surely, we have F ([n]m) = nb+o(1). As it turns out, the function b = b(a) is a
continuous, piecewise linear function of a that is non-differentiable at two ‘critical’ points: a = 1/3
and a = 2/3. Somewhat surprisingly, between those two points, the function b = b(a) is constant.

Our approach is based on estimating the number of Sidon sets of a given cardinality contained
in [n]. Our estimates also directly address a problem raised by Cameron and Erdős [On the number
of sets of integers with various properties, Number theory (Banff, AB, 1988), de Gruyter, Berlin,
1990, pp. 61–79].

1. Introduction4

Recent years have witnessed vigorous research in the classical area of additive combinatorics. An5

attractive feature of these developments is that applications in theoretical computer science have6

motivated some of the striking research in the area (see, e.g., [35]). For a modern treatment of the7

subject, the reader is referred to [34].8

Among the best known concepts in additive number theory is the notion of a Sidon set. A set A9

of non-negative integers is called a Sidon set if all the sums a1 + a2, with a1 ≤ a2 and a1, a2 ∈ A,10

are distinct. A well-known problem on Sidon sets is the determination of the maximum possible11

size F (n) of a Sidon subset of [n] = {0, 1, . . . , n − 1}. In 1941, Erdős and Turán [14] showed12

that F (n) ≤
√
n + O(n1/4). In 1944, Chowla [8] and Erdős [11], independently of each other,13

observed that a result of Singer [32] implies that F (n) ≥
√
n−O(n5/16). Consequently, it is known14

Date: Fri 9th Nov, 2012, 9:36am.
Key words and phrases. Sidon sets, random sets of integers, probabilistic extremal problems, additive combinatorics.
The first author was partially supported by CNPq (Proc. 308509/2007-2 and 484154/2010-9), NUMEC/USP (Project
MaCLinC/USP), and the NSF grant DMS 1102086. The second author was supported by the Korea Institute for
Advanced Study (KIAS), under a grant funded by the Korean government (MEST). The third author was supported
by the NSF grants DMS 0800070 and DMS 1102086. The fourth author was partially supported by ERC Advanced
Grant DMMCA and a Trinity College JRF.
Parts of this work appeared in preliminary form in SODA 2011.

1



that F (n) = (1 + o(1))
√
n. For a wealth of related material, the reader is referred to the classical15

monograph of Halberstam and Roth [17] and to a recent survey by O’Bryant [26] and the references16

therein.17

We investigate Sidon sets contained in random sets of integers, and obtain essentially tight bounds18

on their relative density. Our approach is based on finding upper bounds for the number of Sidon19

sets of a given cardinality contained in [n]. Besides being the key to our probabilistic results, our20

upper bounds also address a problem of Cameron and Erdős [7].21

We discuss our bounds on the number of Sidon sets and our probabilistic results in the next two22

subsections.23

1.1. A problem of Cameron and Erdős. Let Zn be the family of Sidon sets contained in [n].24

Over two decades ago, Cameron and Erdős [7] proposed the problem of estimating |Zn|. Observe25

that one trivially has26

2F (n) ≤ |Zn| ≤
∑

1≤i≤F (n)

(
n

i

)
= n(1/2+o(1))

√
n. (1)

Cameron and Erdős [7] improved the lower bound in (1) by showing that lim supn |Zn|2−F (n) =∞27

and asked whether the upper bound could also be strengthened. Our result is as follows.28

Theorem 1.1. There is a constant c for which |Zn| ≤ 2cF (n) for all large enough n.29

Our proof method gives that the constant c in Theorem 1.1 may be taken to be arbitrarily close30

to log2(32e) = 6.442 · · · . We do not make any attempts to optimize this constant as it seems31

that our approach cannot yield a sharp estimate for log2 |Zn| (in particular, we give the proof32

for constants arbitrarily close to log2(33e) = 6.487 · · · ). Very recently, Saxton and Thomason [30]33

derived Theorem 1.1 (for c arbitrarily close to 55) from a more general theorem bounding the number34

of independent sets in certain hypergraphs. They also proved that log2 |Zn| ≥ (1.16 + o(1))F (n).35

1.2. Probabilistic results. We investigate Sidon subsets of sparse, random sets of integers, that36

is, we replace the ‘environment’ [n] by a sparse, random subset R of [n], and ask how large a37

subset S ⊂ R can be, if we require that S should be a Sidon set.38

Investigating how classical extremal results in ‘dense’ environments transfer to ‘sparse’ settings has39

proved to be a deep line of research. A fascinating example along these lines occurs in the celebrated40

work of Tao and Green [16], where Szemerédi’s classical theorem on arithmetic progressions [33]41

is transferred to certain sparse, pseudorandom sets of integers and to the set of primes themselves42

(see [27, 28, 34] for more in this direction). Much closer examples to our setting are a version43

of Roth’s theorem on 3-term arithmetic progressions [29] for random subsets of integers [24], and44

the far reaching generalizations due to Conlon and Gowers [9] and Schacht [31] (for details, the45

interested reader is referred to [9], [31], [18, Chapter 8] and [22, Section 4]). Before we proceed,46

we mention that additive properties of random sets of integers were already exploited by Erdős in47

the 50s to address a problem due to Sidon [12, 13] (see also [17, Chapter III] and [34, Chapter 1]).48
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Let us now state a weak, but less technical version of our main probabilistic results. Let F (R) =49

max |S|, where the maximum is taken over all Sidon subsets S ⊂ R. Let [n]m be a random subset50

of [n] of cardinality m = m(n), with all the
(
n
m

)
subsets of [n] equiprobable. We are interested in51

the random variable F ([n]m).52

Standard methods give that, almost surely, that is, with probability tending to 1 as n → ∞,53

we have F ([n]m) = (1 − o(1))m if m = m(n) � n1/3 (here and throughout we write f � g to54

mean f = o(g)). On the other hand, the results of Schacht [31] and Conlon and Gowers [9] imply55

that, if m = m(n)� n1/3, then, almost surely, we have56

F ([n]m) = o(m). (2)

Thus F ([n]m) undergoes a sudden change of behaviour at m = n1/3+o(1). The following abridged57

version of our results already gives us quite precise information on F ([n]m) for the whole range58

of m.59

Theorem 1.2. Let 0 ≤ a ≤ 1 be a fixed constant. Suppose m = m(n) = (1 + o(1))na. There exists60

a constant b = b(a) such that almost surely61

F ([n]m) = nb+o(1). (3)

Furthermore,62

b(a) =


a if 0 ≤ a ≤ 1/3,

1/3 if 1/3 ≤ a ≤ 2/3,

a/2 if 2/3 ≤ a ≤ 1.

(4)

Thus, the function b = b(a) is piecewise linear. The graph of b = b(a) is given in Figure 1. The63

point (a, b) = (1, 1/2) in the graph is clear from the Erdős–Turán and Chowla results [8, 11, 14]64

mentioned above. The behaviour of b = b(a) in the interval 0 ≤ a ≤ 1/3 is not hard to establish.65

The fact that the point (1/3, 1/3) could be an interesting point in the graph is suggested by the66

results of Schacht [31] and Conlon and Gowers [9]. It is somewhat surprising that, besides the67

point a = 1/3, there is a second value at which b = b(a) is ‘critical’, namely, a = 2/3. Finally,68

we find it rather interesting that b = b(a) should be constant between those two critical points.69

We state our results in full in Section 2.1. Our results in fact determine F ([n]m) up to a constant70

multiplicative factor for m ≤ n2/3−δ for any fixed δ > 0 and for m ≥ n2/3(log n)8/3. For the missing71

range of m, around n2/3, our lower and upper bounds differ by a factor of O((log n)/ log log n).72

2. Main results73

2.1. Statement of the main results. We prove a more detailed result than Theorem 1.1.74

Let Zn(t) be the family of Sidon sets of cardinality t contained in [n].75
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1/2
F ([n]m) = nb+o(1) for m = na

Figure 1. The graph of b = b(a)

Theorem 2.1. Let 0 < σ < 1 be a real number. For any large enough n and t ≥ 2s0, where s0 =76 (
2(1− σ)−1n log n

)1/3
, we have77

|Zn(t)| ≤ n3s0
(

32en

σt2

)t
. (5)

Theorem 1.1 follows from Theorem 2.1 by summing over all t (see Section 3.2). Our next result78

covers values of t smaller than the ones covered in Theorem 2.1.79

Theorem 2.2. Let n and t be integers with80

30n1/3 ≤ t ≤ 5(n log n)1/3. (6)

Then81

|Zn(t)| ≤
(

22n

t
exp

(
− t3

6 · 53n

))t
. (7)

Let us now turn to our probabilistic results. Instead of working with the uniform model [n]m of82

random subsets of [n], it will be more convenient to work with the so called binomial model [n]p,83

in which each element of [n] is put in [n]p with probability p, independently of all other elements.84

Routine methods allow us to translate our results on [n]p below to the corresponding results on [n]m,85

where p = m/n (see Section 2.2 for details).86

We state our results on F ([n]p) split into theorems covering different ranges of p = p(n). Our first87

result corresponds to the range 0 ≤ a ≤ 1/3 in Theorem 1.2.88

Theorem 2.3. For n−1 � p = p(n)� n−2/3, we almost surely have89

F ([n]p) = (1 + o(1))np. (8)

For n−1 � p ≤ 2n−2/3, we almost surely have90 (
1

3
+ o(1)

)
np ≤ F ([n]p) ≤ (1 + o(1))np, (9)
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Remark 2.4. One may in fact prove the following result: if p = γn−2/3 for some constant γ, then91 (
1− 1

12
γ3 + o(1)

)
np ≤ F ([n]p) ≤

(
1− 1

12
γ3 +

1

12
γ6 + o(1)

)
np. (10)

Our next result covers the range 1/3 ≤ a < 2/3 in Theorem 1.2.92

Theorem 2.5. For any δ > 0, there is a positive constant c2 = c2(δ) such that if 2n−2/3 ≤ p =93

p(n) ≤ n−1/3−δ, then we almost surely have94

c1
(
n log(n2p3)

)1/3 ≤ F ([n]p) ≤ c2
(
n log(n2p3)

)1/3
, (11)

where c1 is a positive absolute constant.95

We now turn to the point a = 2/3 in Theorem 1.2.96

Theorem 2.6. For any 0 ≤ δ < 1/3, there is a positive constant c3 = c3(δ) such that if 1 ≤ α =97

α(n) ≤ nδ and p = p(n) = α−1n−1/3(log n)2/3, then we almost surely have98

c3(n log n)1/3 ≤ F ([n]p) ≤ c4(n log n)1/3
log n

log(α+ log n)
,

where c4 is an absolute constant.99

We remark that Theorems 2.5 and 2.6 consider ranges that overlap (functions p = p(n) of the100

form n−1/3−δ
′

for some 0 < δ′ < 1/3 are covered by both theorems). Finally, we consider the101

range 2/3 ≤ a ≤ 1 in Theorem 1.2.102

Theorem 2.7. There exist positive absolute constants c5 and c6 for which the following holds.103

If 1 ≤ α = α(n) ≤ (log n)2 and p = p(n) = α−1n−1/3(log n)8/3, then we almost surely have104

c5
√
np ≤ F ([n]p) ≤ c6

√
np ·

√
α

1 + logα
.

Furthermore, if n−1/3(log n)8/3 ≤ p = p(n) ≤ 1, then, almost surely,105

c5
√
np ≤ F ([n]p) ≤ c6

√
np.

2.2. The uniform model and the binomial model. We now discuss how to translate Theo-106

rems 2.3, 2.5–2.7 on [n]p in Section 2.1 to the corresponding results on [n]m. Before we proceed,107

let us make the following definition.108

Definition 2.8. We shall say that an event in the probability space of the random sets [n]p or109

in the probability space of the random sets [n]m holds with overwhelming probability, abbreviated110

as w.o.p., if the probability of failure of that event is O(n−C) for any constant C, that is, if the111

probability of failure is ‘superpolynomially’ small.112

For us, the following consequence of Pittel’s inequality (see, e.g., [6, p. 35] and [19, p. 17]) will113

suffice for translating results on [n]p to results on [n]m.114
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Lemma 2.9. Let 1 ≤ m = m(n) < n and p = p(n) be such that p = m/n. Let P be an event in115

the probability space of the random sets [n]p. If [n]p is in P w.o.p., then [n]m is in P ∩
(
[n]
m

)
w.o.p.116

Proof. Let Q be the complement of P . Pittel’s inequality (see [6, p. 35] and [19, p. 17]) states that117

P
[
[n]m is in Q ∩

(
[n]

m

)]
= O(

√
m) · P

[
[n]p is in Q

]
. (12)

Since, by hypothesis, P
[
[n]p is in Q

]
= O(n−C) holds for any constant C > 0, inequality (12)118

implies that119

P
[
[n]m is in Q ∩

(
[n]

m

)]
= O(

√
m · n−C) = O(

√
n · n−C) = O(n−C+1/2),

which completes the proof of Lemma 2.9. �120

Every result in Theorems 2.5–2.7 will be proved with ‘w.o.p.’ rather than with ‘almost surely’.121

By Lemma 2.9, we can translate each such result on [n]p to the corresponding result on [n]m,122

where p = m/n. For example, Theorem 2.5 implies the following uniform version: For any δ > 0,123

there is a positive constant c2 = c2(δ) such that if 2n1/3 ≤ m = m(n) ≤ n2/3−δ, then, with124

overwhelming probability, we have125

c1

(
n log

m3

n

)1/3

≤ F ([n]m) ≤ c2
(
n log

m3

n

)1/3

,

where c1 is a positive absolute constant.126

Finally, we remark that one may use the usual deletion method to prove that the result on [n]m127

corresponding to Theorem 2.3 holds almost surely.128

2.3. Organization and notation. Our results on the number of Sidon sets are proved in Sec-129

tion 3. In Section 4, we consider the upper bounds in Theorems 2.5–2.7. Section 5 contains some130

preparatory lemmas for the proof of Theorem 2.3 and for the proofs of the lower bounds in Theo-131

rems 2.5–2.7. The proof of Theorem 2.3 is given in Section 6. In Section 7, we give the proofs of132

the lower bounds in Theorems 2.5–2.7.133

More in line with the combinatorics literature and deviating from the number-theoretic usage, we134

write f � g and g � f to mean f = o(g). For simplicity, we omit ‘floor’ and ‘ceiling’ symbols in135

our formulae, when they are not essential. For simplicity, we often write a/bc instead of the less136

ambiguous a/(bc).137

3. The number of Sidon sets138

The proofs of Theorems 2.1 and 2.2 are based on a method introduced by Kleitman and Winston [21]139

(see [2, 4, 5, 15, 23] for other applications of this method).140
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3.1. Independent sets in locally dense graphs. We start with the following lemma, which141

gives an upper bound for the number of independent sets in graphs that are ‘locally dense’.142

Lemma 3.1. Let G be a graph on N vertices, let q be an integer and let 0 ≤ β ≤ 1 and R be real143

numbers with144

R ≥ e−βqN. (13)

Suppose the number of edges e(U) induced in G by any set U ⊂ V (G) with |U | ≥ R satisfies145

e(U) ≥ β
(
|U |
2

)
. (14)

Then, for all integers r ≥ 0, the number of independent sets in G of cardinality q + r is at most146 (
N

q

)(
R

r

)
. (15)

Proof. Fix an integer r ≥ 0. We describe a deterministic algorithm that associates to every inde-147

pendent set I of size q + r in G a pair (S0, A) of disjoint sets with S0 ⊂ I ⊂ S0 ∪ A ⊂ V (G) and148

with |S0| = q and |A| ≤ R. Furthermore, if, for some inputs I and I ′, the algorithm outputs (S0, A)149

and (S′0, A
′) with S0 = S′0, then A = A′. A moment’s thought now reveals that the number of150

independent sets in G with q+ r elements is at most as given in (15), as claimed. We now proceed151

to describe the algorithm.152

At all times, our algorithm maintains a partition of V (G) into sets S, X, and A (short for selected,153

excluded, and available). As the algorithm evolves, S increases, X increases and A decreases. The154

vertices in A will be labelled v1, . . . , v|A|, where, for every i, the vertex vi has maximum degree155

in G[{vi, . . . , v|A|}] (the graph induced by {vi, . . . , v|A|} in G); we break ties arbitrarily by giving156

preference to vertices that come earlier in some arbitrary predefined ordering of V (G).157

We start the algorithm with A = V (G) and S = X = ∅. Crucially, at all times we maintain S ⊂158

I ⊂ S ∪ A. The algorithm works as follows. While |S| < q, we repeat the following. Let a = |A|159

and suppose A = {v1, . . . , va}, with the vertex labelling convention described above. Let i be the160

smallest index such that vi belongs to our independent set I, move v1, . . . , vi−1 from A to X (they161

are not in I by the choice of i), and move vi from A to S (vi is in I). Observe that A has already162

lost i members in this iteration and S has gained one. Let U = {vi, . . . , va}. If |U | ≥ R, we further163

move all neighbours of vi in A to X (since I is an independent set and vi ∈ I). Otherwise, i.e.,164

if |U | < R, consider the first q− |S| members vi1 , . . . , viq−|S| ∈ I ∩A (i < i1 < · · · < iq−|S| ≤ a) and165

move them from A to S. Note that this is possible because |I ∩A| = q+ r− |S| ≥ q− |S|, and note166

that we now have |S| = q (we do this because it is convenient to have S of cardinality q).167

The procedure above defines an increasing sequence of sets S. Once we obtain a set S with |S| = q,168

we let S0 = S, output (S0, A) and stop the algorithm. Inspection shows that A depends only on S0169

and not on I, i.e., if (S0, A) and (S0, A
′) are both outputs of the algorithm (for some inputs I170

and I ′), then A = A′. We now use our assumption on G to show that |A| ≤ R.171
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We consider two cases: The first case is the case in which the body of the while loop of the algorithm172

is executed with |U | < R at an iteration. The second case is the case in which we have |U | ≥ R173

during the q iterations of the while loop. Observe that one of two cases must occur.174

First, we consider the first case. At the iteration with |U | < R, the set A lost the first i vertices175

(and possibly others) and hence at the end of this iteration we have |A| ≤ a − i = |U | − 1 < R.176

Moreover, |S| becomes of cardinality q and the algorithm stops.177

Next, we consider the second case in which we have |U | ≥ R during the q iterations of the while loop.178

In each iteration, consider an execution of the body of the while loop of the algorithm when |U | ≥ R179

and (only) the vertex vi is moved to S. In this execution, A loses, in total, i + d(vi, U) vertices,180

where d(vi, U) is the degree of vi in the graph G[U ]. Recall that we are considering the case |U | ≥ R181

and that vi has maximum degree in the graphG[U ]. Applying (14), we see that d(vi, U) ≥ β(|U |−1).182

Therefore, at the end of this iteration, A has cardinality183

a− (i+ d(vi, U)) ≤ a− (a− |U |+ 1 + β(|U | − 1)) ≤ |U | − β|U | ≤ (1− β)a.

In the second case, the cardinality of A decreases by a factor of 1 − β in the q iterations of the184

while loop and, at the end, A has at most N(1− β)q ≤ Ne−βq ≤ R elements. �185

3.2. Proof of Theorem 2.1. We derive Theorem 2.1 from the following lemma.186

Lemma 3.2. Let n, s and q be integers and let 0 < σ < 1 be a real number such that187

s2q

n
≥ 2

1− σ
log

σs

2
. (16)

Then, for any integer r ≥ 0, we have188

|Zn(s+ q + r)| ≤ |Zn(s)|
(
n

q

)(
2n/σs

r

)
. (17)

To obtain the bound for |Zn(t)| in Theorem 2.1, we apply Lemma 3.2 iteratively (in the calculations189

below, we omit ‘floor’ and ‘ceiling’ symbols when they are not essential).190

Proof of Theorem 2.1. Fix integers n and t, with t ≥ 2s0, where s0 is as given in the statement191

of our theorem, that is, s0 =
(
2(1− σ)−1n log n

)1/3
. We may clearly suppose that t ≤ F (n) =192

(1 + o(1))
√
n, as otherwise Zn(t) = ∅. Let K be the largest integer satisfying t2−K ≥ 2s0. We193

define three sequences (sk)0≤k≤K , (qk)0≤k≤K and (rk)0≤k≤K as follows. We let q0 = s0 and r0 =194

t2−K − s0 − q0. Moreover, we let s1 = t2−K ≥ 2s0, q1 = q0/4 and r1 = t2−K+1 − s1 − q1.195

For k = 2, . . . ,K, we let sk = 2sk−1 = t2−K+k−1, qk = qk−1/4 = q04
−k and rk = t2−K+k − sk − qk.196

Note that qk + rk = sk for k ≥ 1 since sk+1 = 2sk. We apply Lemma 3.2 with parameters sk, qk197

and rk for k = 0, . . . ,K, to obtain from (17) that198

|Zn(t2−K+k)| = |Zn(sk + qk + rk)| ≤ |Zn(sk)|
(
n

qk

)(
2n/σsk
rk

)
(18)
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for all k. It suffices to check (16) to justify these applications of Lemma 3.2. Since s2kqk ≥ s20q0 =199

2(1−σ)−1n log n > 2(1−σ)−1n log(σsk/2) for all 0 ≤ k ≤ K, inequality (16) holds for n, sk and qk.200

Using that sk−1 + qk−1 + rk−1 = t2−K+k−1 = sk for k ≥ 1 and that |Zn(s0)| ≤
(
n
s0

)
, we obtain201

from (18) that202

|Zn(t)| ≤
(
n

s0

) ∏
0≤k≤K

(
n

qk

) ∏
0≤k≤K

(
2n/σsk
rk

)
. (19)

Note that203 (
n

s0

)
≤
(
en

s0

)s0
≤ n2s0/3 (20)

and that204 ∏
0≤k≤K

(
n

qk

)
≤ n

∑
0≤k≤K qk ≤ nq0

∑
0≤k≤K 1/4k ≤ n4q0/3 = n4s0/3. (21)

We now proceed to estimate the last factor of the right-hand side of (19). First note that, by the205

choice of K, we have (r0 +s0 + q0)/2 = t2−K−1 < 2s0, and hence r0 < 2s0. Therefore, we have that206

(
2n/σs0
r0

)
≤


1 ≤ ns0 if r0 = 0(

2en
σs0r0

)r0
≤ ns0 if 0 < r0 ≤ s0(

2en
σs0r0

)r0
≤ nr0/3 ≤ n2s0/3 ≤ ns0 if s0 < r0 < 2s0

(22)

for all large n. We now note that207 ∏
1≤k≤K

(
2n/σsk
rk

)
=

∏
1≤k≤K

(
2n/σsK−k+1

rK−k+1

)
≤

∏
1≤k≤K

(
2n/σsK−k+1

rK−k+1 + qK−k+1

)
. (23)

To justify the inequality in (23) above, we check that208

rK−k+1 + qK−k+1 ≤
2n

3σsK−k+1
. (24)

Recalling that rK−k+1+qK−k+1 = sK−k+1 = t2−k, we see that (24) is equivalent to t2−k ≤
√

2n/3σ.209

However,210

t

2k
≤ t

2
≤ 1

2
F (n) =

(
1

2
+ o(1)

)√
n ≤

√
2n

3
≤
√

2n

3σ
(25)

for all large enough n. We continue (23) by noticing that211

∏
1≤k≤K

(
2n/σsK−k+1

rK−k+1 + qK−k+1

)
=

∏
1≤k≤K

(
2n/σt2−k

t2−k

)
≤

∏
1≤k≤K

(
22k+1en

σt2

)t2−k

≤
(

2en

σt2

)t∑k≥1 2
−k

22t
∑
k≥1 k2

−k
=

(
2en

σt2

)t
24t =

(
32en

σt2

)t
. (26)

Inequality (5) now follows from (19), (20), (21), (22) and (26). �212

It now remains to prove Lemma 3.2.213
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Proof of Lemma 3.2. Let S0 ⊂ [n] be an arbitrary Sidon set with |S0| = s. We show that the214

number of Sidon sets S ⊂ [n] with S0 ⊂ S and |S| = s + q + r is at most
(
n
q

)(
2n/σs
r

)
, whence our215

lemma will follow.216

Let G be the graph on V = [n] \ S0 satisfying that {a1, a2} (a1 6= a2) is an edge in G if and only if217

there are b1 and b2 ∈ S0 such that a1+b1 = a2+b2. Observe that if S ⊂ [n] is a Sidon set containing218

S0, then S \S0 is an independent set in G. Let N = |V | = n− s, β = (1−σ)s2/2n and R = 2n/σs.219

We wish to apply Lemma 3.1 to G with β and R as just defined, to obtain an upper bound for the220

number of independent sets of cardinality q + r. Note that (13) follows from (16). Now let U ⊂ V221

with |U | ≥ R be given. We check (14) as follows.222

Let J be the bipartite graph with (disjoint) vertex classes [2n] and U , with w ∈ [2n] adjacent223

to a ∈ U in J if and only if w = a + b for some b ∈ S0. Note that a1 and a2 ∈ U have a common224

neighbour w ∈ [2n] if and only if there are b1 and b2 ∈ S0 with a1 + b1 = w = a2 + b2, that is, if225

and only if {a1, a2} is an edge of G.226

Now note that J contains no 4-cycle: if a1, a2 ∈ U with a1 6= a2 are both adjacent to both w and227

w′ ∈ [2n] with w 6= w′, then a1+b1 = w = a2+b2 for some b1 and b2 ∈ S0 and a1+b′1 = w′ = a2+b′2228

for some b′1 and b′2 ∈ S0. But then b1 − b′1 = b2 − b′2, and hence b1 + b′2 = b′1 + b2. As b1, b
′
1, b2229

and b′2 ∈ S0 and S0 is a Sidon set, we have {b1, b′2} = {b′1, b2}. Since a1 6= a2, we have b1 6= b2,230

whence b1 = b′1, implying that w = a1 + b1 = a1 + b′1 = w′.231

The remarks above give that e(U) =
∑

w∈[2n]
(
dJ (w)

2

)
, where dJ(w) denotes the degree of w in J .232

Note that
∑

w∈[2n] dJ(w) =
∑

a∈U dJ(a) = |U ||S0| = |U |s. Using the convexity of the func-233

tion f(x) =
(
x
2

)
and Jensen’s inequality and recalling that |U | ≥ R = 2n/σs, i.e., 1 ≤ σ |U |s2n ,234

we obtain235

e(U) =
∑
w∈[2n]

(
dJ(w)

2

)
≥ 2n

(
|U |s/2n

2

)
=
|U |s

2

(
|U |s
2n
− 1

)
≥ 1

4
(1− σ)

s2

n
|U |2 ≥ β

(
|U |
2

)
,

as required in (14). Recall that a Sidon set S ⊂ [n] containing S0 is such that S \ S0 is an236

independent set in G. Therefore, our required bound for the number of such S with |S| = s+ q+ r237

follows from the upper bound (15) for the number of independent sets of cardinality q+ r in G. �238

We conclude this section by deriving Theorem 1.1 from Theorem 2.1.239

Proof of Theorem 1.1. Let σ = 32/33 in Theorem 2.1. Then s0 = (2(1 − σ)−1n log n)1/3 =240

(66n log n)1/3. For large enough n, we have241

|Zn| =
∑

0≤t≤F (n)

|Zn(t)| ≤
∑

0≤t<2s0

(
n

t

)
+

∑
2s0≤t≤F (n)

n3s0
(

33en

t2

)t
. (27)

Note that242 ∑
0≤t<2s0

(
n

t

)
≤ 2s0

(
n

2s0

)
≤ n2s0 , (28)
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and that since f(t) = (33en/t2)t is increasing on the interval
(

0,
√

33n/e
)

,243

∑
2s0≤t≤F (n)

n3s0
(

33en

t2

)t
≤
√
n · n3s0(33e)

√
n(1+o(1)) ≤ (33e)

√
n(1+o(1)) ≤ (33e)F (n)(1+o(1)). (29)

Combining (27) together with (28) and (29) implies that |Zn| ≤ 2cF (n) for a suitable constant c. �244

3.3. Proof of Theorem 2.2. We derive Theorem 2.2 from the following more general but technical245

estimate.246

Lemma 3.3. Let n and t be integers. Suppose s is an integer and σ is a real number such that,247

letting ω = t/s, we have248

ω ≥ 4, 0 < σ < 1 and
s3

n
≥ 2

1− σ
log

σs

2
. (30)

Then249

|Zn(t)| ≤
(

12ωn

(tσ)1−2/ωt

)t
. (31)

Proof. We invoke Lemma 3.2 with q = s. Note that, then, (30) implies (16). We now let r in250

Lemma 3.2 be t− 2s and obtain that251

|Zn(t)| ≤
(
n

s

)(
n

s

)(
2n/σs

t− 2s

)
. (32)

The right-hand side of (32) is252 (
n

s

)2(2n/σs

t− 2s

)
≤
(en
s

)2s( 2en

σs(t− 2s)

)t−2s
=
(en
s

)2s (en
s

)t−2s( 2

σ(t− 2s)

)t−2s
=
(eωn

t

)t( 2

σt(1− 2/ω)

)t(1−2/ω)
=
(
C

n

t2−2/ωσ1−2/ω

)t
,

where C = 21−2/ωeω/(1−2/ω)1−2/ω = 21−2/ωeω2−2/ω/(ω−2)1−2/ω. As ω ≥ 4, we have ω−2 ≥ ω/2,253

and hence C ≤ eω41−2/ω < 12ω, completing the proof of Lemma 3.3. �254

Proof of Theorem 2.2. We shall apply Lemma 3.3. Let s = bt/4c and let ω = t/s ≥ 4. Note that255

ω ≤ 5 by our assumption on t. Let λ = exp
(
t3/(3 · 53n)

)
and set σ = 2λ/s. It follows from (6)256

that λ ≤ n1/3 and σ ≤ 10λ
t ≤ 1/3. Therefore, 2/(1− σ) ≤ 3, and hence257

s3

n
≥ t3

53n
= 3 log λ ≥ 2

1− σ
log λ,

whence the third condition in (30) holds. We thus conclude that (31) holds. Let us now estimate258

the right-hand side of (31).259

Note that tσ ≥ 4sσ = 8λ, and therefore (tσ)1−2/ω ≤ (8λ)1−2/ω = (8λ)1/2 and260

12ωn

(tσ)1−2/ωt
=

60n

(8λ)1/2t
=

15 · 21/2n
λ1/2t

≤ 22n

t
exp

(
− t3

6 · 53n

)
. (33)
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Inequality (7) follows from (31) and (33), and Theorem 2.2 is proved. �261

4. The upper bounds in Theorems 2.5–2.7262

We shall apply Lemma 3.3 and Theorem 2.1 in order to prove the upper bounds in Theorem 2.5263

and Theorems 2.6–2.7, respectively.264

4.1. Proof of the upper bound in Theorem 2.5. Let δ > 0 be given. We show that there is a265

constant c2 = c2(δ) such that if 2n−2/3 ≤ p = p(n) ≤ n−1/3−δ, then w.o.p. we have266

F ([n]p) ≤ c2
(
n log n2p3

)1/3
.

To this end, we apply Lemma 3.3. We first define several auxiliary constants used to set t, ω and σ267

in Lemma 3.3. Choose η > 0 small enough so that268

(1− 3δ)

(
1

3
+ η

)
<

1

3
. (34)

Choose ω ≥ 4 so that269 (
1

3
+ η

)(
1− 2

ω

)
>

1

3
. (35)

Finally, choose c = c2 so that270 ( c
ω

)3
> 3

(
1

3
+ η

)
and c >

24ω

2(1+3η)(1−2/ω) . (36)

Now set t = c
(
n log n2p3

)1/3
, s = t/ω, σ = 2(n2p3)1/3+η/s and ξ = 24ω/c2(1+3η)(1−2/ω). Note that271

t ≥ c(n log 8)1/3 ≥ cn1/3 and ξ < 1. (37)

We first check that condition (30) holds for large enough n. We have ω ≥ 4 by the choice of ω.272

Moreover, we have σ → 0 as n → ∞ because of (34). Finally, from (36) and the fact that σ → 0,273

we have274

s3

n
=
( c
ω

)3
log n2p3 ≥ 3

(
1

3
+ η

)
log n2p3 ≥ 2(1/3 + η)

1− σ
log n2p3 =

2

1− σ
log

σs

2
,

which completes the verification of (30). Hence Lemma 3.3 implies that275

P ([n]p contains a Sidon set of size t) ≤ |Zn(t)|pt ≤
(

12ωnp

t(tσ)1−2/ω

)t
. (38)

Making use of the first equation of (37) and the fact that tσ = ωsσ = 2ω(n2p3)1/3+η, we see that276

the upper bound in (38) is at most277 (
12ωnp

cn1/3(2ω)1−2/ω(n2p3)(1/3+η)(1−2/ω)

)t
≤

(
12ω

c(2ω)1−2/ω
· n2/3p

(n2p3)(1/3+η)(1−2/ω)

)t

=

(
12ω2/ω

21−2/ωc(n2p3)(1/3+η)(1−2/ω)−1/3

)t
, (39)
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which, by (35) and the assumption p ≥ 2n−2/3, is at most278 (
12ω

21/2c(23)(1/3+η)(1−2/ω)−1/3

)t
≤
(

24ω

c2(1+3η)(1−2/ω)

)t
= ξt. (40)

To complete the proof, it suffices to recall (37).279

4.2. Proof of the upper bound in Theorem 2.6. Suppose 1 ≤ α = α(n) ≤ n1/3, and let280

p = p(n) = α−1n−1/3(log n)2/3. We show that w.o.p.281

F ([n]p) ≤ c4(n log n)1/3
log n

log(α+ log n)
(41)

for some absolute constant c4. To this end, we use Theorem 2.1. Let σ = 3/4, s0 = 2(n log n)1/3282

and t = ωs0, where283

ω = 11e
log n

log(α+ log n)
, (42)

and note that ω ≥ 2 for sufficiently large n. Hence, by Theorem 2.1 and the union bound, the284

probability that [n]p contains a Sidon set with at least t elements can be bounded as follows:285

P (F ([n]p) ≥ t) ≤ |Zn(t)|pt ≤ n3s0
(

44enp

t2

)t
= n3s0

(
44enp

ω2s20

)ωs0
≤
[(

11e

αω2

)ω
n3
]s0

, (43)

where the last inequality follows from p = α−1n−1/3(log n)2/3 and s0 = 2(n log n)1/3.286

For the proof of (41), it suffices to show that the base of the exponential in the right-hand side287

of (43) is bounded away from 1, that is, whether288 (
11e

αω2

)ω
n3 < 1− ε (44)

for some absolute constant ε > 0. Since ω ≥ 11e for sufficiently large n, then we have289 (
αω2

11e

)ω
≥ (αω)ω = exp (ω log(αω)) . (45)

We claim that290

2 log(αω) ≥ log(α+ log n). (46)

Observe that since ω ≥ 2, then (46) is trivially satisfied if α ≥ log n. On the other hand, if291

α ≤ log n, then ω ≥ (log n)/ log log n and hence292

2 log(αω) ≥ 2 logω ≥ 2 log log n− 2 log log log n ≥ log(2 logn) ≥ log(α+ log n).

It follows from (42), (45) and (46) that293 (
αω2

11e

)ω
≥ exp (ω log(αω)) ≥ exp (5e log n) ≥ 2n3

and hence (44) holds, completing the proof of (41).294

4.3. Proof of the upper bounds in Theorem 2.7. Suppose that β = β(n) ≥ 1 and let p =295

p(n) = βn−1/3(log n)2/3. Let σ = 3/4, s0 = 2(n log n)1/3 and t = ωs0 for some ω ≥ 2. Similarly as296
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in the proof of the upper bound in Theorem 2.6, see (43), using Theorem 2.1, we estimate297

P (F ([n]p) ≥ t) ≤ |Zn(t)|pt ≤
[(

11eβ

ω2

)ω
n3
]s0

. (47)

We split into two cases, depending on the order of magnitude of β.298

(Case I) If β(n) ≤ (log n)2, then we let α = β−1(log n)2 and ω = (11e log n)/ log(eα) so that299

t = ωs0 = 22e
√
np ·
√
α/ log(eα). Note that300 (

11eβ

ω2

)ω
=

(
11e(log n)2

αω2

)ω
=

(
(log(eα))2

11eα

)11e(log(eα))−1 logn

. (48)

Since the function f(x) =
(

x2

11ex

)1/x
= 1

e

(
x2

11

)1/x
is bounded by e

√
4/11/e−1 = 0.459 · · · on301

the interval [1,∞), it follows from (48) that (we let x = log(eα))302 (
11eβ

ω2

)ω
≤
(

1

2

)11e logn

≤ n−4,

which, together with (47), proves that w.o.p. we have303

F ([n]p) ≤ t = c6
√
np ·

√
α

1 + logα
,

where c6 is an absolute constant.304

(Case II) If β(n) ≥ (log n)2, then we let ω = 11e
√
β so that t = ωs0 = 22e

√
np. By (47), we have305

P (F ([n]p) ≥ t) ≤
[
(11e)−11e

√
βn3
]s0
≤
[
(11e)− lognn3

]s0
≤ e−s0 ,

which proves that w.o.p. we have306

F ([n]p) ≤ t = c6
√
np,

where c6 is an absolute constant.307

5. Nontrivial solutions in random sets308

5.1. Estimating the number of nontrivial solutions. A solution of the equation x1 + x2 =309

y1 + y2 is a quadruplet (a1, a2, b1, b2) ∈ [n]4 = [n] × [n] × [n] × [n] with a1 + a2 = b1 + b2. A310

solution (a1, a2, b1, b2) of x1 + x2 = y1 + y2 is called trivial if it is of the form (a1, a2, a1, a2) or311

(a1, a2, a2, a1). Otherwise, it is called a nontrivial solution. Let us define a hypergraph and a312

random variable that will be important for us.313

Definition 5.1. Let314

S =
{
{a1, a2, a3, a4} : (a1, a2, a3, a4) is a nontrivial solution of x1 + x2 = y1 + y2

}
. (49)

We think of S as a hypergraph on the vertex set [n]. As usual, for R ⊂ [n], we let S[R] denote the315

subhypergraph of S induced on R. Let X be the random variable
∣∣S[[n]p

]∣∣, that is, the number of316

hyperedges of S induced by [n]p.317
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In Lemma 5.4 below, we give an estimate for X that will be used in the proof of Theorem 2.3 and318

in the proofs of the lower bounds in Theorems 2.5–2.7.319

To estimate X, we have to deal with the issue of ‘repeated entries’ in a hyperedge {a1, a2, b1, b2} ∈ S.320

Indeed, if {a1, a2, a3, a4} ∈ S, with a1 ≤ a2 ≤ a3 ≤ a4, we may have a2 = a3, but no other equality321

can occur. Hence the hypergraph S has hyperedges of size 4 and 3. Based on this, we make the322

following definition.323

Definition 5.2. For i = 3 and 4, let Si be the subhypergraph of S with all the hyperedges of size i.324

Furthermore, let Xi :=
∣∣Si[[n]p

]∣∣.325

We clearly have326

S = S4 ∪ S3 and S4 ∩ S3 = ∅ (50)

and hence327

X = X4 +X3. (51)

In order to estimate X, we estimate X4 and X3 separately.328

Lemma 5.3. Fix δ > 0. The following assertions hold w.o.p.329

(i) If p ≥ n−3/4+δ, then X4 = n3p4(1/12 + o(1)).330

(ii) If p� n−1, then X3 = O(max{n2p3, n3δ}).331

We remark that the constant implicit in the big-O notation in (ii) above is an absolute constant.332

The proof of Lemma 5.3 is based on a concentration result due to Kim and Vu [20]. We shall333

introduce the Kim–Vu polynomial concentration result in Section 5.2 and prove Lemma 5.3 in334

Section 5.3. Assuming Lemma 5.3, we are ready to estimate X.335

Lemma 5.4. Fix δ > 0 and suppose p ≥ n−3/4+δ. Then, w.o.p., X = n3p4(1/12 + o(1)).336

Proof. Let X = X([n]p) be as defined in Definition 5.1 and recall (51). From the assumption337

that p ≥ n−3/4+δ, we see that the estimates for X4 and X3 given in Lemma 5.3(i) and (ii) do338

hold w.o.p. Since the inequality np � 1 yields n2p3 � n3p4 and we also have n3δ � n4δ ≤ n3p4,339

because p ≥ n−3/4+δ, we infer max{n2p3, n3δ} � n3p4, and hence, w.o.p., X3 � X4. It follows340

from (51) and the estimate in Lemma 5.3(i) that X = n3p4(1/12 + o(1)) holds w.o.p. �341

It now remains to prove Lemma 5.3. We first introduce the main tool we shall use in the proof of342

that lemma, due to Kim and Vu [20].343

5.2. The Kim–Vu polynomial concentration result. Let H = (V,E) be a hypergraph on the344

vertex set V = [n]. We assume each hyperedge e ∈ E(H) has a real weight w(e). Let [n]p be a345

random subset of [n] obtained by choosing each element i ∈ [n] independently with probability p346

and let H
[
[n]p

]
be the subhypergraph of H induced on [n]p. Let Y be the sum of the weights of all347

the hyperedges in H
[
[n]p

]
, i.e., Y =

∑
e∈H[[n]p]

w(e). Kim and Vu obtained a concentration result348
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for the random variable Y . We now proceed to present their result [20] (see also Theorem 7.8.1 in349

Alon and Spencer [3]).350

We start by introducing basic definitions and notation (we follow [3]). Let k be the maximum351

cardinality of the hyperedges in H. For a set A ⊂ [n] (|A| ≤ k), let YA be the sum of the weights of352

all the hyperedges inH
[
[n]p

]
containing A, i.e., YA =

∑
A⊂e∈H[[n]p]

w(e). Let EA = E(YA | A ⊂ [n]p)353

be the expectation of YA conditioned on the event that A should be contained in [n]p. Let Ei be354

the maximum value of EA over all A ⊂ [n] with |A| = i. Note that E0 = E(Y ). Let µ = E(Y ) and355

set356

E′ = max{Ei : 1 ≤ i ≤ k} and E = max{E′, µ}. (52)

Theorem 5.5 (Kim–Vu polynomial concentration inequality). With the above notation, we have,357

for every λ > 1,358

P
[
|Y − µ| > ak(EE

′)1/2λk
]
< 2e2e−λnk−1,

where ak = 8k(k!)1/2.359

5.3. Proof of Lemma 5.3. We prove (i) and (ii) of Lemma 5.3 separately.360

Proof of Lemma 5.3(i). We need to show that, for p ≥ n−3/4+δ, where δ > 0 is fixed, we have361

X4 = n3p4(1/12 + o(1)) w.o.p. We first estimate the expectation µ(X4) of X4.362

Suppose {i, j, k, l} ∈ S4 with 0 ≤ i < j < k < l ≤ n − 1. Note that i + l = j + k. Let us fix363

0 ≤ i ≤ n−1. If j ≥ (n+i)/2, then l = j+k−i > 2j−i ≥ n+i−i = n, which contradicts l ≤ n−1.364

Hence we have i < j < (n+ i)/2. For fixed i and j, if k > n+ i− j − 1, then l = j + k− i > n− 1,365

which contradicts l ≤ n− 1. Therefore we have j < k ≤ n+ i− j − 1. Once i, j and k are chosen,366

the value of l is determined by the condition i+ l = j + k. Consequently,367

|S4| ∼
n−1∑
i=0

(n+i)/2∑
j=i

n+i−j−1∑
k=j

1 =

n−1∑
i=0

(n+i)/2∑
j=i

(n+ i− 2j) ∼ n3
∫ 1

0

∫ (1+x)/2

x
(1 + x− 2y)dydx ∼ 1

12
n3.

Hence368

µ(X4) = |S4|p4 =

(
1

12
+ o(1)

)
n3p4. (53)

Next we apply Theorem 5.5 to prove that X4 is concentrated around its expectation µ(X4). To this369

end, we compute the quantities Ei (1 ≤ i ≤ 4) and E′ and E defined in (52). We first estimate E1.370

For a ∈ [n], consider the quantity E{a}. The number of hyperedges in S4 containing a is O(n2)371

and the probability that one such hyperedge is in [n]p, conditioned on a ∈ [n]p, is p3. We conclude372

that, for any a ∈ [n], we have E{a} = O(n2p3). Consequently, E1 = max{EA : |A| = 1} = O(n2p3).373

A similar argument gives that Ei = max{EA : |A| = i} = O(n3−ip4−i) for all 1 ≤ i < 4. Therefore,374

since np� 1, we have Ei = O(n2p3) for all 1 ≤ i < 4. Also, clearly, E4 = max{EA : |A| = 4} = 1.375

Thus376

E′ = max{Ei : 1 ≤ i ≤ 4} = O(max{n2p3, 1}), (54)
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and E = max{E′, µ(X4)} = O(max{n2p3, 1, n3p4}). Since p ≥ n−3/4+δ > n−3/4, we have377

E = O(n3p4). (55)

In view of (54) and (55), a simple computation implies the following:378

(Case I) If n−3/4+δ ≤ p ≤ n−2/3, then379

E′ = O(1) and E = O(n3p4). (56)

(Case II) If p ≥ n−2/3, then380

E′ = O(n2p3) and E = O(n3p4). (57)

We now estimate X4 for each case separately.381

(Case I) Suppose n−3/4+δ ≤ p ≤ n−2/3. In this case, (56) implies that382

(EE′)1/2 = O(n3p4 · 1)1/2 = O(n3p4)1/2. (58)

Set λ = (n3p4)1/12. By the assumption p ≥ n−3/4+δ, we have383

λ = (n3p4)1/12 ≥ nδ/3. (59)

Also n3p4 ≥ n4δ � 1, and hence combining (58) and λ = (n3p4)1/12 implies that384

(EE′)1/2λ4 = O(n3p4)1/2(n3p4)1/3 = O(n3p4)5/6 = o(n3p4). (60)

Theorem 5.5 together with (59) then yields that385

P
[
|X4 − µ(X4)| > a4(EE

′)1/2λ4
]
< 2e2e−λn3 ≤ 2e2e−n

δ/3
n3,

where a4 = 84(4!)1/2. Given (60), we have that w.o.p.386

X4 = µ(X4) + o(n3p4). (61)

(Case II) Suppose p ≥ n−2/3. In this case, (57) yields that387

(EE′)1/2 = O(n3p4n2p3)1/2 = O
( n3p4

(np)1/2

)
. (62)

Set λ = (np)1/12. By the assumption p ≥ n−2/3,388

λ ≥
(
n1/3

)1/12
= n1/36. (63)

Since np� 1, combining (62) and λ = (np)1/12 implies that389

(EE′)1/2λ4 = O
( n3p4

(np)1/2

)
(np)1/3 = O

( n3p4

(np)1/6

)
= o(n3p4). (64)

Theorem 5.5 together with (63) then yields that390

P
[
|X4 − µ(X4)| > a4(EE

′)1/2λ4
]
< 2e2e−λn3 ≤ 2e2e−n

1/36
n3,
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where a4 = 84(4!)1/2. Given (64), we have that w.o.p.391

X4 = µ(X4) + o(n3p4). (65)

In view of (53), it follows from (61) and (65) that, for p ≥ n−3/4+δ, we have X4 = n3p4(1/12+o(1))392

w.o.p. This completes the proof of (i) of Lemma 5.3. �393

Proof of Lemma 5.3(ii). Fix δ > 0. We show that, w.o.p., X3 = O(max{n2p3, n3δ}) for p � n−1.394

First we estimate the expectation µ(X3) of X3. Since |S3| = O(n2), we have395

µ(X3) = O(n2p3). (66)

Next, we prove a concentration result for X3 applying Theorem 5.5. To this end, we estimate396

the quantities Ei (1 ≤ i ≤ 3). As in the proof of Lemma 5.3(i), one may check that E′ =397

max1≤i≤3Ei = O(max{np2, p, 1}) and hence E = max{E′, µ(X3)} = O(max{np2, p, 1, n2p3}). By398

the assumption np� 1, we infer399

E′ = O(max{np2, 1}) and E = O(max{n2p3, 1}). (67)

Based on (67), we consider the cases p ≥ n−2/3+δ and n−1 � p ≤ n−2/3+δ separately.400

We first suppose p ≥ n−2/3+δ. From (67), we have E′ = O(max{np2, 1}) and E = O(n2p3). A proof401

similar to the proofs of (61) and (65) shows that, for p ≥ n−2/3+δ, w.o.p., X3 = µ(X3) + o(n2p3).402

This together with (66) implies that for p ≥ n−2/3+δ, w.o.p.,403

X3 = O(n2p3). (68)

We now suppose n−1 � p ≤ n−2/3+δ. In this case, (67) yields that E′ = O(1) and E = O(n3δ) and404

hence, setting λ = nδ/2, we have405

(EE′)1/2λ3 = O(n(3/2)δ)n(3/2)δ = O(n3δ). (69)

Theorem 5.5 with λ = nδ/2 yields406

P
[
|X3 − µ(X3)| > a3(EE

′)1/2λ3
]
< 2e2e−λn2 ≤ 2e2e−n

δ/2
n2, (70)

where a3 = 83(3!)1/2. Inequality (70) together with (69) implies that, for n−1 � p ≤ n−2/3+δ,407

w.o.p., X3 = µ(X3) + O(n3δ). Since, under the assumption p ≤ n−2/3+δ, we have µ(X3) =408

O(n2p3) = O(n3δ), we infer that, for n−1 � p ≤ n−2/3+δ, w.o.p.,409

X3 = O(n3δ). (71)

Combining (68) and (71) completes the proof of (ii) of Lemma 5.3. �410

6. Proof of Theorem 2.3411

6.1. Theorem 2.3 for smaller p = p(n). We first consider the case in which n−1 � p� n−2/3.412
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Proof of (8) in Theorem 2.3. Suppose n−1 � p � n−2/3. We show that (8) holds almost surely,413

using the usual deletion method. Let S, S
[
[n]p

]
andX be as in Definition 5.1. If we delete one vertex414

from each hyperedge in S
[
[n]p

]
, the remaining vertex set is an independent set of S

[
[n]p

]
, and hence415

it is a Sidon set contained in [n]p. Consequently, F ([n]p) ≥
∣∣[n]p

∣∣ − ∣∣S[[n]p
]∣∣ =

∣∣[n]p
∣∣ −X. Since416

trivially F ([n]p) ≤
∣∣[n]p

∣∣, we have
∣∣[n]p

∣∣−X ≤ F ([n]p) ≤
∣∣[n]p

∣∣. Note that the Chernoff bound gives417

that, for p� n−1, we almost surely have
∣∣[n]p

∣∣ = np+o(np). Therefore, in order to show (8), it only418

remains to show that X = o(np) almost surely. Recall that Xi is the number of edges of cardinality i419

in S
[
[n]p

]
(i ∈ {3, 4}), and that X = X3+X4 (see Definition 5.2 and (51)). Equations (53) and (66),420

together with n−1 � p� n−2/3, imply that E(X) = Θ(n3p4)+O(n2p3) = Θ(n3p4) = o(np). Hence421

Markov’s inequality gives that we almost surely have X = o(np), and our result follows. �422

6.2. Theorem 2.3 for larger p = p(n). We now consider the wider range n−1 � p ≤ 2n−2/3.423

Proof of (9) in Theorem 2.3. We have already shown that, if n−1 � p � n−2/3, then F ([n]p) =424

(1 +o(1))np holds almost surely. Therefore, it suffices to show that (9) holds if, e.g., n−2/3/ log n ≤425

p ≤ 2n−2/3. We proceed as in the proof of (8), given in Section 6.1 above. We have already observed426

that |[n]p| = np(1 + o(1)) almost surely as long as p � n−1, and therefore F ([n]p) ≤ np(1 + o(1))427

almost surely in this range of p. It now suffices to recall that F ([n]p) ≥ |[n]p|−X and to prove that,428

almost surely, we have X ≤ (2/3 + o(1))np if n−2/3/ log n ≤ p ≤ 2n−2/3. But with this assumption429

on p, Lemma 5.4 tells us that, w.o.p.,430

X =
1

12
n3p4 + o(n3p4) =

1

12
n3p4 + o(np) ≤

(
2

3
+ o(1)

)
np, (72)

as required. �431

7. The lower bounds in Theorems 2.5–2.7432

Let us first state a simple monotonicity result (see, e.g., [19, Lemma 1.10]) that will be used a few433

times in this section.434

Fact 7.1. Let p = p(n) and q = q(n) be such that 0 ≤ p < q ≤ 1, and let a = a(n) > 0 and435

b = b(n) > 0 be functions of n.436

(i) If F ([n]p) ≥ a holds w.o.p., then F ([n]q) ≥ a holds w.o.p.437

(ii) If F ([n]q) ≤ b holds w.o.p., then F ([n]p) ≤ b holds w.o.p.438

Statements (i) and (ii) in Fact 7.1 are, in fact, equivalent. We state them both explicitly just for439

convenience.440

7.1. Proofs of the lower bounds in Theorems 2.5 and 2.6. The lower bounds in Theorems 2.5441

and 2.6 rely on a result on independent sets in hypergraphs. Before stating the relevant result, we442

introduce some definitions. A hypergraph is called simple if any two of its hyperedges share at most443

one vertex. A hypergraph is r-uniform if all its hyperedges have cardinality r. We shall use the444
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following extension of a celebrated result due to Ajtai, Komlós, Pintz, Spencer and Szemerédi [1],445

obtained by Duke, Lefmann and the third author [10].446

Lemma 7.2. Let H be a simple r-uniform hypergraph, r ≥ 3, with N vertices and average degree447

at most tr−1 for some t. Then H has an independent set of size at least448

c
(log t)1/(r−1)

t
N, (73)

where c = c(r) is a positive constant that depends only on r.449

We now briefly discuss how to obtain a lower bound on F ([n]p) using Lemma 7.2. Let S
[
[n]p

]
450

be the hypergraph in Definition 5.1. Since an independent set of S
[
[n]p

]
is a Sidon set contained451

in [n]p, independent sets in S
[
[n]p

]
give lower bounds for F ([n]p). To apply Lemma 7.2, we shall452

obtain a simple 4-uniform subhypergraph S∗ of S
[
[n]p

]
by deleting suitable vertices from S

[
[n]p

]
.453

Lemma 7.2 will then tell us that S∗ has a suitably large independent set, and this will yield our454

lower bound on F ([n]p). In fact, we obtain the following result.455

Lemma 7.3. There is an absolute constant d > 0 such that, for p ≥ 2n−2/3, w.o.p. F ([n]p) ≥456

d
(
n log(n2p3)

)1/3
holds.457

Lemma 7.3 easily implies the lower bounds in Theorems 2.5 and 2.6. The proof of Lemma 7.3 will458

be given in Section 7.2.459

7.2. Proof of Lemma 7.3. In Lemma 7.4 below, we prove Lemma 7.3 for a narrower range of p.460

We shall then invoke monotonicity (Fact 7.1) to obtain Lemma 7.3 in full.461

Lemma 7.4. There is an absolute constant d > 0 such that, for 2n−2/3 ≤ p � n−2/3+1/15, we462

have F ([n]p) ≥ d(n log n2p3)1/3 w.o.p.463

Proof. Let S
[
[n]p

]
, Si
[
[n]p

]
, X and Xi be as in Definitions 5.1 and 5.2. Recall that the size of an464

independent set of S
[
[n]p

]
gives a lower bound on F ([n]p).465

We wish to apply Lemma 7.2. However, since S
[
[n]p

]
may be neither simple nor uniform, we466

consider a suitable induced subhypergraph S∗ ⊂ S
[
[n]p

]
, as discussed just after the statement of467

Lemma 7.2. We have S
[
[n]p

]
= S3

[
[n]p

]
∪ S4

[
[n]p

]
. Let S̃4 be the set of all hyperedges in S4

[
[n]p

]
468

that share at least two vertices with some other hyperedge in S4
[
[n]p

]
. If we delete one vertex from469

each hyperedge of S3
[
[n]p

]
∪ S̃4, the remaining induced subhypergraph S∗ of S

[
[n]p

]
is both simple470

and 4-uniform. To apply Lemma 7.2 to S∗, we now estimate |V (S∗)| and the average degree of S∗.471

First we consider |V (S∗)|. Note that |[n]p|−X3−
∣∣S̃4∣∣ = |[n]p|−

∣∣S3[[n]p
]∣∣− ∣∣S̃4∣∣ ≤ |V (S∗)| ≤ |[n]p|.472

We shall show the following two facts.473

Fact 7.5. Fix δ > 0 and suppose n−1+δ � p� n−1/2. We have, w.o.p., X3 = o(np).474

Fact 7.6. Fix δ > 0 and suppose n−1+δ � p� n−2/3+1/15. We have, w.o.p.,
∣∣S̃4∣∣ = o(np).475
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Since the Chernoff bound gives that
∣∣[n]p

∣∣ = np+ o(np) w.o.p. for p� (log n)/n, Facts 7.5 and 7.6476

imply that, w.o.p., we have477

|V (S∗)| = np(1 + o(1)). (74)

Next we consider the average degree of S∗. Owing to S∗ ⊂ S
[
[n]p

]
, (74) and Lemma 5.4, the478

average degree 4|S∗|/|V (S∗)| of S∗ is such that, w.o.p., 4|S∗|/|V (S∗)| ≤ 4X/|V (S∗)| ≤ n2p3.479

We now are ready to apply Lemma 7.2. In view of our average degree estimate above, we set t =480

(n2p3)1/3. Given (74), Lemma 7.2 implies that, w.o.p., the hypergraph S∗, and thus S
[
[n]p

]
, has481

an independent set of size482

c
(log t)1/3

t
|V (S∗)| ≥ c

[
(1/3) log(n2p3)

]1/3
(n2p3)1/3

np(1 + o(1)) ≥ d
(
n log(n2p3)

)1/3
, (75)

for, say, d = c/2. This completes the proof of Lemma 7.4. �483

In order to finish the proof of Lemma 7.4, it remains to prove Facts 7.5 and 7.6.484

Proof of Fact 7.5. Lemma 5.3(ii) tells us that, w.o.p., X3 = O(max{n2p3, nδ}). From the assump-485

tion n−1+δ � p� n−1/2, we have both n2p3 � np and nδ � np, whence, w.o.p., X3 = o(np). �486

Proof of Fact 7.6. We give a sketch of the proof. Let P be the family of the pairs {E1, E2} of487

distinct members E1 and E2 of S4
[
[n]p

]
with |E1 ∩ E2| ≥ 2. Observe that488 ∣∣S̃4∣∣ ≤ 2|P|. (76)

An argument similar to one in the proof of Lemma 5.3(ii), based on the Kim–Vu polynomial489

concentration result, tells us that |P| = O(max{E
[
|P|
]
, nδ}) = O

(
max{n4p6, nδ}

)
holds w.o.p.490

From the assumption n−1+δ � p � n−2/3+1/15 = n−3/5, we have both n4p6 � np and nδ � np,491

and hence |P| = o(np) holds w.o.p. Given (76), we have, w.o.p.,
∣∣S̃4∣∣ = o(np). �492

In order to establish Lemma 7.3, we need to expand the range of p in Lemma 7.4 from 2n−2/3 ≤493

p� n−2/3+1/15 = n−3/5 to p ≥ 2n−2/3.494

Proof of Lemma 7.3. To complement the range of p covered by Lemma 7.4, it is enough to show495

that, say, for p ≥ n−2/3+1/16, we have, w.o.p., F ([n]p) ≥ d′
(
n log(n2p3)

)1/3
for some absolute496

constant d′ > 0. Lemma 7.4 implies that, for p = n−2/3+1/16, we have, w.o.p.,497

F ([n]p) ≥ d
[
n log(n2n−2+3/16)

]1/3
= d
[
n log(n3/16)

]1/3
= d
[
n(3/16) log n

]1/3
> d(1/16)1/3

[
n(2 log n)

]1/3
= d′

[
n log n2

]1/3
,

where d′ = d(1/16)1/3. By Fact 7.1, we infer that, for p ≥ n−2/3+1/16, we have, w.o.p., F ([n]p) ≥498

d′
[
n log n2

]1/3 ≥ d′[n log(n2p3)
]1/3

, completing the proof of Lemma 7.3. �499
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7.3. Proof of the lower bound in Theorem 2.7. For larger p = p(n), it turns out that, instead500

of using Lemma 7.2, it is better to make use of the fact that [n] contains a Sidon set of cardinality501

(1 + o(1))
√
n (see Section 1). An immediate use of this fact gives the lower bound (1 + o(1))p

√
n,502

but one can, in fact, do better. The following is a particular case of a very general theorem of503

Komlós, Sulyok and Szemerédi [25].504

Lemma 7.7. There is an absolute constant d > 0 such that, for every sufficiently large m and505

every set of integers A with |A| = m, we have506

F (A) ≥ d · F ([m]).

Since the Chernoff bound gives that, for p � 1/n, we almost surely have |[n]p| = (1 + o(1))np,507

Lemma 7.7 together with F ([m]) ≥ (1 + o(1))
√
m gives the lower bound in Theorem 2.7. Clearly,508

to have this result with ‘w.o.p.’, it suffices to assume p� (log n)/n.509

There is an alternative, simple proof of the lower bound in Theorem 2.7, based on the following510

lemma.511

Lemma 7.8. If (log n)2/n� p ≤ 1/3, then, w.o.p.,512

F ([n]p) ≥
(

1

3
√

2
+ o(1)

)
√
np. (77)

Combining Lemma 7.8 and Fact 7.1 implies that, for p � (log n)2/n, we have, w.o.p., F ([n]p) ≥513

(1/3
√

6 + o(1))
√
np.514

Proof of Lemma 7.8. Let (log n)2/n � p ≤ 1/3. We shall show that (77) holds w.o.p. We define515

a partition of [n] = {0, . . . , n− 1} into equal length intervals, and consider a family of intervals in516

the partition satisfying the property that, if we choose an arbitrary element from each interval, the517

set of chosen elements forms a Sidon set. We shall choose the length of the intervals so that [n]p518

will intersect each interval in a constant number of elements on average. A simple analysis of this519

construction yields that (77) holds w.o.p. The details are as follows.520

Let I = {Ii : 0 ≤ i < dn/xe} be the partition of [n] into consecutive intervals with x = b1/pc521

elements each. More precisely, let Ii = [xi, x(i+ 1)− 1]∩ [n] for all 0 ≤ i < dn/xe. In what follows,522

we ignore Idn/xe−1 if this interval has fewer than x elements. Let Ieven = {I0, I2, I4, . . . } ⊂ I be523

the set of all intervals with even indices and let y = |Ieven|. Note that y ≥ (1/2)bn/xc − 1 ≥524

(1/2)bnpc − 1 = (1/2 + o(1))np. By the Chowla–Erdős result [8, 11], there exists a Sidon subset S525

of [y] with526

|S| = (1 + o(1))
√
y =

(
1√
2

+ o(1)

)
√
np. (78)

We “identify” [y] and Ieven by the bijection i 7→ I2i. Let {ai : i ∈ S} be a set of integers with ai ∈ I2i527

for all i ∈ S. We claim that {ai : i ∈ S} is a Sidon set. Suppose ai1 + ai2 = aj1 + aj2 , where i1, i2,528

j1 and j2 ∈ S. Observe that529

ai1 + ai2 ∈ I2i1+2i2 ∪ I2i1+2i2+1 and aj1 + aj2 ∈ I2j1+2j2 ∪ I2j1+2j2+1, (79)
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which, together with the assumption that ai1 +ai2 = aj1 +aj2 , implies that i1+i2 = j1+j2. Since S530

is a Sidon set, we have {i1, i2} = {j1, j2}, whence {ai1 , ai2} = {aj1 , aj2}. This shows that {ai : i ∈ S}531

is indeed a Sidon set.532

We now consider a random set [n]p. An interval I2i (i ∈ S) is said to be occupied if I2i contains533

at least one element of [n]p. Let Iocc be the family of occupied intervals. By the above claim, we534

have F ([n]p) ≥ |Iocc|. Let us estimate |Iocc|. Note that each interval I2i (i ∈ S) is independently535

occupied with probability536

p̃ = 1− (1− p)x = 1− (1− p)b1/pc ≥ 1− e−p(1/p−1) ≥ 1− e−1+p ≥ 1− e−2/3 > 1/3, (80)

where the third inequality follows from the assumption p ≤ 1/3. Thus, under the assumption537

(log n)2/n� p ≤ 1/3, the Chernoff bound, (78) and (80) give that, w.o.p.,538

|Iocc| = (1 + o(1))E(|Iocc|) = (1 + o(1))|S|p̃ ≥
(

1√
2

+ o(1)

)
√
np · 1

3
=

(
1

3
√

2
+ o(1)

)
√
np.

To complete the proof of Lemma 7.8, it now suffices to recall that F ([n]p) ≥ |Iocc|. �539
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[12] P. Erdős, On a problem of Sidon in additive number theory, Acta Sci. Math. Szeged 15 (1954), 255–259. 1.2564
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