Additive combinatorics

Homework assignment \#3
Due date: Monday, June 26, 2017

Problem 1. Solve the following two problems about Sidon sets:
(a) Construct an infinite Sidon set $A \subseteq \mathbb{N}$ such that

$$
\liminf _{n \rightarrow \infty} \frac{|A \cap\{1, \ldots, n\}|}{n^{1 / 3}}>0 .
$$

(b) Let $A \subseteq \mathbb{N}$ be finite. Show that if $B \subseteq A$ is a Sidon set, then $|B| \leqslant \sqrt{2|A+A|}$.

Problem 2. Let A, B, and C be finite nonempty sets of positive real numbers. Show that $|A+B \cdot C| \geqslant c \sqrt{|A| \cdot|B| \cdot|C|}$ for some positive constant c.

Problem 3. Let A be a finite set of integers. Without invoking Freiman's theorem, show that $|A+A| \leqslant 2|A|-1$ if and only if A is an arithmetic progression.

Problem 4. Let A and B be nonempty finite set of elements of an abelian group.
(a) Show that $|A+B|=|A|$ if and only if $|A-B|=|A|$.
(b) Show that $|A+B|=|A| \cdot|B|$ if and only if $|A-B|=|A| \cdot|B|$.

Problem 5. Let A be a nonempty finite set of elements of an abelian group.
(a) Show that $|A+A| \leqslant|A-A|^{3 / 2}$.
(b) Show that $|A-A| \leqslant|A+A|^{3 / 2}$.

Problem 6. Let G be an abelian group whose each element has order at most r. Let A be a finite set of elements of G and let H be the subgroup of G generated by A. Suppose that there exists a set B of elements of G with $|B|=|A|$ such that

$$
|A+B| \leqslant c|A|
$$

for some $c \geqslant 1$. Show that $|H| \leqslant K|A|$ for some constant K that depends only on c and r.

