Additive combinatorics

Homework assignment #3

Problem 1. Let A, B, and C be finite nonempty sets of positive real numbers. Show that $|A \cdot B + C| \ge c\sqrt{|A| \cdot |B| \cdot |C|}$ for some positive constant c.

Problem 2. Let A be a finite set of integers. Without invoking Freiman's 3k - 4 theorem, show that $|A + A| \leq 2|A| - 1$ if and only if A is an arithmetic progression.

Problem 3. Let A and B be nonempty finite set of elements of an Abelian group.

- (a) Show that |A + B| = |A| if and only if |A B| = |A|.
- (b) Show that $|A + B| = |A| \cdot |B|$ if and only if $|A B| = |A| \cdot |B|$.

Problem 4. Let A be a nonempty finite set of elements of an Abelian group.

- (a) Show that $|A A| \leq |A + A|^{3/2}$.
- (b) Show that $|A + A| \leq |A A|^{3/2}$.

Problem 5. Let G be an Abelian group whose each element has order at most r. Let A be a finite set of elements of G and let H be the subgroup of G generated by A. Suppose that there exists a set B of elements of G with |B| = |A| such that

$$|A+B| \leqslant c|A|$$

for some $c \ge 1$. Show that $|H| \le K|A|$ for some constant K that depends only on c and r.

Problem 6. Suppose that $m \ge n$ and $\mathbf{v}_1, \ldots, \mathbf{v}_m \in \mathbb{Z}^n$ are integer vectors that span \mathbb{R}^n as a linear space over \mathbb{R} . Show that the subgroup of \mathbb{Z}^n generated by $\{\mathbf{v}_1, \ldots, \mathbf{v}_m\}$ is a lattice in \mathbb{R}^n .