Edge Disjoint Hamilton Cycles

April 26, 2015

1 Introduction

In the late 70s, it was shown by Komlós and Szemerédi ([7]) that for $p = \frac{\ln n + \ln \ln n + c}{n}$, the limit probability for G(n, p) to contain a Hamilton cycle equals the limit probability for G(n, p) to have minimum degree at least 2. A few years later, Ajtai, Komlós and Szemerédi ([1]) have shown a hitting time version of this in the G(n, m) model.

Say a graph G has property \mathcal{H} if it contains $\lfloor \delta(G)/2 \rfloor$ edge disjoint Hamilton cycles, plus a further edge disjoint near perfect matching in the case $\delta(G)$ is odd. Is it true that for every $0 \leq p \leq 1$ the random graph G(n, p) has property \mathcal{H} with high probability? This is clear whenever $\delta(G) = 0$. In the early 80s, Bollobás and Frieze ([3]) have proved that conjecture for $\delta(G) = O(1)$. In this talk I plan to prove the result for $p(n) \leq (1 + o(1)) \ln n/n$. This is a result of Frieze and Krivelevich from '08 ([4]).

Remark 1. The conjecture is nowadays known to be true for every p. It was proved for the range $\ln^{50} n/n \leq p \leq 1 - \ln^9 n/n^{1/4}$ by Knox, Kühn and Osthus in '13 ([6]), in a rather technically complicated paper. Later, Krivelevich and Samotij ([8]) have closed the gap for the sparse case, and Kühn and Osthus ([9]) have closed the gap for the dense case.

This is the main result we intend to prove:

Theorem 2. Let $p = p(n) \le (1 + o(1)) \ln n/n$. Then whp G(n, p) has property \mathcal{H} .

Remark 3. In this talk I will not consider the extra near perfect matching, expected in the case where $\delta(G)$ is odd. This adds some technicality, but nothing really different.

2 Preliminaries

2.1 Probability

Theorem 4 (Chernoff bounds, [5], Theorem 2.1). Let $X \sim Bin(n,p)$, $\mu = np$, $a \ge 0$. Then the following inequality holds:

$$\mathbb{P}\left(X \le \mu - a\right) \le \exp\left(-\frac{a^2}{2\mu}\right).$$

⁰Git revison 94a18287

Definition 5. A monotone increasing graph property P is a set of graphs which is closed upwards; that is, if $G \in P$ and $G \subseteq H$ then $H \in P$. Similarly, a monotone decreasing graph property Q is a set of graphs which is closed downwards; that is, if $G \in Q$ and $H \subseteq G$ then $H \in Q$.

Theorem 6 (The FKG inequality for monotone graph properties, [2], Theorem 6.3.3). Let P_1, P_2 be two monotone increasing graph properties and Q_1, Q_2 be two monotone decreasing graph properties. Let $G \sim G(n, p)$. Then:

$$\begin{split} \mathbb{P}\left(G \in P_1 \cap P_2\right) &\geq \mathbb{P}\left(G \in P_1\right) \mathbb{P}\left(G \in P_2\right), \\ \mathbb{P}\left(G \in Q_1 \cap Q_2\right) &\geq \mathbb{P}\left(G \in Q_1\right) \mathbb{P}\left(G \in Q_2\right), \\ \mathbb{P}\left(G \in P_1 \cap Q_1\right) &\leq \mathbb{P}\left(G \in P_1\right) \mathbb{P}\left(G \in Q_1\right). \end{split}$$

2.2 Sprinkle sprinkle

In the proof, we will use several standard techniques/tricks. The first trick is the trick of "sprinkling" random edges. Formally, we'd like to present G as a union of G_0 , which is very similar to G, and some random leftovers, R. This can be achieved easily by taking p_0 and ρ so that $1 - p = (1 - p_0)(1 - \rho)$ and letting $\rho = o(1/n)$, thus decomposing $G \sim G(n, p)$ to $G = G_0 \cup R$ where $G_0 \sim G(n, p_0)$ and $R \sim G(n, \rho)$. In which sense are G and G_0 similar? In the following:

Claim 7. Fix G_0 , let $R \sim G(n, \rho)$ and $G = G_0 \cup R$; then whp $\delta(G_0) = \delta(G)$.

Proof. Clearly, $\delta(G_0) \leq \delta(G)$, as G contains all the edges of G_0 and more. Now, let $v \in G_0$ with $d_{G_0}(v) = \delta(G_0)$. As $\rho = o(1/n)$, $d_R(v) = 0$ whp (a standard first moment argument), implying

$$\delta(G) \le d_G(v) = d_{G_0}(v) = \delta(G_0).$$

From now on, write $\delta_0 = \delta(G_0)$. It follows that it is enough to prove that G contains $(\mathbf{whp}) \lfloor \delta_0/2 \rfloor$ edge disjoint Hamilton cycles and an edge disjoint near perfect matching if δ_0 is odd. We also assume that $p = (1 + o(1)) \ln n/n$, as otherwise $\delta_0 \leq 1$ and there's nothing new to prove. We also note that from this assumption it follows that $\delta(G) = o(\ln n)$; this will follow from the following claims. Let D_k be the random variable counting the number of vertices in G(n, p) with degree exactly k. Clearly, $D_k = \sum_{v \in [n]} D_k(v)$, where $D_k(v)$ is the indicator of the event that v is of degree k. Note that

$$\mathbb{E}\left(D_k\right) = \sum_{v \in [n]} \mathbb{E}\left(D_k(v)\right) = n\mathbb{P}\left(d(v) = k\right) = n\binom{n-1}{k}p^k(1-p)^{n-1-k}$$

Thus, letting $k = \delta \ln n$ and $p = (1 + \varepsilon) \ln n/n$ for $\varepsilon = o(1)$,

$$\mathbb{E}(D_k) = n \binom{n-1}{\delta \ln n} p^{\delta \ln n} (1-p)^{n-1-\delta \ln n}$$

$$\geq n \left(\frac{(n-1)p}{\delta \ln n} \right)^{\delta \ln n} e^{-np}$$

$$\geq n^{-\varepsilon} \left(\frac{1+\varepsilon}{\delta} \right)^{\delta \ln n} \geq n^{\delta \ln(1/\delta)-\varepsilon} = \omega(1),$$

if we take $\delta = \delta(n)$ to be large enough, say, $\delta = \varepsilon$.

Claim 8. For $k = O(\ln n)$, if $\mathbb{E}(D_k) = \omega(1)$ then $Var(D_k) = o(\mathbb{E}^2(D_k))$.

Proof. Let $u \neq v$ be two vertices. Note that

$$\frac{\binom{n}{k-1}p^{k-1}}{\binom{n}{k}p^k} = \frac{k}{np}(1+o(1)) = \frac{k}{\ln n}(1+o(1)) = O(1),$$

thus

$$\begin{aligned} \operatorname{Cov} \left(D_k(u), D_k(v) \right) &= & \mathbb{P} \left(d(u) = k = d(v) \mid u \sim v \right) \mathbb{P} \left(u \sim v \right) \\ &+ \mathbb{P} \left(d(u) = k = d(v) \mid u \nsim v \right) \mathbb{P} \left(u \nsim v \right) - \mathbb{P}^2 \left(d(u) = k \right) \\ &= & \left(\binom{n-2}{k-1} p^{k-1} (1-p)^{n-1-k} \right)^2 p \\ &+ \left(\binom{n-2}{k} p^k (1-p)^{n-2-k} \right)^2 (1-p) - \left(\binom{n-1}{k} p^k (1-p)^{n-1-k} \right)^2 \\ &= & O \left(\mathbb{E}^2 (D_k) p n^{-2} \right) + O \left(\mathbb{E}^2 (D_k) n^{-2} \cdot \left(\frac{1}{1-p} - 1 \right) \right) \\ &= & o \left(\mathbb{E}^2 (D_k) n^{-2} \right). \end{aligned}$$

It follows that

$$\operatorname{Var}(D_k) \leq \mathbb{E}(D_k) + \sum_{u \neq v} \operatorname{Cov}(D_k(u), D_k(v)) = o\left(\mathbb{E}^2(D_k)\right).$$

For technical reasons, we'll define a very particular ρ so that $\rho = o(1/n)$ will hold. Set $d_0 = \min \{k \mid \mathbb{E}(D_k) \ge 1\}$.

Claim 9. $d_0 = o(\ln n)$.

Proof. As we've seen, for $k = \delta \ln n$, $\delta = o(1)$, $\mathbb{E}(D_k) \to \infty$, and $d_0 < k$, so $d_0 = o(\ln n)$.

Note that d_0 approximates $\delta(G)$; formally,

Claim 10. *whp*, $|\delta(G) - d_0| \le 2$.

Proof. Note that

$$\frac{\mathbb{E}(D_{k+1})}{\mathbb{E}(D_k)} = \frac{n\binom{n-1}{k+1}p^{k+1}(1-p)^{n-2-k}}{n\binom{n-1}{k}p^k(1-p)^{n-1-k}} = \frac{(n-1-k)p}{(k+1)(1-p)}$$

As we've seen, $d_0 = o(\ln n)$. Thus it follows that for $b \ge 1$,

$$\mathbb{E}\left(D_{d_0-b-1}\right) = \mathbb{E}\left(D_{d_0-b}\right) \cdot \frac{(d_0-b)(1-p)}{(n-1-(d_0-b-1))p} < \frac{d_0}{\frac{1}{2}np} = \varepsilon' = o(1),$$

and by a Markov's inequality and the union bound,

$$\mathbb{P}\left(\exists b \ge 1, D_{d_0-b-1} > 0\right) \le \sum_{b=1}^{d_0-1} (\varepsilon')^b \le \frac{\varepsilon'}{1-\varepsilon'} = o(1).$$

In addition,

$$\mathbb{E}(D_{d_0+1}) = \mathbb{E}(D_{d_0}) \cdot \frac{(n-1-d_0)p}{(d_0+1)(1-p)} \ge \frac{\frac{1}{2}np}{d_0} = \omega(1),$$

and by Chebyshev's inequality and the previous claim,

$$\mathbb{P}(D_{d_0+1}=0) \le \mathbb{P}(|D_{d_0+1} - \mathbb{E}(D_{d_0+1})| \ge 1) \le \frac{\operatorname{Var}(D_{d_0+1})}{\mathbb{E}^2(D_{d_0+1})} = o(1).$$

Therefore, **whp** there is no vertex with degree at most $d_0 - 2$ and there is a vertex with degree $d_0 + 1$, thus $|\delta(G) - d_0| \le 2$.

Corollary 11. whp, $\delta(G) = o(\ln n)$.

We then define

$$\rho = \frac{2001(d_0 + \ln\ln n)}{n\ln n}$$

and observe that $\rho = o(1/n)$ (again, since $d_0 = o(\ln n)$), and that $np_0 = np(1 + o(1))$.

2.3 Properties of random graphs

In this section we give a list of properties, each occuring **whp**, in the random graph $G_0 \sim G(n, p_0)$. Define the set SMALL:

SMALL =
$$\{ v \in V(G) \mid d_{G_0(v)} \le 0.1 \ln n \}$$
.

Lemma 12. The random graph $G_0 \sim G(n, p_0)$ with p_0 defined earlier, has **whp** the following properties:

- (P1) There is no non-empty path of length at most 4 in G_0 such that both of its (possibly identical) endpoints lie in SMALL.
- (P2) Every set $U \subseteq V(G)$ with $|U| \le 100n/\ln n$ spans at most $|U|(\ln n)^{1/2}$ edges in G_0 .
- (P3) For every two disjoint sets $U, W \subseteq V(G)$ with $|U| \leq 100n/\ln n$, $|W| \leq |U| \ln n/10000$,

$$|E_{G_0}(U,W)| < 0.09|U|\ln n.$$

(P4) For every two disjoint sets $U, W \subseteq V(G)$ with $|U| \ge 100n/\ln n$, $|W| \ge n/4$,

$$|E_{G_0}(U,W)| \ge 0.1|U|\ln n.$$

Proof of (P1). Fix a vertex v. Note that

$$\mathbb{P}(v \in \text{SMALL}) = \sum_{k=0}^{0.1 \ln n} \mathbb{P}(\text{Bin}(n-1,p_0) = k)$$

$$\leq 0.1 \ln n \binom{n-1}{0.1 \ln n} p_0^{0.1 \ln n} (1-p_0)^{n-1-0.1 \ln n}$$

$$\leq 0.1 \ln n \left(\frac{10enp}{\ln n}\right)^{0.1 \ln n} e^{-p_0(n-1-0.1 \ln n)}$$

$$\leq 28^{0.1 \ln n} e^{-(1-o(1)) \ln n} < n^{-0.6}.$$

Now fix $u \neq v$. The probability that u, v are connected by a path of length ℓ in G_0 is at most $n^{\ell-1}p_0^{\ell} = ((1+o(1))\ln n)^{\ell}n^{-1}$ (choosing $\ell-1$ inner vertices and for each such choice requiring ℓ edges). Furthermore, as there's exactly one edge of K_n connecting u with v, conditioning on the event " $u \in \text{SMALL}$ " cannot increase the probability of " $v \in \text{SMALL}$ " by too much:

$$\begin{split} \mathbb{P}\left(u, v \in \mathrm{SMALL}\right) &\leq \mathbb{P}\left(v \in \mathrm{SMALL} \mid u \in \mathrm{SMALL}\right) \mathbb{P}\left(u \in \mathrm{SMALL}\right) \\ &\leq \mathbb{P}\left(v \in \mathrm{SMALL} \mid \{u, v\} \notin E\right) \mathbb{P}\left(u \in \mathrm{SMALL}\right) \\ &\leq \mathbb{P}\left(v \in \mathrm{SMALL}\right) \mathbb{P}\left(u \in \mathrm{SMALL}\right) \cdot \frac{1}{1-p}. \end{split}$$

Note also that " $u, v \in \text{SMALL}$ " is a monotone decreasing event and " $d(u, v) \leq 4$ " is a monotone increasing event. Thus, according to the FKG inequality,

$$\mathbb{P}\left(u, v \in \text{SMALL} \land d(u, v) \le 4\right) \le \mathbb{P}\left(u, v \in \text{SMALL}\right) \cdot \mathbb{P}\left(d(u, v) \le 4\right).$$

Therefore,

$$\begin{split} \mathbb{P}\left(u, v \in \mathrm{SMALL} \land d(u, v) \leq 4\right) &\leq \mathbb{P}\left(u, v \in \mathrm{SMALL}\right) \cdot \mathbb{P}\left(d(u, v) \leq 4\right) \\ &\leq \mathbb{P}\left(v \in \mathrm{SMALL}\right) \mathbb{P}\left(u \in \mathrm{SMALL}\right) \mathbb{P}\left(d(u, v) \leq 4\right) (1 + o(1)) \\ &\leq n^{-0.6} \cdot n^{-0.6} \cdot \frac{\ln^4 n}{n} \cdot (1 + o(1)) < n^{-2.1}. \end{split}$$

Applying the union bound over all possible pairs of u, v we establish (P1).

Proof of (P2). For a given $U \subseteq [n]$ with $|U| = u \leq 100n/\ln n$, let A_U be the event by which $|E(U)| \geq u \ln^{1/2} n$. By the union bound,

$$\mathbb{P}(\exists U, |U| = u \leq 100n/\ln n, A_U) \leq \sum_{u=1}^{100n/\ln n} \binom{n}{u} \binom{\binom{u}{2}}{u \ln^{1/2} n} p^{u \ln^{1/2} n} \\
\leq \sum_{u=1}^{100n/\ln n} \left(\frac{en}{u} \left(\frac{eup}{2 \ln^{1/2} n}\right)^{\ln^{1/2} n}\right)^u \\
\leq \sum_{u=1}^{100n/\ln n} \left(\frac{en}{u} \left(\frac{2u \ln^{1/2} n}{n}\right)^{\ln^{1/2} n}\right)^u.$$

We now separate the sum into two:

$$\sum_{u=1}^{\ln n} \left(\frac{en}{u} \left(\frac{2u \ln^{1/2} n}{n} \right)^{\ln^{1/2} n} \right)^u \le \ln n \cdot en \left(\frac{2\ln^{3/2} n}{n} \right)^{\ln^{1/2} n} = o(1),$$

and

$$\sum_{u=\ln n}^{100n/\ln n} \left(\frac{en}{u} \left(\frac{2u \ln^{1/2} n}{n} \right)^{\ln^{1/2} n} \right)^{u} \leq n \left(e \left(\frac{u}{n} \right)^{\ln^{1/2} n-1} \left(2 \ln^{1/2} n \right)^{\ln^{1/2} n} \right)^{u} \\ \leq n \left(e \left(\frac{1}{\ln n} \right)^{\ln^{1/2} n-1} \left(2 \ln^{1/2} n \right)^{\ln^{1/2} n} \right)^{u} = o(1).$$

Proof of (P3). For a given $U \subseteq [n]$ with $|U| = u \leq 100n/\ln n$ and $W \subseteq [n]$ with $|W| \leq u' = \frac{u \ln n}{10000}$, let $A_{U,W}$ be the event by which $|E(U,W)| \geq 0.09u \ln n$. By the union bound,

$$\mathbb{P}(\exists U, W, A_{U,W}) \leq \sum_{u=1}^{100n/\ln n} \sum_{w=1}^{\ln n/1000} {n \choose u} {n \choose w} {uw \choose 0.09u \ln n} p^{0.09u \ln n} \\
\leq \sum_{u=1}^{100n/\ln n} u' {n \choose u} {n \choose u'} {uu' \choose 0.09u \ln n} p^{0.09u \ln n} \\
\leq \sum_{u=1}^{100n/\ln n} u' \left(\left(\frac{en}{u}\right) \left(\frac{en}{u'}\right)^{\ln n/10000} \left(\frac{eu'p}{0.09 \ln n}\right)^{0.09 \ln n} \right)^{u} \\
\leq \sum_{u=1}^{100n/\ln n} u' \left(ne^{\ln n/10000} \left(\frac{e}{0.09}\right)^{0.09 \ln n} \left(\frac{n}{u'}\right)^{\frac{\ln n}{10000} - 0.09 \ln n} \right)^{u} \\
\leq \sum_{u=1}^{100n/\ln n} u' \left(n^{2} \left(\frac{n}{u'}\right)^{-0.08 \ln n} \right)^{u} \\
\leq \sum_{u=1}^{100n/\ln n} u' \left(n^{2-0.08n/u'} \right)^{u} = o(1),$$

as $0.08n/u' \ge 8$.

Proof of (P4). Fix $U, W, |U| \ge 100n/\ln n, |W| \ge n/4$. Note that the number of edges between U, W in G_0 is binomially distributed with |U||W| trials and success probability p_0 , hence

$$\mathbb{E}\left(|E_{G_0}(U, W)|\right) \ge (1 + o(1))|U|\ln n/4.$$

By Chernoff bounds (Theorem 4),

$$\begin{aligned} \mathbb{P}\left(|E_{G_0}(U,W)| &\le 0.1 |U| \ln n\right) &\le & \mathbb{P}\left(|E_{G_0}(U,W)| &\le 0.25 |U| \ln n - 0.15 |U| \ln n\right) \\ &\le & \exp\left(-\frac{(0.15 |U| \ln n)^2}{2 \cdot 0.25 |U| \ln n}\right) \\ &< & \exp\left(-2 \cdot 0.15^2 |U| \ln n\right) < \exp\left(-4n\right). \end{aligned}$$

Now, the number of pairs U, W is at most 4^n , union bound gives that the probability that such a pair exists is at most $4^n e^{-4n} = o(1)$.

2.4 Expanders, rotations and boosters

One of the key concepts in many connectivity and Hamiltonicity related problems is that of an expander.

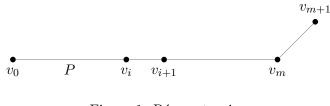
Definition 13. For every c > 0 and every positive integer R we say that a graph G = (V, E) is an (R, c)-expander if every subset of vertices $U \subseteq V$ of cardinality $|U| \leq R$ satisfies $|N_G(U)| \geq c|U|$.

Claim 14. Let G be a (k, 2)-expander on n vertices, with $k > \frac{n}{4}$. Then, G is connected.

Proof. Since every set of cardinality at most n/4 expands, every connected component must be of cardinality at least 3n/4, and there's room for only 1 such component.

Our approach will consist of that concept, bundled with the so-called rotation-extension technique, introduced by Pósa in '76 ([10]). Here we will cover the technique, including a key lemma.

Given a path $P = (v_0, \ldots, v_m)$, we can *extend* it by adding v_{m+1} which is not part of the path but is a neighbour of v_m , or we can *rotate* it by finding a neighbour v_i of v_m inside the path, adding the edge $\{v_m, v_i\}$ and erasing the edge $\{v_i, v_{i+1}\}$ $(1 \le i < m)$.



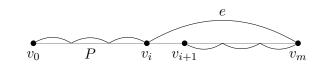


Figure 2: Pósa rotation

Lemma 15. Let G be a graph, P a path of maximal length in G, \mathcal{P} the set of all (rooted) paths obtained by P be a sequence of rotations, U the set of endpoints of these paths, N^- and N^+ the sets of vertices immediately preceeding and following the vertices of U along P, respectively. Then, $N(U) \subseteq N^- \cup N^+$.

Proof. Denote $P = (v_0, \ldots, v_m)$. Let $u \in U$, $v \notin (U \cup N^- \cup N^+)$, and let P_u be a rotation of P ending at u. If $v \notin P$ then $\{u, v\} \notin E$, otherwise we could have extended P_u and get a longer path, contradicting our assumption.

Thus, $v \in P$. Let v^-, v^+ be its two possible neighbours in P. Suppose $\{u, v\} \in E$. Then, we can rotate P_u to get P_w ending at w, where w is a neighbour of v. If w is v^- or v^+ , we get a contradiction, as this puts v in N^- or N^+ . Thus, one of the edges in P between v and v^-, v^+ broke during a rotation. Let's look at when it has happened; then, if $\{v^-, v\}$ broke, that rotation has made v an end vertex, and if $\{v, v^+\}$ broke, that rotation has put $v \in N^-, N^+$. Thus, $\{u, v\} \notin E$. \Box

Corollary 16.

$$|N(U)| \le |N^- \cup N^+| \le 2|U| - 1.$$

Corollary 17. Let G be a connected non-Hamiltonian (k, 2)-expander. Then G contains a path of (edge) length 3k - 1.

Proof. Let P be a path of maximal length m (counting in edges) in G. Recall that $|N(U)| \leq 2|U|-1$, that is, U does not expand, hence |U| > k. Let $U' \subseteq U$ with |U'| = k. Since P is maximal, $N(U') \subseteq V(P)$, thus $|V(P)| \geq 3k$, hence P is of length at least 3k - 1.

In order to utilize that lemma for our needs, we introduce the notion of a booster:

Definition 18. Given a graph G, a non-edge $e = \{u, v\}$ of G is called a booster if adding e to G creates a graph G', which is either Hamiltonian or whose maximum path is longer than that of G.

Note that technically every non-edge of a Hamiltonian graph G is a booster by definition.

Boosters advance a graph towards Hamiltonicity when added; adding sequentially n boosters clearly brings any graph on n vertices to Hamiltonicity.

Corollary 19. Let G be a connected non-Hamiltonian (k, 2)-expander. Then G has at least $\frac{(k+1)^2}{2}$ boosters.

Proof. Let P be a path of maximal length m (counting in edges) in G. Again, |U| > k. We now seek of $\frac{(k+1)^2}{2}$ non-edges which, when added, create a cycle of length m + 1.

Fix a set u_1, \ldots, u_{k+1} of end vertices. For each, let P_i be the rotation of P ending at u_i . For such i, fix u_i as a starting vertex, and let \mathcal{P}_i be the set of rotations of P_i . Let U_i be the set of endpoints retrieved that way. As before, $|U_i| > k$. Let $u_1^{(i)}, \ldots, u_{k+1}^{(i)}$ be a set of such end vertices.

Note that for every $i, j \in [k+1]$, $u_i, u_j^{(i)}$ are not connected, as if they were, we would have a cycle of length m + 1, and either end up with a Hamilton cycle, or, if m + 1 < n, since G is connected, get a longer path. As each non-edge was counted at most twice that way, we have at least $(k+1)^2/2$ such non-edges, each is a booster.

3 The proof

The outline of the proof is as follows: we split the graph R into $\lceil \delta_0/2 \rceil$ identically distributed random graphs R_i . We start with G_0 , finding enough boosters in R_1 to get a Hamilton cycle, deleting its edges and end up in G_1 , and continuing so: given G_{i-1} $(1 \le i \le \lceil \delta_0/2 \rceil)$, we find boosters in R_i to get a Hamilton cycle H_i , and by deleting it we get G_i . During the process, we'll keep the following attributes of G_i :

(I1) $\delta(G_i) \ge 2$

- (I2) G_i is a $(n/3 cn/\ln n, 2)$ -expander (that will follow from (P1)-(P4))
- (I3) G_i is connected
- (I4) G_i has a path of length at least $n cn/\ln n$
- (I5) G_i has quadratic number of boosters.
- If δ_0 is odd, we'll need a final stage to create a near perfect matching.

3.1 Formal argument

We may assume that $\delta_0 \geq 2$, otherwise there's nothing new to prove. For $1 \leq i \leq \lceil \delta_0/2 \rceil$ define ρ_i by

$$1 - \rho = (1 - \rho_i)^{\lceil \delta_0/2 \rceil}.$$

Observe that

$$1 - \rho = (1 - \rho_i)^{\lceil \delta_0/2 \rceil} \ge 1 - \rho_i \left\lceil \delta_0/2 \rceil,\right.$$

and thus

$$\rho_i \ge \frac{\rho}{\lceil \delta_0/2 \rceil} = \frac{2001(d_0 + \ln \ln n)}{\lceil \delta_0/2 \rceil n \ln n} \ge \frac{4000}{n \ln n}.$$

Now let

$$R = \bigcup_{i=1}^{|\delta_0/2|} R_i,$$

where $R_i \sim G(n, \rho_i)$, and let G_i be the graph obtained from $G_0 \cup \bigcup_{j=1}^i R_i$ after having deleted the first *i* Hamilton cycles, assuming that the previous i-1 stages were indeed successful. Let $i < \lfloor \delta_0/2 \rfloor$. To see (I1), note that every vertex had its degree in G_0 reduced by at most 2i in G_i . Thus,

$$\delta(G_i) \ge \delta_0 - 2i \ge \delta_0 - 2(\lfloor \delta_0/2 \rfloor - 1) \ge 2.$$

To see (I2), we now show that G_i is a (k, 2)-expander for $k = n/3 - 100n/(3 \ln n)$. For that, let X be a vertex set with t vertices. Consider the following two cases:

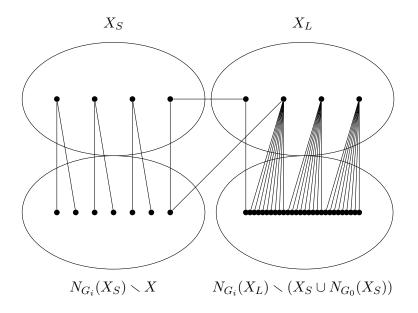


Figure 3: Case I

Case 1 $(t \leq 100n/\ln n)$: Denote $X_S = X \cap \text{SMALL}$ and $X_L = X \setminus X_S$. Denote $t_S = |X_S|$ and $t_L = |X_L|$. Observe that $|N_{G_i}(X_S, V \setminus X)| \geq 2t_S - t_L$; indeed, by property (P1), every vertex in X_S has at least 2 unique neighbours in $V \setminus X_S$, and at most t_L of these $2t_S$ neighbours lie in X_L . By property (P2), X_L spans at most $t_L(\ln n)^{1/2}$ edges in G_0 . Recall that the minimal degree of X_L in G_0 is at least 0.1 ln n; thus, at least $0.09t_L \ln n$ edges leave X_L in G_0 . But then by (P3), the set of neighbours of X_L must be of cardinality greater than $t_L \ln n/10000$. By (P1) again, at most t_L of these fall into $X_S \cup N_{G_0}(X_S)$. As in G_i each vertex has lost at most δ_0 neighbours comparing to what it had in G_0 , we have that in G_i , the set of neighbours of X_L outside $X_S \cup N_{G_0}(X_S)$ is at least $t_L(\ln n/10000 - 1 - \delta_0) \geq t_L \ln n/10000$. Altogether,

$$|N_{G_i}(X)| \ge 2t_S - t_L + t_L \ln n / 100000 \ge 2t_S + 2t_L = 2t,$$

as claimed.

Case 2 $(100n/\ln n \le t \le n/3 - 100n/(3\ln n))$: Assume to the contrary that $|N_{G_i}(X)| < 2t$. In that case we can find a vertex set Y disjoint to $X \cup N_{G_i}(X)$ of cardinality n - 3t. Thus, in G_0 there were at most $2\lfloor \delta_0/2 \rfloor \min\{t, n - 3t\}$ edges between X and Y. If $t \le n/4$ then $n - 3t \ge n/4$ and by (P4) we should have had $|E_{G_0}(X,Y)| \ge 0.1t \ln n \gg \delta_0 t$. If $t \ge n/4$ then $n - 3t \ge n - 3(n/3 - 100n/(3\ln n)) = 100n/\ln n$, and again by (P4) we should have had $|E_{G_0}(Y,X)| \ge 0.1t \ln n \gg \delta_0 t$.

The proof of Theorem 2 will follow from:

Lemma 20. Let G = (V, E) be a (n/3 - k, 2)-expander on n vertices, where k = o(n). Let R be a random graph G(n, p) with $p = 120k/n^2$. Then, $\mathbb{P}(G \cup R \text{ is not Hamiltonian}) < exp(-\Omega(k))$.

Proof. Note that the following properties hold for G:

(I3) G is connected (due to Claim 14)

- (I4) G has a path of length at least n 3k 1 (due to Corollary 17)
- (15) If a supergraph of G is non-Hamiltonian it has at least $n^2/20$ boosters (due the Corollary 19, and since $(n/3 k + 1)^2/2 > n^2/20$).

We split the random graph R into 6k identically distributed graphs

$$R = \bigcup_{i=1}^{6k} R_i$$

where $R_i \sim G(n, p_i)$ and $p_i \geq p/(6k) = 20/n^2$. Set $G_0 = G$ and for $i \in [6k]$ let

$$G_i = G \cup \bigcup_{j=1}^i R_j$$

At stage *i* we add to G_{i-1} the next random graph R_i . We call a stage *successful* if the maximal length of a path in G_i is longer than that of G_{i-1} , or if G_i is Hamiltonian. Clearly, if at least 3k + 1stages are successful then the final graph G_{6k} is Hamiltonian (due to (I5)). Observe that for stage *i* to be successful, if G_{i-1} is not yet Hamiltonian, it is enough for the random graph R_i to hit one of the boosters of G_{i-1} . Thus, stage *i* is unsuccessful with probability at most $(1-p_i)^{n^2/20} < 1/e$. Thus, the number of successful stages *S* is a random variable which stochastically domainates Bin (6k, 1 - 1/e). Therefore, putting c = 1 - 1/e and using Chernoff bounds (Theorem 4),

$$\mathbb{P}\left(G \cup R \text{ is not Hamiltonian}\right) \le \mathbb{P}\left(S \le 3k\right) \le \exp\left(-\frac{(6c-3)^2k^2}{2 \cdot 6ck}\right) < \exp\left(-\Omega(k)\right).$$

Proof of Theorem 2. Suppose we have G_{i-1} for $1 \leq i \leq \lceil \delta_0/2 \rceil$. We have shown that G_{i-1} is a (n/3 - k, 2)-expander for $k = 100n/(3\ln n) = o(n)$. R_i is a random graph with probability $\rho_i \geq 4000/(n\ln n) = 120k/n^2$. Therefore by the above lemma, $G_{i-1} \cup R_i$ is not Hamiltonian with probability at most exp $(-\Omega(k))$. Union bound over all $\lfloor \delta_0/2 \rfloor$ steps yields the desired result. \Box

References

- Miklós Ajtai, János Komlós, and E Szeraerédi, First occurrence of hamilton cycles in random graphs, North-Holland Mathematics Studies 115 (1985), 173–178.
- [2] Noga Alon and Joel H. Spencer, The probabilistic method, 3rd ed., Wiley Series in Discrete Mathematics and Optimization, John Wiley & Sons, 2008.
- [3] Béla Bollobás and Alan M Frieze, On matchings and hamiltonian cycles in random graphs, North-Holland Mathematics Studies 118 (1985), 23–46.
- [4] Alan Frieze and Michael Krivelevich, On two hamilton cycle problems in random graphs, Israel Journal of Mathematics 166 (2008), no. 1, 221–234.
- [5] Svante Janson, Tomasz Łuczak, and Andrzej Ruciński, Random graphs, Wiley Series in Discrete Mathematics and Optimization, John Wiley & Sons, 2000.
- [6] Fiachra Knox, Daniela Kühn, and Deryk Osthus, Edge-disjoint hamilton cycles in random graphs, Random Structures & Algorithms (2013).

- [7] János Komlós and Endre Szemerédi, Limit distribution for the existence of hamiltonian cycles in a random graph, Discrete Mathematics 43 (1983), no. 1, 55–63.
- [8] Michael Krivelevich and Wojciech Samotij, Optimal packings of hamilton cycles in sparse random graphs, SIAM Journal on Discrete Mathematics 26 (2012), no. 3, 964–982.
- [9] Daniela Kuhn and Deryk Osthus, Hamilton decompositions of regular expanders (2013).
- [10] Lajos Pósa, Hamiltonian circuits in random graphs, Discrete Mathematics 14 (1976), no. 4, 359-364.