## Additive combinatorics

Homework assignment \#2
Due date: Monday, May 29, 2017

Problem 1. Prove that every finite abelian group of order $n$ contains a sum-free set with at least $2 n / 7$ elements.

Problem 2. Let $G$ be a finite abelian group whose order is divisible by a prime $p$ satisfying $p \equiv 2(\bmod 3)$. Let $p=3 k+2$ be the smallest such prime.
(a) Prove that the largest size of a sum-free subset of $G$ is $\frac{k+1}{3 k+2} \cdot|G|$.
(b) Prove that there is a positive $\delta_{k}$ that depends only on $k$ such that every sum-free set with at least $\left(\frac{k+1}{3 k+2}-\delta_{k}\right) \cdot|G|$ elements is contained in some sum-free set of maximum size.
Problem 3. Suppose that $k \geqslant 3$ and let $a_{1}, \ldots, a_{k}$ be nonzero integers. Consider the equation

$$
\begin{equation*}
a_{1} x_{1}+\ldots+a_{k} x_{k}=0 . \tag{1}
\end{equation*}
$$

Let us say that a solution $\left(x_{1}, \ldots, x_{k}\right) \in \mathbb{Z}^{k}$ to (1) is generic if $x_{1}, \ldots, x_{k}$ are pairwise distinct. Define $f: \mathbb{N} \rightarrow \mathbb{N}$ by

$$
f(n)=\max \left\{|A|: A \subseteq\{1, \ldots, n\} \text { and } A^{k} \text { contains no generic solutions to }(1)\right\} .
$$

(a) Suppose that $a_{1}+\ldots+a_{k} \neq 0$. Show that $f(n)=\Omega(n)$.
(b) Suppose that $a_{1}+\ldots+a_{k}=0$. Show that $f(n)=o(n)$.
(c) Suppose that $a_{1}+\ldots+a_{k}=0$ and $a_{1}, \ldots, a_{k-1}>0$. Show that $f(n)=n^{1-o(1)}$.

