Concentration inequalities

Homework assignment \#1
Due date: Wednesday, November 25, 2015

Problem 1. Let $\mathbb{M} Z$ be a median of the square-integrable random variable Z. (That is, $Z \geqslant \mathbb{M} Z$ and $Z \leqslant \mathbb{M} Z$ both hold with probability at least $1 / 2$.) Show that

$$
|\mathbb{M} Z-\mathbb{E} Z| \leqslant \sqrt{\operatorname{Var}(Z)}
$$

Problem 2. Show that if Y is a nonnegative random variable, then for any $a \in(0,1)$,

$$
\operatorname{Pr}(Y \geqslant a \mathbb{E} Y) \geqslant(1-a)^{2} \frac{(\mathbb{E} Y)^{2}}{\mathbb{E}\left[Y^{2}\right]}
$$

Problem 3. Show that moment bounds for tail probabilities are always better than CramérChernoff bounds. Let Y be a nonnegative random variable and let $t>0$. Prove that

$$
\min _{q} \mathbb{E}\left[Y^{q}\right] t^{-q} \leqslant \inf _{\lambda>0} \mathbb{E}\left[e^{\lambda(Y-t)}\right] .
$$

Problem 4. Establish the following upper bounds on the lower tail of the binomial distribution.
(a) Let B be binomially distributed with parameters (n, p). Show that for $0<a<p$,

$$
\operatorname{Pr}(B \leqslant a n) \leqslant\left(\left(\frac{p}{a}\right)^{a}\left(\frac{1-p}{1-a}\right)^{1-a}\right)^{n}
$$

(b) Let k and n be positive integers with $1 \leqslant k \leqslant n$. Use (a) to derive the inequality

$$
\sum_{j=0}^{k}\binom{n}{j} \leqslant\left(\frac{e n}{k}\right)^{k}
$$

Problem 5. Assume that X is a centered sub-Gaussian random variable with variance factor v, that is,

$$
\log \mathbb{E}\left[e^{\lambda X}\right] \leqslant \frac{\lambda^{2} v}{2} \quad \text { for every } \lambda \in \mathbb{R}
$$

Prove that $\operatorname{Var}(X) \leqslant v$.
Problem 6. Let X be a nonnegative random variable with finite second moment. Show that for any $\lambda>0$,

$$
\mathbb{E}\left[e^{-\lambda(X-\mathbb{E} X)}\right] \leqslant e^{\lambda^{2} \mathbb{E}\left[X^{2}\right] / 2}
$$

In particular, if X_{1}, \ldots, X_{n} are independent nonnegative random variables, then for any $t>0$,

$$
\operatorname{Pr}\left(\sum_{i=1}^{n}\left(X_{i}-\mathbb{E} X_{i}\right) \leqslant-t\right) \leqslant \exp \left(-\frac{t^{2}}{2 v}\right)
$$

where $v=\sum_{i=1}^{n} \mathbb{E}\left[X_{i}^{2}\right]$.

