
Concentration inequalities

Homework assignment #1

Due date: Wednesday, November 25, 2015

Problem 1. Let MZ be a median of the square-integrable random variable Z. (That is,

Z > MZ and Z 6 MZ both hold with probability at least 1/2.) Show that∣∣MZ − EZ
∣∣ 6√Var(Z).

Problem 2. Show that if Y is a nonnegative random variable, then for any a ∈ (0, 1),
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(EY )2
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.

Problem 3. Show that moment bounds for tail probabilities are always better than Cramér–

Chernoff bounds. Let Y be a nonnegative random variable and let t > 0. Prove that

min
q

E [Y q] t−q 6 inf
λ>0

E
[
eλ(Y−t)

]
.

Problem 4. Establish the following upper bounds on the lower tail of the binomial distribution.

(a) Let B be binomially distributed with parameters (n, p). Show that for 0 < a < p,
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(b) Let k and n be positive integers with 1 6 k 6 n. Use (a) to derive the inequality
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Problem 5. Assume that X is a centered sub-Gaussian random variable with variance factor v,

that is,
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for every λ ∈ R.

Prove that Var(X) 6 v.

Problem 6. Let X be a nonnegative random variable with finite second moment. Show that

for any λ > 0,
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In particular, if X1, . . . , Xn are independent nonnegative random variables, then for any t > 0,
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where v =
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