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Abstract. For fixed graphs F1, . . . , Fr, we prove an upper bound on the threshold function for the
property that G(n, p)→ (F1, . . . , Fr). This establishes the 1-statement of a conjecture of Kohayakawa
and Kreuter.

1. Introduction

Given a graph G, a positive integer r, and graphs F1, . . . , Fr, we write

G→ (F1, . . . , Fr)

if for every colouring of the edges of G using colours from the set [r] := {1, . . . , r}, there exists a copy
of Fi in G whose all edges have been coloured i, for some i ∈ [r]. We study the asymptotic probability
that

G(n, p)→ (F1, . . . , Fr)

for fixed graphs F1, . . . , Fr, where G(n, p) is the binomial random graph with n vertices and edge
probability p.

An important special case of this problem, known as the symmetric case, arises when the graphs
F1, . . . , Fr are all the same. The study of symmetric Ramsey properties in random graphs was initiated
by Łuczak, Ruciński, and Voigt [15], who proved that p = n−1/2 is a threshold for the property
G(n, p) → (K3,K3). (The earlier work of Frankl and Rödl [4] established that G(n, p) → (K3,K3)

under the stronger assumption that p > nε−1/2.) This was followed by a series of papers by Rödl
and Ruciński [19, 20, 21] that culminated in the following statement. For a nonempty graph F , let
d2(F ) := 1/2 if F = K2 and d2(F ) := eF−1

vF−2 otherwise and define the 2-density of F by

m2(F ) := max
{
d2(F ′) : F ′ ⊆ F with eF ′ > 1

}
. (1)

Theorem 1 ([21]). Let r > 2 and suppose that F is a nonempty graph such that at least one component
of F is not a star or (in the case r = 2) a path of length three. Then there exist positive constants c
and C such that

lim
n→∞

P
(
G(n, p)→ (F, . . . , F︸ ︷︷ ︸

r times

)
)

=

{
0 if p 6 cn−1/m2(F )

1 if p > Cn−1/m2(F ).

One usually refers to the assertion of Theorem 1 for p 6 cn−1/m2(F ) as the 0-statement and to the
assertion for p > Cn−1/m2(F ) as the 1-statement. It is worth pointing out that the assumption on
the structure of F is necessary. Indeed, if every component of F is a star, then it is easy to see that
G → (F, . . . , F ) as soon as G has sufficiently many vertices of degree r(∆F − 1) + 1. The function
n−1−1/(r(∆F−1)+1) is a threshold for this property in G(n, p); on the other hand, m2(F ) = 1 for every
such F . In the case where r = 2 and at least one component of F is a path of length three while the
others are stars, the 0-statement of Theorem 1 is no longer true. For example, if p = cn−1/m2(P3) = cn−1

for some c > 0, then the probability that G(n, p) contains a cycle of length five with an edge pending
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at every vertex is bounded from below by a positive constant (that depends on c); it is easy to check
that every colouring of the edges of this graph with two colours yields a monochromatic path of length
three. This exceptional case, originally missed by Rödl and Ruciński in [21], was eventually noticed
and corrected by Friedgut and Krivelevich [5]; the corrected version of the 0-statement requires the
assumption that p = o(n−1/m2(F )). A short proof of Theorem 1 was given by Nenadov and Steger [18].

In the case where F is a tree (other than a star or the path of length three) [5], a triangle [6] or,
more generally, a strictly 2-balanced1 graph that can be made bipartite by removing some edge [24],
it is known that the property G(n, p)→ (F, F ) has a sharp threshold:

Theorem 2 ([5, 6, 24]). Suppose that F is either (i) a tree that is not a star or the path of length three
or (ii) a strictly 2-balanced graph with eF > 2 edges that can be made bipartite by removing some edge.
Then there exist c0, c1, and a function c : N→ [c0, c1] such that

lim
n→∞

P
(
G(n, p)→ (F, F )

)
=

{
0 if p > (1 + ε)c(n)n2−1/m2(F )

1 if p 6 (1− ε)c(n)n2−1/m2(F )

for every positive constant ε.

It is widely believed that one can choose c(n) to be a constant function; however proving this and,
what is more, determining the value of the constant, remains a formidable challenge.

The main topic of this paper is the asymmetric case of the Ramsey problem in G(n, p), where the
graphs F1, . . . , Fr are allowed to be different. This problem was first considered by Kohayakawa and
Kreuter [12]. For nonempty graphs F1 and F2 with m2(F1) > m2(F2), we define the asymmetric
2-density

m2(F1, F2) := max

{
eF ′1

vF ′1 − 2 + 1/m2(F2)
: F ′1 ⊆ F1 with eF ′1 > 1

}
. (2)

The following generalisation of Theorem 1 is a slight rephrasing of a conjecture made by Kohayakawa
and Kreuter [12]. (The original conjecture was stated only for two colours and it lacked the assumption
that the graphs F1 and F2 are not forests, which was later added by Kohayakawa, Schacht, and
Spöhel [14].)

Conjecture 3. Let r > 2 and suppose that F1, . . . , Fr are graphs with m2(F1) > · · · > m2(Fr) and
m2(F2) > 1. Then there are positive constants c and C such that

lim
n→∞

P
(
G(n, p)→ (F1, . . . , Fr)

)
=

{
0 if p 6 cn−1/m2(F1,F2)

1 if p > Cn−1/m2(F1,F2).

The assumption that m2(F2) > 1 is necessary, since otherwise we have m2(F2) = 1/2 (i.e., F2 is
a matching) and so m2(F1, F2) = eF ′1/vF ′1 for some nonempty subgraph F ′1 ⊆ F1. In this case, for
every constant C > 0, the probability that G(n, p) with p = Cn−1/m2(F1,F2) contains no copies of F1

at all exceeds a positive constant (that depends on C); see, for example [11]. The assumption that
m2(F2) > 1 (which holds if and only if F2 is not a forest) is most likely not always necessary, but it
precludes exceptional sequences F1, . . . , Fr such as a sequence of stars.

There have been several attempts at resolving Conjecture 3. Kohayakawa and Kreuter [12] proved
it in the case where each Fi is a cycle. Marciniszyn, Skokan, Spöhel, and Steger [16] observed that the
proof of the 1-statement of Conjecture 3 given in [12] for sequences of cycles extends to all sequences
F1, . . . , Fr such that F1 is strictly 2-balanced, assuming the so-called KŁR (Kohayakawa–Łuczak–
Rödl) conjecture [13] holds. (The KŁR conjecture has since been verified, see [1, 3, 23].) The main
result of [16] however was a proof of the 0-statement of Conjecture 3 in the case where each Fi is a
complete graph. A self-contained (i.e., not relying on the KŁR conjecture) proof of the 1-statement of
Conjecture 3 for r = 2 that assumes a similar density condition, namely that F1 is strictly balanced
w.r.t. m2(·, F2), was given by Kohayakawa, Schacht, and Spöhel [14]. This result was generalised

1A nonempty graph F is said to be 2-balanced if d2(F ) = m2(F ) and strictly 2-balanced if in addition d2(F
′) < m2(F )

for every nonempty proper subgraph F ′ ⊆ F .
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by allowing F1, . . . , Fr to be uniform hypergraphs and extended from two to an arbitrary number
of colours by Gugelmann, Nenadov, Person, Škorić, Steger, and Thomas [7]. It was furthermore
shown in [7] that the 1-statement of Conjecture 3 holds, with no additional conditions on the graphs
F1, . . . , Fr, under the stronger assumption that p > Cn−1/m2(F1,F2) log n. The proofs of both these
statements employed the hypergraph container method developed by Balogh, Morris, and Samotij [1]
(see also [2]) and, independently, by Saxton and Thomason [23]. Let us also mention that the short
argument of Nenadov and Steger [18] that establishes the 1-statement of Theorem 1 can be rewritten
almost verbatim to give a proof of the 1-statement of Conjecture 3 in the case where m2(F1) = m2(F2),
with no further conditions on F1 (this was explicitly observed in [8]).

In summary, all previous results related to the 1-statement of Conjecture 3 require either some non-
trivial assumptions on F1 (or both F1 and F2) or a stronger lower bound on p. Our main contribution
is a proof of this statement in its full generality.

Theorem 4. Let r > 2 and suppose that F1, . . . , Fr are graphs with m2(F1) > · · · > m2(Fr) and
m2(F2) > 1. Then there exists a positive constant K such that if p = p(n) > Kn−1/m2(F1,F2), then

lim
n→∞

P
(
G(n, p)→ (F1, . . . , Fr)

)
= 1.

2. Preliminaries

2.1. Ramsey’s theorem. The following quantitative version of Ramsey’s theorem can be obtained
from the usual version by a standard averaging argument (see, e.g., [7, Theorem 11]).

Lemma 5 (Ramsey’s theorem). For every positive integer r and all graphs F1, . . . , Fr, there exists a
positive α and some n0 such that the following holds for all n > n0. For every colouring of the edges
of Kn with colours from [r], there exists a colour i ∈ [r] such that Kn contains at least αnvFi copies of
Fi whose edges all have colour i.

2.2. Hypergraph containers. The following lemma is a well-known consequence of the hypergraph
container theorems obtained by Balogh, Morris, and Samotij [1] and, independently, by Saxton and
Thomason [23].

Lemma 6. For every graph F and every positive ε, there exists a positive C = C(F, ε) such that the
following holds for all n ∈ N. Let F(n) be the family of all F -free graphs with vertex set [n]. Then
there exist functions

g : F(n)→ 2E(Kn) and f : 2E(Kn) → 2E(Kn)

such that, for every G ∈ F(n),

(i) g(G) has at most Cn2−1/m2(F ) edges,
(ii) f(g(G)) contains at most εnvF copies of F , and
(iii) g(G) ⊆ G ⊆ f(g(G)).

3. Proof overview

Suppose that G 9 (F1, . . . , Fr), that is, that there exists a colouring c : E(G) → [r] such that, for
each i ∈ [r], the graph c−1(i) of edges coloured i is Fi-free. It follows from Lemma 6 that there are
‘signatures’ S2 = g2(c−1(2)), . . . , Sr = gr(c

−1(r)), each with |Si| = O
(
n2−1/m2(Fi)

)
6 O

(
n2−1/m2(F2)

)
edges, such that Si ⊆ c−1(i) ⊆ fi(Si) for each i ∈ {2, . . . , r}, where the graph fi(Si) contains o(nvFi )

copies of Fi. Since each edge of G that lies outside f2(S2) ∪ · · · ∪ fr(Sr) is coloured 1, the intersection
of G and the graph

K(S2, . . . , Sr) := Kn \
(
f2(S2) ∪ · · · ∪ fr(Sr)

)
must be F1-free. In particular, the event G(n, p) 9 (F1, . . . , Fr) is contained in the union of the events

S2 ∪ · · · ∪ Sr ⊆ G(n, p) and G(n, p) ∩K(S2, . . . , Sr) is F1-free,
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where (S2, . . . , Sr) ranges over all sequences of ‘signatures’. Since the property “S2 ∪ · · · ∪ Sr ⊆ G ” is
increasing in G and the property “G ∩K(S1, . . . , Sr) is F1-free” is decreasing in G, Harris’s inequality
and the union bound yield

P
(
G(n, p) 9 (F1, . . . , Fr)

)
6
∑

(S2,...,Sr)

P
(
S2 ∪ · · · ∪ Sr ⊆ G(n, p)

)
· P
(
G(n, p) ∩K(S2, . . . , Sr) is F1-free

)
.

Lemma 5 implies that the graph K(S2, . . . , Sr) has at least δnvF1 copies of F1, for some constant δ > 0

that is independent of (S2, . . . , Sr), and consequently, following [10], one can derive the bound

P
(
G(n, p) ∩K(S2, . . . , Sr) is F1-free

)
6 exp

(
−δ′ ·min {nvIpeI : ∅ 6= I ⊆ F1}

)
(3)

from Janson’s inequality.
If one assumes that p � n−1/m2(F1,F2) log n, then the right-hand side of (3) can be bounded from

above by exp
(
−ω
(
n2−1/m2(F2) log n

))
, whereas there are only exp

(
O
(
n2−1/m2(F2) log n

))
sequences

(S2, . . . , Sr); thus one may conclude that G(n, p) → (F1, . . . , Fr) with probability very close to 1,
without any further assumptions on (F1, . . . , Fr). The weaker assumption that p � n−1/m2(F1,F2)

implies only the upper bound exp
(
−ω
(
n2−1/m2(F2)

))
on the right-hand side of (3) and the challenge

is to obtain the estimate∑
(S2,...,Sr)

P
(
S2 ∪ · · · ∪ Sr ⊆ G(n, p)

)
= exp

(
O
(
n2−1/m2(F2)

))
.

Unfortunately, this estimate is valid only if p = O
(
n−1/m2(F2)

)
, which we can assume only if m2(F1) =

m2(F2). This is the essence of why proving the 1-statement of Conjecture 3 is significantly more
difficult than proving the 1-statement of Theorem 1.

A first step towards making the above union bound argument more efficient, already taken in [7], is
to restrict the family of ‘non-Ramsey’ colourings that are being considered. To this end, observe that
every colouring c : E(G)→ [r] such that

c−1(i) is Fi-free for every i ∈ [r] (4)

may be altered as follows: Every edge of G that is not contained in a copy of F1 in G is recoloured 1.
This way we obtain a new coluring c that still satisfies (4) but now each edge of c−1(2)∪· · ·∪c−1(r) lies
in a copy of F1 in G. We may thus replace the event “S2 ∪ · · · ∪ Sr ⊆ G(n, p)” in the above argument
with the event “each edge of S2 ∪ · · · ∪ Sr lies in a copy of F1 in G(n, p)”, which we will abbreviate by
S2∪ · · ·∪Sr ⊆F1 G(n, p), and conclude that the event G(n, p) 9 (F1, . . . , Fr) is contained in the union
of the events

S2 ∪ · · · ∪ Sr ⊆F1 G(n, p) and G(n, p) ∩K(S2, . . . , Sr) is F1-free,

where again (S2, . . . , Sr) ranges over all sequences of ‘signatures’. Since the property S2∪· · ·∪Sr ⊆F1 G

is still increasing in G, in order to complete the argument, it would suffice to prove that∑
(S2,...,Sr)

P
(
S2 ∪ · · · ∪ Sr ⊆F1 G(n, p)

)
= exp

(
O
(
n2−1/m2(F2)

))
. (5)

Unfortunately, nothing in the spirit of (5) can be true in general. Indeed, there are pairs of graphs
F1, F2 such that m2(F1) > m2(F1, F2) > m2(F2), but typically every edge of G(n, p) lies in a copy of
F1 (for example, this is the case when F1 contains an isolated edge), which contradicts (5). However, in
the case where F1 is strictly balanced w.r.t. m2(·, F2), one can prove a version2 of (5) that complements
an argument similar to the one we have outlined above; this was achieved in [7].

In order to dispose of the balancedness assumption, we shall restrict our attention only to a sub-
collection of all copies of F1 in Kn. More precisely, we will require c−1(1) to avoid only a certain
family F of copies of F1, which we term typed copies of F1. Roughly speaking, every edge of Kn will
be (randomly) mapped to an edge of F1, which we call a type, and a copy ϕ(F1) of F1 in Kn will

2When m2(F1) > m2(F2), even if one assumes that F1 is strictly balanced w.r.t. m2(., F2), there is an event of very
small probability in G(n, p) that nevertheless blows up the left-hand side of (5) above exp

(
O
(
n2−1/m2(F2)

))
. However,

after conditioning on the complement of this event, the inequality (5) becomes true.
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belong to F if and only if, for each e ∈ E(F1), the type of ϕ(e) is e. Moreover, we will replace G(n, p)

with a sparser random subgraph of it, whose edge probabilities depend on the types. (We will define
both these notions formally in Section 4.) We are going to do both of these things in such a way that
the typed copies of F1 in this sparser random graph ‘behave’ like (untyped) copies of a graph that is
balanced w.r.t. m2(·, F2). In particular: (i) the left-hand side of (3) can be still bounded from above by
exp

(
−ω
(
n2−1/m2(F2)

))
and (ii) a version of (5) holds true. Since the left-hand side of (3) is decreasing

in both G(n, p) and the family F , whereas each term in the left-hand side of (5) is increasing in both
G(n, p) and F , we will have to strike a delicate balance in order to achieve (i) and (ii) simultaneously.

4. H-typed graphs

For the entirety of this section, suppose that H and F are fixed nonempty graphs.
An important role in our proof is played by weight functions w : E(H) → [1,∞). Given such

a function w and a subgraph I ⊆ H, we shall use the shorthand wI :=
∑

e∈E(I)w(e).

Definition 7 ((w,F )-balanced graphs). Given a function w : E(H)→ [1,∞), we say that H is (w,F )-
balanced if, for every edge e ∈ E(H), we have

min
{
vI − wI/m2(H,F ) : I ⊆ H with e ∈ E(I)

}
= 2− 1/m2(F ).

Lemma 8. If m2(H) > m2(F ), then there exists a function w : E(H)→ [1,∞) such that H is (w,F )-
balanced.

Proof. Given a function w : E(H)→ [1,∞) and an edge e ∈ E(H), let us write

re(w) := min
{
vI − wI/m2(H,F ) : I ⊆ H with e ∈ E(I)

}
− 2 + 1/m2(F ).

Our goal is then to show that there is a function w such that re(w) = 0 for all e ∈ E(H). To this
end, consider the set W of all functions w : E(H) → [1,∞) that satisfy re(w) > 0 for all e ∈ E(H).
Note that the constant function w ≡ 1 belongs to W, by the definition of m2(H,F ), and that 0 6
re(w) 6 1/m2(F )−w(e)/m2(H,F ) for every e ∈ E(H) and all w ∈ W. In particular, W is nonempty
and compact and thus the (continuous) map W 3 w 7→ wH ∈ [0,∞) achieves its maximum at some
ŵ ∈ W.

We claim that re(ŵ) = 0 for each e ∈ E(H). If this were not true and there was an e ∈ E(H)

satisfying re(ŵ) > 0, then, for some sufficiently small ε > 0, the function w̃ defined by w̃(f) =

ŵ(f) + ε · 1[f = e] would belong to W, contradicting the maximality of ŵ. �

4.1. H-typed graphs. By an H-typed graph we mean a graph G equipped with a type function
τG : E(G)→ E(H). If H is clear from the context, we shall just say that G is a typed graph. We shall
mostly use calligraphic letters to denote typed graphs; however, every subgraph I ⊆ H will be treated
as a typed graph in the natural way, by taking its type function to be the inclusion map from E(I)

into E(H). We write G′ ∼= G if there is a graph isomorphism between G′ and G that preserves the
type of every edge (in this case, we say that G and G′ are typomorphic). We write G′ � G if G′ ⊆ G
and τG′(e) = τG(e) for all e ∈ E(G′). A typed copy of a subgraph I ⊆ H in G is a typed graph I � G
such that I ∼= I, where I is treated as a typed graph. Finally, for a set H of (untyped) copies of H
in Kn and a typed graph G on the vertex set [n], we write H(G) for the set of all H̃ ∈ H such that
E(H̃) ⊆ E(G) and the typed graph H̃ obtained by equipping H̃ with the type function τG |E(H̃) is
typomorphic to H.

4.2. Random H-typed graphs. We define a random H-typed graph G(n, p, w) as follows.

Definition 9 (G(n, p, w)). Given n ∈ N, p ∈ (0, 1), and w : E(H)→ [1,∞), we define G(n, p, w) to be
the random H-typed graph G on the vertex set [n] constructed by the following two-step procedure:

(i) Choose a function τ : E(Kn)→ E(H) uniformly at random.
(ii) Include every e ∈ E(Kn) independently with probability pw(τ(e)) and set τG = τ |E(G).



6 FRANK MOUSSET, RAJKO NENADOV, AND WOJCIECH SAMOTIJ

We shall be using the following estimate of the upper tail of the number of typed copies of H and
its subgraphs in G(n, p, w); the proof is a straightforward modification of the classical argument of
Ruciński and Vince [22].

Lemma 10. Fix a nonempty subgraph I ⊆ H and let XI denote the number of typed copies of I in
G(n, p, w). We have

P
(
XI > 2E[XI ]

)
6 c ·

(
min

∅6=I′⊆I
nvI′pwI′

)−1

, (6)

for some positive constant c depending only on H.

Proof. It is easy to see that
E[XI ] = Θ (nvIpwI )

and

Var[XI ] = O

(
max

∅6=I′⊆I
n2vI−vI′p2wI−wI′

)
= O

(
E[XI ]

2

min∅6=I′⊆I nvI′pwI′

)
.

The assertion now follows from Chebyshev’s inequality P
(
XI > 2E[XI ]

)
6 Var[XI ]/E[XI ]

2. �

Lemma 11. Fix a positive α and a family H of at least αnvH copies of H in Kn. Then

P
(
H(G(n, p, w)) = ∅

)
6 exp

(
−c · min

∅6=I⊆H
nvIpwI

)
, (7)

for some positive constant c depending only on H and α.

Proof. For a given copy C ∈ H, let us write 1C for the indicator variable of the event that C ∈
H(G(n, p, w)). Thus |H(G(n, p, w))| =

∑
C∈H 1C . Observe that XC and XC′ are independent if C and

C ′ are edge-disjoint.
For every C ∈ H, we have E[1C ] > pwH/eeHH , and so

µ := E[|H(G(n, p, w))|] > |H|pwH/eeHH > αn
vHpwH/eeHH .

Define
∆ :=

∑
{C,C′}⊆H
E(C∩C′)6=∅

E[1C1C′ ] and δ := max
C∈H

∑
C′∈H

E(C′∩C)6=∅

E[1C′ ],

It is easy to check that

∆ = O

(
µ2

min∅6=I(H nvIpwI

)
,

where the constants implicit in the O-notation may depend on α and on H. It is also easy to see that

δ 6 eHn
vH−2pwH .

The claim then follows from the following version of Suen’s inequality due to Janson [9, Theorem 3]:

P
(
|H(G(n, p, w))| = 0

)
6 exp

(
−min

(
µ2

8∆
,
µ

6δ
,
µ

2

))
.

Note in particular that µ/δ > αn2/eeHH = Ω(nvIpwI ) for every subgraph I ⊆ H consisting of two
vertices and one edge. �

5. Proof of Theorem 4

Fix nonempty graphs F1, . . . , Fr with m2(F1) > · · · > m2(Fr) and m2(F2) > 1. For the sake of
brevity, we shall write H = F1 and F = F2. For each i ∈ {2, . . . , r}, let Ci, fi, and gi be as given by
Lemma 6 applied to the graph Fi and to some sufficiently small positive constant ε = ε(r, F1, . . . , Fr);
let C := max {C2, . . . , Cr}.

Given a typed graph G on [n], we write G 9 (H,F2, . . . , Fr) if there exists a colouring c : E(G)→ [r]

such that there is neither a typed copy of H in colour 1, nor an (untyped) copy of Fi in colour i, for
any i ∈ {2, . . . , r}. Note that if G 9 (H,F2, . . . , Fr), then there also exists such a colouring c where
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additionally every edge of G that is not contained in a typed copy of H has colour 1. Indeed, we can
always recolour such edges in colour 1 without creating any copies of H in c−1(1).

Now, assume that G 9 (H,F2, . . . , Fr) and let c : E(G) → [r] be a colouring that satisfies all
of the above conditions. For each i ∈ {2, . . . , r}, let Si := gi

(
c−1(i)

)
and recall that Si has at

most Cn2−1/m2(F ) edges. By the definition of fi and gi, we have Si ⊆ c−1(i) ⊆ fi(Si) for every
i ∈ {2, . . . , r}. Set S := (S2, . . . , Sr) and let HS be the collection of all (untyped) copies of H in the
graph Kn \

(
f2(S2)∪ · · · ∪ fr(Sr)

)
. Observe crucially that HS(G) = ∅, because every typed copy of H

in HS(G) would have all of its edges coloured 1, contradicting the choice of the colouring.
By Lemma 8, we can choose a function w : E(H) → [1,∞) such that H is (w,F )-balanced. In

particular, for every edge e ∈ E(H), we can fix a subgraph He ⊆ H containing e such that

vHe − wHe/m2(H,F ) = 2− 1/m2(F ).

Since every edge in G of a colour different from 1 is in a typed copy of H in G, we can conclude that
for every edge e ∈ S2 ∪ · · · ∪ Sr, there is a typed copy of Hf in G which contains the edge e, where
f = τG(e). Since |S2 ∪ · · · ∪ Sr| 6 (r − 1)Cn2−1/m2(F ), the union of these typed copies is a typed
subgraph of G with at most T (n) := eH(r − 1)Cn2−1/m2(F ) edges.

Let us now summarise the above discussion. For each i ∈ {2, . . . , r}, let Si comprise the family of
all sets of the form gi(G) where G is an Fi-free graph on [n] and let S = S2 × · · · × Sr. Moreover, let
Wn be the collection of all typed graphs W with V (W) ⊆ [n] and e(W) 6 T (n) such that every edge
e ∈ E(W) is contained in a typed copy of Hf in W for some f ∈ E(H) (where it is not necessarily the
case that f = τW(e)). What we have shown above can be phrased as follows.

Assertion. If G is a typed graph on [n] such that G 9 (H,F2, . . . , Fr), then there exists a sequence
S = (S2, . . . , Sr) ∈ S, with S2, . . . , Sr pairwise disjoint, and some W ∈Wn such that:

(1) S2 ∪ · · · ∪ Sr ⊆ W and W � G and
(2) HS(G) = ∅.

We call such a pair (S,W) a witness for the fact that G 9 (H,F2, . . . , Fr).

Now, suppose that p > Kn−1/m2(H,F ) for a sufficiently large constant K. Our goal is to prove that

P
(
G(n, p) 9 (H,F2, . . . , Fr)

)
= o(1).

As the property G 9 (H,F2, . . . , Fr) is monotone decreasing in G, we may assume without loss of
generality that p = Kn−1/m2(H,F ). Since there is a natural coupling of G(n, p) and G(n, p, w) such that
E(G(n, p, w)) ⊆ E(G(n, p)), we may conclude that

P
(
G(n, p) 9 (H,F2, . . . , Fr)

)
6 P

(
G(n, p, w) 9 (H,F2, . . . , Fr)

)
.

In particular, it suffices to show that the probability that G(n, p, w) admits a witness (S,W) for the
fact that G(n, p, w) 9 (H,F2, . . . , Fr) is small. This is what we are going to do in the remainder of
the proof.

Let G ∼ G(n, p, w). For a subgraph I ⊆ H, we write XI for the number of typed copies of I contained
in G. We shall now split the proof into two cases, depending on whether or not XI exceeds 2E[XI ] for
some nonempty I ⊆ H.

Case 1. There is a nonempty subgraph I ⊆ H such that G has more than 2E[XI ] typed copies of I.

The probability that G is in this case tends to zero by Lemma 10, because nvIpwI > Kn2−1/m2(F ) →
∞ for every nonempty I ⊆ H, by the definition of (w,F )-balancedness.

Case 2. For every nonempty subgraph I ⊆ H, G contains at most 2E[XI ] typed copies of I.

Let us write Un ⊆ Wn for the subset comprising all W ∈ Wn that contain at most 2E[XI ] typed
copies of every nonempty I ⊆ H. Note that if (S,W) is a witness for G 9 (H,F2, . . . , Fr), then
necessarily W ∈ Un, since otherwise G would fall into the first case. Let Z denote the number of
witnesses (S,W) with W ∈ Un. We shall show that E[Z] = o(1), which, by Markov’s inequality, will
imply that the probability that G 9 (H,F2, . . . , Fr) tends to zero.
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To this end, we have

E[Z] 6
∑
W∈Un

∑
S∈S(W)

P
(
(S,W) is a witness for G 9 (H,F2, . . . , Fr)

)
,

where we write S(W) for the set of all sequences S = (S2, . . . , Sr) ∈ S such that S2, . . . , Sr are pairwise
edge-disjoint and S2 ∪ · · · ∪ Sr ⊆ W (in particular, note that |S(W)| 6 re(W)). If a pair (S,W) is a
witness for G 9 (H,F2, . . . , Fr), then W � G and HS(G) = ∅. Thus

E[Z] 6
∑
W∈Un

∑
S∈S(W)

P
(
W � G and HS(G) = ∅

)
.

Given a W ∈ Un and an S ∈ S(W), let HWS denote the collection of all (untyped) copies of H in
HS that are edge-disjoint from W. Since HWS (G) ⊆ HS(G) and, crucially, the events HWS (G) = ∅ and
W � G are independent, we obtain

E[Z] 6
∑
W∈Un

∑
S∈S(W)

P
(
W � G and HWS (G) = ∅

)
=
∑
W∈Un

P
(
W � G

) ∑
S∈S(W)

P
(
HWS (G) = ∅

)
.

Since each fi(Si) contains at most εnvFi copies of Fi, it follows from Ramsey’s theorem (Lemma 5)
that if ε = ε(r,H, F2, . . . , Fr) is sufficiently small, then |HS| > 2εnvH . Consequently,

|HWS | > |HS| − e(W) · eH · nvH−2 > 2εnvH −O
(
nvH−1/m2(F )

)
> εnvH .

It thus follows from Lemma 11 and the fact that H is (w,F )-balanced that

P
(
HWS (G) = ∅

)
6 exp

(
−c · min

∅6=I⊆H
nvIpwI

)
6 e−cKn

2−1/m2(F )
,

for some positive constant c that depends only on H and ε. Therefore,

E[Z] 6
∑
W∈Un

P
(
W � G

) ∑
S∈S(W)

e−cKn
2−1/m2(F )

6
∑
W∈Un

P
(
W � G

)
· re(W) · e−cKn2−1/m2(F )

6 e−cKn
2−1/m2(F )/2 ·

∑
W∈Un

P
(
W � G

)
,

(8)

where we have used that every W ∈ Un has at most T (n) edges and thus, for sufficiently large K,

e(W) log r 6 T (n) log r 6 eH(r − 1)Cn2−1/m2(F ) log r 6 cKn2−1/m2(F )/2.

It remains to estimate the sum in the right-hand side of (8). To this end, for a given k ∈ N, let
Un,k be the set of all W ∈ Un that can be written as a union H1 ∪ · · · ∪ Hk of k typed graphs with
V (Hi) ⊆ [n], each of which is typomorphic to Hf for some f ∈ E(H), but not as a union of fewer than
k such graphs. Letting Uk count the number of W ∈ Un,k such that W � G, we now have∑

W∈Un

P
(
W � G

)
=

∑
k6T (n)

∑
W∈Un,k

P
(
W � G

)
=

∑
k6T (n)

E[Uk]. (9)

Claim 12. There is a constant cH that depends only on H such that, for every k,

E[Uk] 6

(
cH ·KwHn2−1/m2(F )

k

)k
.

Proof of Claim. Since the only member of Un,0 is the empty graph, we have U0 = 1. We now show
that, for every k > 1,

E[Uk] 6
1

k
· E[Uk−1] · eH21+vH+eH ·KwHn2−1/m2(F ). (10)

It is easy to see that (10) implies that, for every k,

E[Uk] 6
1

k!

(
eH21+vH+eH ·KwHn2−1/m2(F )

)k
,
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which in turn implies the assertion of the claim. Thus we only need to prove (10).
To this end, consider some W ∈ Un,k and let H1 ∪ · · · ∪ Hk be some representation of W as the

union of typed graphs, each of which is typomorphic to some Hf .3 Observe that, for every i ∈ [k],
the typed graph Wi =

⋃
j∈[k]\{i}Hj belongs to Un,k−1. Moreover, all these typed graphs are distinct,

because every Hi contains an edge that is not covered by the union of all the other Hj for j 6= i. In
other words, for every W ∈ Un,k, there are at least4 k distinct typed graphs Wi ∈ Un,k−1 such that
W =Wi ∪Hi for some typed copy Hi of some Hf with f ∈ E(H). Denoting, for each I ⊆ H, the set
of all typed graphs with vertices from [n] that are typomorphic to I by Cn(I), have

k · E[Uk] = k
∑
W∈Un,k

P
(
W � G

)
6

∑
W ′∈Un,k−1

∑
f∈E(H)

∑
H′∈C(Hf )

P
(
W ′ ∪H′ � G

)
, (11)

where we further require that the type function of each H′ in the last sum agrees with that of W ′ on
the intersection W ′ ∩ H′ (otherwise W ′ ∪ H′ would not be a well defined typed graph). Fix arbitrary
W ′ ∈ Un,k−1 and f ∈ E(H) and observe that, for every H′ ∈ C(Hf ), we have

P
(
W ′ ∪H′ � G

)
= P

(
W ′ � G

)
· P
(
H′ \ (H′ ∩W ′) � G

)
.

By first specifying the intersection I = W ′ ∩ H′, which is necessarily a typed copy in W ′ of some
I ⊆ Hf , we have∑

H′∈Cn(Hf )

P
(
W ′ ∪H′ � G

)
=
∑
I⊆Hf

∑
I∈Cn(I)
I�W ′

∑
H′∈Cn(Hf )
W ′∩H′=I

P
(
W ′ � G

)
· P
(
H′ \ I � G

)
,

Because for every H′ ∈ Cn(Hf ), every I ⊆ Hf , and every I ∈ Cn(I) with I � H′, we have P
(
H′ \ I �

G
)

= p
wHf

−wI , and since by the definition of Un, there are at most 2E[XI ] 6 2nvIpwI typed copies of
I in W ′, we get ∑

H′∈Cn(Hf )

P
(
W ′ ∪H′ � G

)
6 P

(
W ′ � G

)
·
∑
I⊆Hf

2nvIpwI · nvHf
−vI · pwHf

−wI

6 P
(
W ′ � G

)
· 21+vHf

+eHf · nvHf p
wHf .

Recalling that vHf
− wHf

/m2(H,F ) = 2 − 1/m2(F ) by the definition of Hf , our assumption that
p = Kn−1/m2(H,F ) gives nvHf p

wHf = K
wHf n2−1/m2(F ). We may thus conclude that∑

H′∈Cn(Hf )

P
(
W ′ ∪H′ � G

)
6 P

(
W ′ � G

)
· 21+vHf

+eHf ·KwHf n2−1/m2(F ).

Substituting this bound into (11), we obtain

k · E[Uk] 6
∑

W ′∈Un,k−1

∑
f∈E(H)

P
(
W ′ � G

)
· 21+vHf

+eHf ·KwHf n2−1/m2(F )

= E[Uk−1] ·
∑

f∈E(H)

2
1+vHf

+eHf ·KwHf n2−1/m2(F )

6 E[Uk−1] · eH21+vH+eH ·KwHn2−1/m2(F ).

Dividing through by k, we obtain (10). �

Combining (9) and the claim, we obtain

∑
W∈Un

P
(
W � G

)
6

∑
k6T (n)

(
cH ·KwHn2−1/m2(F )

k

)k
6 (T (n) + 1) ·

(
cH ·KwHn2−1/m2(F )

T (n)

)T (n)

,

3Note that this representation is not necessarily unique.
4 “At least” since, again, W can have more than one representation as H1 ∪ · · · ∪ Hk.
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where the last inequality follows from the fact that the function x 7→ (c/x)x is increasing for 0 < x 6 c/e
and that T (n) = eH(r − 1)Cn2−1/m2(F ) 6 cH ·KwHn2−1/m2(F )/e if K is large. This yields∑

W∈Un

P
(
W � G

)
6

(
2cHK

wH

eH(r − 1)C

)eH(r−1)Cn2−1/m2(F )

6 eO(logK)n2−1/m2(F )
,

which, together with (8), implies that E[Z]→ 0, provided that K is sufficiently large. This completes
the proof. �

6. Concluding remarks

While, even before our work, the 1-statement of Conjecture 3 was known to be true up to a log n

factor, the situation with the 0-statement is quite different. So far it has only been verified in the
case where all the graphs F1, . . . , Fr are either cycles [12] or complete graphs [16]. The general case,
however, seems to be rather difficult. A criterion which reduces the 0-statement of Conjecture 3 to a
purely deterministic question, a potentially fruitful approach, was given in [7]. We now present this
reduction.

Given graphs F1 and F2, let F(F1, F2) be the family of all graphs F with the following property:
There exists a copy F ′2 of F2 in F and an edge e0 ∈ E(F ′2) such that, for each e ∈ E(F ′2) \ {e0}, there
is a copy F e1 of F1 in F containing e and

E(F ) = E(F ′2) ∪
⋃

e∈E(F ′2)\{e0}

E(F e1 );

we shall call such an e0 an attachment edge. Note that the graphs F e1 need not be disjoint (in fact they
are even not required to be distinct). Intuitively, every graph in F(F1, F2) is formed from a copy of
F2 by gluing copies of F1 on all of its edges except some edge e0. Let us call a graph F ∈ F(F1, F2)

generic if every F e1 intersects F ′2 only in the edge e (and no vertices other than the endpoints of e)
and its remaining vertices are disjoint from all the other F e′1 with e′ 6= e. Note that there can be up to
e(F2) · e(F1)e(F2)−1 different generic graphs.

The main property we require from the family F(F1, F2) is that these generic graphs are the ‘sparsest’
among all graphs in F(F1, F2). In particular, we say that F(F1, F2) is asymmetric-balanced if the
following two conditions are met for every F ∈ F(F1, F2) and every H ⊆ F with V (H) ( V (F )

containing an attachment edge:
(1) We have

e(F )− e(H)

v(F )− v(H)
> m2(F1, F2).

(2) Moreover, if
e(F )− e(H)

v(F )− v(H)
= m2(F1, F2),

then F is generic and H contains a single edge (the attachment edge).

Theorem 13 ([7]). Let F1 and F2 be graphs such that m2(F1) > m2(F2) > 1 and suppose that the
following holds:

(i) F1 and F2 are strictly 2-balanced,
(ii) F1 is strictly balanced w.r.t. m2(·, F2),
(iii) F(F1, F2) is asymmetric-balanced, and
(iv) for every graph G such that

max
G′⊆G

e(G′)

v(G′)
6 m2(F1, F2)

we have G9 (F1, F2).
Then there exists c > 0 such that if p 6 cn−1/m2(F1,F2), then

lim
n→∞

P
(
G(n, p)→ (F1, F2)

)
= 0.
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A minor modification of the proof of Theorem 13 shows that one can further drop the requirement
in (i) that F1 is strictly 2-balanced. Therefore, in order to prove the 0-statement of Conjecture 3, it
is enough to consider a strictly 2-balanced subgraph F ′2 ⊆ F2 with m2(F ′2) = m2(F2) and a subgraph
F ′1 ⊆ F1 that is strictly balanced w.r.t m2(·, F ′2) and satisfies m2(F ′1, F

′
2) = m2(F1, F

′
2), and show that

conditions (iii) and (iv) in Theorem 13 hold. As an exercise, we invite the reader to show this in
the case where m2(F1) = m2(F2) (for part (iv) see, e.g., the appendix of [18]). In this case, it turns
out that if F ′1 ⊆ F1 is chosen in the manner described above, then it is also strictly 2-balanced and
m2(F ′1) = m2(F ′2); in particular, one can use Theorem 13 without any modifications. Unfortunately,
the general case remains wide open.

Finally, let us mention that the proof of Theorem 4 transfers to the setting of uniform hypergraphs
with almost no changes. However, unlike for graphs, in the case of hypergraphs of uniformity larger
than two, even in the symmetric case (i.e., F1 = · · · = Fr) a complete characterisation of the threshold
functions is not known. We refer the interested reader to [7, 17] for further details.
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