Additive combinatorics

Homework assignment \#1
Due date: Monday, April 24, 2017

Problem 1. Show that every 2-colouring of $\mathbb{Z}_{2 n+1}$ contains at least $n^{2}+n+1$ monochromatic solutions to the equation $x+y=2 z$. In other words, prove that for every partition $\mathbb{Z}_{2 n+1}=$ $R \cup B$, there are at least $n^{2}+n+1$ ordered triples $(x, y, z) \in R^{3} \cup B^{3}$ that satisfy $x+y=2 z$. Conclude that if $n \geqslant 2$, then in every 2 -colouring of $\mathbb{Z}_{2 n+1}$, one of the colour classes must contain a genuine 3 -term AP.

Problem 2. Consider the following greedy construction of a subset of $\mathbb{N}=\{0,1, \ldots\}$ without a 3 -term AP. Let $A_{0}=\{0\}$ and for every $n \in \mathbb{N}$, let $A_{n+1}=A_{n} \cup\{n+1\}$ if $n+1$ does not form a 3 -term AP with two elements of A_{n} and $A_{n+1}=A_{n}$ otherwise; in particular, $A_{10}=\{0,1,3,4,9,10\}$. Determine

$$
\lim _{n \rightarrow \infty} \frac{\log \left|A_{n}\right|}{\log n} .
$$

Problem 4. Derive Szemerédi's theorem from the d-dimensional "corners theorem" of Solymosi: For every $\delta>0$ and $r \geqslant 2$, there is an n_{0} such that every subset of $\{1, \ldots, n\}^{r}$ with at least δn^{r} elements contains the $r+1$ points

$$
\left(x_{1}, \ldots, x_{r}\right),\left(x_{1}+d, x_{2}, \ldots, x_{r}\right), \ldots,\left(x_{1}, \ldots, x_{r-1}, x_{r}+d\right)
$$

for some $x_{1}, \ldots, x_{r} \in\{1, \ldots, n\}$ and nonzero d, provided that $n \geqslant n_{0}$.
Problem 5. Let \mathbb{F} be a finite field and suppose that $A \subseteq \mathbb{F} \backslash\{0\}$ satisfies $|A|>|\mathbb{F}|^{3 / 4}$. Prove that each element of \mathbb{F} can be written as $a_{1} a_{2}+a_{3} a_{4}+a_{5} a_{6}$ for some $a_{1}, \ldots, a_{6} \in A$.
To this end, consider the function $f: \mathbb{F} \rightarrow \mathbb{R}$ defined by

$$
f(x)=\frac{1}{|A|} \sum_{a \in A} \mathbf{1}\left[x a^{-1} \in A\right]
$$

and observe (show) that it is sufficient to prove that $f * f * f(x)>0$ for all $x \in \mathbb{F}$. Hint: Start by showing that $\hat{f}(\xi) \leqslant|\mathbb{F}|^{-1 / 2}$ for every nonprincipal character ξ.

