Edge Disjoint Hamilton Cycles

April 26, 2015

1 Introduction

In the late 70s, it was shown by Komlós and Szemerédi ([7]) that for $p=\frac{\ln n+\ln \ln n+c}{n}$, the limit probability for $G(n, p)$ to contain a Hamilton cycle equals the limit probability for $G(n, p)$ to have minimum degree at least 2. A few years later, Ajtai, Komlós and Szemerédi ([1]) have shown a hitting time version of this in the $G(n, m)$ model.
Say a graph G has property \mathcal{H} if it contains $\lfloor\delta(G) / 2\rfloor$ edge disjoint Hamilton cycles, plus a further edge disjoint near perfect matching in the case $\delta(G)$ is odd. Is it true that for every $0 \leq p \leq 1$ the random graph $G(n, p)$ has property \mathcal{H} with high probability? This is clear whenever $\delta(G)=0$. In the early 80s, Bollobás and Frieze ([3]) have proved that conjecture for $\delta(G)=O(1)$. In this talk I plan to prove the result for $p(n) \leq(1+o(1)) \ln n / n$. This is a result of Frieze and Krivelevich from '08 ([4]).
Remark 1. The conjecture is nowadays known to be true for every p. It was proved for the range $\ln ^{50} n / n \leq p \leq 1-\ln ^{9} n / n^{1 / 4}$ by Knox, Kühn and Osthus in '13 ([6]), in a rather technically complicated paper. Later, Krivelevich and Samotij ([8]) have closed the gap for the sparse case, and Kühn and Osthus ([9]) have closed the gap for the dense case.

This is the main result we intend to prove:
Theorem 2. Let $p=p(n) \leq(1+o(1)) \ln n / n$. Then whp $G(n, p)$ has property \mathcal{H}.
Remark 3. In this talk I will not consider the extra near perfect matching, expected in the case where $\delta(G)$ is odd. This adds some technicality, but nothing really different.

2 Preliminaries

2.1 Probability

Theorem 4 (Chernoff bounds, [5], Theorem 2.1). Let $X \sim \operatorname{Bin}(n, p), \mu=n p, a \geq 0$. Then the following inequality holds:

$$
\mathbb{P}(X \leq \mu-a) \leq \exp \left(-\frac{a^{2}}{2 \mu}\right) .
$$

[^0]Definition 5. A monotone increasing graph property P is a set of graphs which is closed upwards; that is, if $G \in P$ and $G \subseteq H$ then $H \in P$. Similarly, a monotone decreasing graph property Q is a set of graphs which is closed downwards; that is, if $G \in Q$ and $H \subseteq G$ then $H \in Q$.
Theorem 6 (The FKG inequality for monotone graph properties, [2], Theorem 6.3.3). Let P_{1}, P_{2} be two monotone increasing graph properties and Q_{1}, Q_{2} be two monotone decreasing graph properties. Let $G \sim G(n, p)$. Then:

$$
\begin{aligned}
\mathbb{P}\left(G \in P_{1} \cap P_{2}\right) & \geq \mathbb{P}\left(G \in P_{1}\right) \mathbb{P}\left(G \in P_{2}\right), \\
\mathbb{P}\left(G \in Q_{1} \cap Q_{2}\right) & \geq \mathbb{P}\left(G \in Q_{1}\right) \mathbb{P}\left(G \in Q_{2}\right), \\
\mathbb{P}\left(G \in P_{1} \cap Q_{1}\right) & \leq \mathbb{P}\left(G \in P_{1}\right) \mathbb{P}\left(G \in Q_{1}\right) .
\end{aligned}
$$

2.2 Sprinkle sprinkle

In the proof, we will use several standard techniques/tricks. The first trick is the trick of "sprinkling" random edges. Formally, we'd like to present G as a union of G_{0}, which is very similar to G, and some random leftovers, R. This can be achieved easily by taking p_{0} and ρ so that $1-p=\left(1-p_{0}\right)(1-\rho)$ and letting $\rho=o(1 / n)$, thus decomposing $G \sim G(n, p)$ to $G=G_{0} \cup R$ where $G_{0} \sim G\left(n, p_{0}\right)$ and $R \sim G(n, \rho)$. In which sense are G and G_{0} similar? In the following:

Claim 7. Fix G_{0}, let $R \sim G(n, \rho)$ and $G=G_{0} \cup R$; then whp $\delta\left(G_{0}\right)=\delta(G)$.
Proof. Clearly, $\delta\left(G_{0}\right) \leq \delta(G)$, as G contains all the edges of G_{0} and more. Now, let $v \in G_{0}$ with $d_{G_{0}}(v)=\delta\left(G_{0}\right)$. As $\rho=o(1 / n), d_{R}(v)=0 \mathbf{w h p}$ (a standard first moment argument), implying

$$
\delta(G) \leq d_{G}(v)=d_{G_{0}}(v)=\delta\left(G_{0}\right) .
$$

From now on, write $\delta_{0}=\delta\left(G_{0}\right)$. It follows that it is enough to prove that G contains (whp) $\left\lfloor\delta_{0} / 2\right\rfloor$ edge disjoint Hamilton cycles and an edge disjoint near perfect matching if δ_{0} is odd. We also assume that $p=(1+o(1)) \ln n / n$, as otherwise $\delta_{0} \leq 1$ and there's nothing new to prove. We also note that from this assumption it follows that $\delta(G)=o(\ln n)$; this will follow from the following claims. Let D_{k} be the random variable counting the number of vertices in $G(n, p)$ with degree exactly k. Clearly, $D_{k}=\sum_{v \in[n]} D_{k}(v)$, where $D_{k}(v)$ is the indicator of the event that v is of degree k. Note that

$$
\mathbb{E}\left(D_{k}\right)=\sum_{v \in[n]} \mathbb{E}\left(D_{k}(v)\right)=n \mathbb{P}(d(v)=k)=n\binom{n-1}{k} p^{k}(1-p)^{n-1-k}
$$

Thus, letting $k=\delta \ln n$ and $p=(1+\varepsilon) \ln n / n$ for $\varepsilon=o(1)$,

$$
\begin{aligned}
\mathbb{E}\left(D_{k}\right) & =n\binom{n-1}{\delta \ln n} p^{\delta \ln n}(1-p)^{n-1-\delta \ln n} \\
& \geq n\left(\frac{(n-1) p}{\delta \ln n}\right)^{\delta \ln n} e^{-n p} \\
& \geq n^{-\varepsilon}\left(\frac{1+\varepsilon}{\delta}\right)^{\delta \ln n} \geq n^{\delta \ln (1 / \delta)-\varepsilon}=\omega(1),
\end{aligned}
$$

if we take $\delta=\delta(n)$ to be large enough, say, $\delta=\varepsilon$.
Claim 8. For $k=O(\ln n)$, if $\mathbb{E}\left(D_{k}\right)=\omega(1)$ then $\operatorname{Var}\left(D_{k}\right)=o\left(\mathbb{E}^{2}\left(D_{k}\right)\right)$.
Proof. Let $u \neq v$ be two vertices. Note that

$$
\frac{\binom{n}{k-1} p^{k-1}}{\binom{n}{k} p^{k}}=\frac{k}{n p}(1+o(1))=\frac{k}{\ln n}(1+o(1))=O(1)
$$

thus

$$
\begin{aligned}
\operatorname{Cov}\left(D_{k}(u), D_{k}(v)\right)= & \mathbb{P}(d(u)=k=d(v) \mid u \sim v) \mathbb{P}(u \sim v) \\
& +\mathbb{P}(d(u)=k=d(v) \mid u \nsim v) \mathbb{P}(u \nsim v)-\mathbb{P}^{2}(d(u)=k) \\
= & \left(\binom{n-2}{k-1} p^{k-1}(1-p)^{n-1-k}\right)^{2} p \\
& +\left(\binom{n-2}{k} p^{k}(1-p)^{n-2-k}\right)^{2}(1-p)-\left(\binom{n-1}{k} p^{k}(1-p)^{n-1-k}\right)^{2} \\
= & O\left(\mathbb{E}^{2}\left(D_{k}\right) p n^{-2}\right)+O\left(\mathbb{E}^{2}\left(D_{k}\right) n^{-2} \cdot\left(\frac{1}{1-p}-1\right)\right) \\
= & o\left(\mathbb{E}^{2}\left(D_{k}\right) n^{-2}\right) .
\end{aligned}
$$

It follows that

$$
\operatorname{Var}\left(D_{k}\right) \leq \mathbb{E}\left(D_{k}\right)+\sum_{u \neq v} \operatorname{Cov}\left(D_{k}(u), D_{k}(v)\right)=o\left(\mathbb{E}^{2}\left(D_{k}\right)\right) .
$$

For technical reasons, we'll define a very particular ρ so that $\rho=o(1 / n)$ will hold. Set $d_{0}=$ $\min \left\{k \mid \mathbb{E}\left(D_{k}\right) \geq 1\right\}$.

Claim 9. $d_{0}=o(\ln n)$.
Proof. As we've seen, for $k=\delta \ln n, \delta=o(1), \mathbb{E}\left(D_{k}\right) \rightarrow \infty$, and $d_{0}<k$, so $d_{0}=o(\ln n)$.
Note that d_{0} approximates $\delta(G)$; formally,
Claim 10. whp, $\left|\delta(G)-d_{0}\right| \leq 2$.
Proof. Note that

$$
\frac{\mathbb{E}\left(D_{k+1}\right)}{\mathbb{E}\left(D_{k}\right)}=\frac{n\binom{n-1}{k+1} p^{k+1}(1-p)^{n-2-k}}{n\binom{n-1}{k} p^{k}(1-p)^{n-1-k}}=\frac{(n-1-k) p}{(k+1)(1-p)} .
$$

As we've seen, $d_{0}=o(\ln n)$. Thus it follows that for $b \geq 1$,

$$
\mathbb{E}\left(D_{d_{0}-b-1}\right)=\mathbb{E}\left(D_{d_{0}-b}\right) \cdot \frac{\left(d_{0}-b\right)(1-p)}{\left(n-1-\left(d_{0}-b-1\right)\right) p}<\frac{d_{0}}{\frac{1}{2} n p}=\varepsilon^{\prime}=o(1),
$$

and by a Markov's inequality and the union bound,

$$
\mathbb{P}\left(\exists b \geq 1, D_{d_{0}-b-1}>0\right) \leq \sum_{b=1}^{d_{0}-1}\left(\varepsilon^{\prime}\right)^{b} \leq \frac{\varepsilon^{\prime}}{1-\varepsilon^{\prime}}=o(1) .
$$

In addition,

$$
\mathbb{E}\left(D_{d_{0}+1}\right)=\mathbb{E}\left(D_{d_{0}}\right) \cdot \frac{\left(n-1-d_{0}\right) p}{\left(d_{0}+1\right)(1-p)} \geq \frac{\frac{1}{2} n p}{d_{0}}=\omega(1),
$$

and by Chebyshev's inequality and the previous claim,

$$
\mathbb{P}\left(D_{d_{0}+1}=0\right) \leq \mathbb{P}\left(\left|D_{d_{0}+1}-\mathbb{E}\left(D_{d_{0}+1}\right)\right| \geq 1\right) \leq \frac{\operatorname{Var}\left(D_{d_{0}+1}\right)}{\mathbb{E}^{2}\left(D_{d_{0}+1}\right)}=o(1)
$$

Therefore, whp there is no vertex with degree at most $d_{0}-2$ and there is a vertex with degree $d_{0}+1$, thus $\left|\delta(G)-d_{0}\right| \leq 2$.

Corollary 11. whp, $\delta(G)=o(\ln n)$.
We then define

$$
\rho=\frac{2001\left(d_{0}+\ln \ln n\right)}{n \ln n},
$$

and observe that $\rho=o(1 / n)$ (again, since $d_{0}=o(\ln n)$), and that $n p_{0}=n p(1+o(1))$.

2.3 Properties of random graphs

In this section we give a list of properties, each occuring whp, in the random graph $G_{0} \sim G\left(n, p_{0}\right)$. Define the set SMALL:

$$
\text { SMALL }=\left\{v \in V(G) \mid d_{G_{0}(v)} \leq 0.1 \ln n\right\} .
$$

Lemma 12. The random graph $G_{0} \sim G\left(n, p_{0}\right)$ with p_{0} defined earlier, has whp the following properties:
(P1) There is no non-empty path of length at most 4 in G_{0} such that both of its (possibly identical) endpoints lie in SMALL.
(P2) Every set $U \subseteq V(G)$ with $|U| \leq 100 n / \ln n$ spans at most $|U|(\ln n)^{1 / 2}$ edges in G_{0}.
(P3) For every two disjoint sets $U, W \subseteq V(G)$ with $|U| \leq 100 n / \ln n,|W| \leq|U| \ln n / 10000$,

$$
\left|E_{G_{0}}(U, W)\right|<0.09|U| \ln n .
$$

(P4) For every two disjoint sets $U, W \subseteq V(G)$ with $|U| \geq 100 n / \ln n,|W| \geq n / 4$,

$$
\left|E_{G_{0}}(U, W)\right| \geq 0.1|U| \ln n
$$

Proof of (P1). Fix a vertex v. Note that

$$
\begin{aligned}
\mathbb{P}(v \in \mathrm{SMALL}) & =\sum_{k=0}^{0.1 \ln n} \mathbb{P}\left(\operatorname{Bin}\left(n-1, p_{0}\right)=k\right) \\
& \leq 0.1 \ln n\binom{n-1}{0.1 \ln n} p_{0}^{0.1 \ln n}\left(1-p_{0}\right)^{n-1-0.1 \ln n} \\
& \leq 0.1 \ln n\left(\frac{10 e n p}{\ln n}\right)^{0.1 \ln n} e^{-p_{0}(n-1-0.1 \ln n)} \\
& \leq 28^{0.1 \ln n} e^{-(1-o(1)) \ln n}<n^{-0.6} .
\end{aligned}
$$

Now fix $u \neq v$. The probability that u, v are connected by a path of length ℓ in G_{0} is at most $n^{\ell-1} p_{0}^{\ell}=((1+o(1)) \ln n)^{\ell} n^{-1}$ (choosing $\ell-1$ inner vertices and for each such choice requiring ℓ edges). Furthermore, as there's exactly one edge of K_{n} connecting u with v, conditioning on the event " $u \in$ SMALL" cannot increase the probability of " $v \in$ SMALL" by too much:

$$
\begin{aligned}
\mathbb{P}(u, v \in \mathrm{SMALL}) & \leq \mathbb{P}(v \in \mathrm{SMALL} \mid u \in \mathrm{SMALL}) \mathbb{P}(u \in \mathrm{SMALL}) \\
& \leq \mathbb{P}(v \in \mathrm{SMALL} \mid\{u, v\} \notin E) \mathbb{P}(u \in \mathrm{SMALL}) \\
& \leq \mathbb{P}(v \in \mathrm{SMALL}) \mathbb{P}(u \in \mathrm{SMALL}) \cdot \frac{1}{1-p} .
\end{aligned}
$$

Note also that " $u, v \in$ SMALL" is a monotone decreasing event and " $d(u, v) \leq 4$ " is a monotone increasing event. Thus, according to the FKG inequality,

$$
\mathbb{P}(u, v \in \operatorname{SMALL} \wedge d(u, v) \leq 4) \leq \mathbb{P}(u, v \in \mathrm{SMALL}) \cdot \mathbb{P}(d(u, v) \leq 4)
$$

Therefore,

$$
\begin{aligned}
\mathbb{P}(u, v \in \operatorname{SMALL} \wedge d(u, v) \leq 4) & \leq \mathbb{P}(u, v \in \operatorname{SMALL}) \cdot \mathbb{P}(d(u, v) \leq 4) \\
& \leq \mathbb{P}(v \in \operatorname{SMALL}) \mathbb{P}(u \in \operatorname{SMALL}) \mathbb{P}(d(u, v) \leq 4)(1+o(1)) \\
& \leq n^{-0.6} \cdot n^{-0.6} \cdot \frac{\ln ^{4} n}{n} \cdot(1+o(1))<n^{-2.1} .
\end{aligned}
$$

Applying the union bound over all possible pairs of u, v we establish (P1).
Proof of (P2). For a given $U \subseteq[n]$ with $|U|=u \leq 100 n / \ln n$, let A_{U} be the event by which $|E(U)| \geq u \ln ^{1 / 2} n$. By the union bound,

$$
\begin{aligned}
\mathbb{P}\left(\exists U,|U|=u \leq 100 n / \ln n, A_{U}\right) & \leq \sum_{u=1}^{100 n / \ln n}\binom{n}{u}\binom{\binom{u}{2}}{u \ln ^{1 / 2} n} p^{u \ln ^{1 / 2} n} \\
& \leq \sum_{u=1}^{100 n / \ln n}\left(\frac{e n}{u}\left(\frac{e u p}{2 \ln ^{1 / 2} n}\right)^{\ln ^{1 / 2} n}\right)^{u} \\
& \leq \sum_{u=1}^{100 n / \ln n}\left(\frac{e n}{u}\left(\frac{2 u \ln ^{1 / 2} n}{n}\right)^{\ln ^{1 / 2} n}\right)^{u} .
\end{aligned}
$$

We now separate the sum into two:

$$
\sum_{u=1}^{\ln n}\left(\frac{e n}{u}\left(\frac{2 u \ln ^{1 / 2} n}{n}\right)^{\ln ^{1 / 2} n}\right)^{u} \leq \ln n \cdot e n\left(\frac{2 \ln ^{3 / 2} n}{n}\right)^{\ln ^{1 / 2} n}=o(1)
$$

and

$$
\begin{aligned}
\sum_{u=\ln n}^{100 n / \ln n}\left(\frac{e n}{u}\left(\frac{2 u \ln ^{1 / 2} n}{n}\right)^{\ln ^{1 / 2} n}\right)^{u} & \leq n\left(e\left(\frac{u}{n}\right)^{\ln ^{1 / 2} n-1}\left(2 \ln ^{1 / 2} n\right)^{\ln ^{1 / 2} n}\right)^{u} \\
& \leq n\left(e\left(\frac{1}{\ln n}\right)^{\ln ^{1 / 2} n-1}\left(2 \ln ^{1 / 2} n\right)^{\ln ^{1 / 2} n}\right)^{u}=o(1)
\end{aligned}
$$

Proof of (P3). For a given $U \subseteq[n]$ with $|U|=u \leq 100 n / \ln n$ and $W \subseteq[n]$ with $|W| \leq u^{\prime}=\frac{u \ln n}{10000}$, let $A_{U, W}$ be the event by which $|E(U, W)| \geq 0.09 u \ln n$. By the union bound,

$$
\begin{aligned}
\mathbb{P}\left(\exists U, W, A_{U, W}\right) & \leq \sum_{u=1}^{100 n / \ln n u \ln n / 10000} \sum_{w=1}^{n}\binom{n}{u}\binom{n}{w}\binom{u w}{0.09 u \ln n} p^{0.09 u \ln n} \\
& \leq \sum_{u=1}^{100 n / \ln n} u^{\prime}\binom{n}{u}\binom{n}{u^{\prime}}\binom{u u^{\prime}}{0.09 u \ln n} p^{0.09 u \ln n} \\
& \leq \sum_{u=1}^{100 n / \ln n} u^{\prime}\left(\left(\frac{e n}{u}\right)\left(\frac{e n}{u^{\prime}}\right)^{\ln n / 10000}\left(\frac{e u^{\prime} p}{0.09 \ln n}\right)^{0.09 \ln n}\right)^{u} \\
& \leq \sum_{u=1}^{100 n / \ln n} u^{\prime}\left(n e^{\ln n / 10000}\left(\frac{e}{0.09}\right)^{0.09 \ln n}\left(\frac{n}{u^{\prime}}\right)^{\frac{\ln n}{10000}-0.09 \ln n}\right)^{u} \\
& \leq \sum_{u=1}^{100 n / \ln n} u^{\prime}\left(n^{2}\left(\frac{n}{u^{\prime}}\right)^{-0.08 \ln n}\right)^{u} \\
& \leq \sum_{u=1}^{100 n / \ln n} u^{\prime}\left(n^{2-0.08 n / u^{\prime}}\right)^{u}=o(1),
\end{aligned}
$$

as $0.08 n / u^{\prime} \geq 8$.
Proof of (P4). Fix $U, W,|U| \geq 100 n / \ln n,|W| \geq n / 4$. Note that the number of edges between U, W in G_{0} is binomially distributed with $|U||W|$ trials and success probability p_{0}, hence

$$
\mathbb{E}\left(\left|E_{G_{0}}(U, W)\right|\right) \geq(1+o(1))|U| \ln n / 4 .
$$

By Chernoff bounds (Theorem 4),

$$
\begin{aligned}
\mathbb{P}\left(\left|E_{G_{0}}(U, W)\right| \leq 0.1|U| \ln n\right) & \leq \mathbb{P}\left(\left|E_{G_{0}}(U, W)\right| \leq 0.25|U| \ln n-0.15|U| \ln n\right) \\
& \leq \exp \left(-\frac{(0.15|U| \ln n)^{2}}{2 \cdot 0.25|U| \ln n}\right) \\
& <\exp \left(-2 \cdot 0.15^{2}|U| \ln n\right)<\exp (-4 n)
\end{aligned}
$$

Now, the number of pairs U, W is at most 4^{n}, union bound gives that the probability that such a pair exists is at most $4^{n} e^{-4 n}=o(1)$.

2.4 Expanders, rotations and boosters

One of the key concepts in many connectivity and Hamiltonicity related problems is that of an expander.

Definition 13. For every $c>0$ and every positive integer R we say that a graph $G=(V, E)$ is an (R, c)-expander if every subset of vertices $U \subseteq V$ of cardinality $|U| \leq R$ satisfies $\left|N_{G}(U)\right| \geq c|U|$.

Claim 14. Let G be $a(k, 2)$-expander on n vertices, with $k>\frac{n}{4}$. Then, G is connected.
Proof. Since every set of cardinality at most $n / 4$ expands, every connected component must be of cardinality at least $3 n / 4$, and there's room for only 1 such component.

Our approach will consist of that concept, bundled with the so-called rotation-extension technique, introduced by Pósa in ' 76 ([10]). Here we will cover the technique, including a key lemma.
Given a path $P=\left(v_{0}, \ldots, v_{m}\right)$, we can extend it by adding v_{m+1} which is not part of the path but is a neighbour of v_{m}, or we can rotate it by finding a neighbour v_{i} of v_{m} inside the path, adding the edge $\left\{v_{m}, v_{i}\right\}$ and erasing the edge $\left\{v_{i}, v_{i+1}\right\}(1 \leq i<m)$.

Figure 1: Pósa extension

Figure 2: Pósa rotation
Lemma 15. Let G be a graph, P a path of maximal length in G, \mathcal{P} the set of all (rooted) paths obtained by P be a sequence of rotations, U the set of endpoints of these paths, N^{-}and N^{+}the sets of vertices immediately preceeding and following the vertices of U along P, respectively. Then, $N(U) \subseteq N^{-} \cup N^{+}$.

Proof. Denote $P=\left(v_{0}, \ldots, v_{m}\right)$. Let $u \in U, v \notin\left(U \cup N^{-} \cup N^{+}\right)$, and let P_{u} be a rotation of P ending at u. If $v \notin P$ then $\{u, v\} \notin E$, otherwise we could have extended P_{u} and get a longer path, contradicting our assumption.

Thus, $v \in P$. Let v^{-}, v^{+}be its two possible neighbours in P. Suppose $\{u, v\} \in E$. Then, we can rotate P_{u} to get P_{w} ending at w, where w is a neighbour of v. If w is v^{-}or v^{+}, we get a contradiction, as this puts v in N^{-}or N^{+}. Thus, one of the edges in P between v and v^{-}, v^{+}broke during a rotation. Let's look at when it has happened; then, if $\left\{v^{-}, v\right\}$ broke, that rotation has made v an end vertex, and if $\left\{v, v^{+}\right\}$broke, that rotation has put $v \in N^{-}, N^{+}$. Thus, $\{u, v\} \notin E$.

Corollary 16.

$$
|N(U)| \leq\left|N^{-} \cup N^{+}\right| \leq 2|U|-1 .
$$

Corollary 17. Let G be a connected non-Hamiltonian ($k, 2$)-expander. Then G contains a path of (edge) length $3 k-1$.

Proof. Let P be a path of maximal length m (counting in edges) in G. Recall that $|N(U)| \leq 2|U|-1$, that is, U does not expand, hence $|U|>k$. Let $U^{\prime} \subseteq U$ with $\left|U^{\prime}\right|=k$. Since P is maximal, $N\left(U^{\prime}\right) \subseteq V(P)$, thus $|V(P)| \geq 3 k$, hence P is of length at least $3 k-1$.

In order to utilize that lemma for our needs, we introduce the notion of a booster:
Definition 18. Given a graph G, a non-edge $e=\{u, v\}$ of G is called a booster if adding e to G creates a graph G^{\prime}, which is either Hamiltonian or whose maximum path is longer than that of G.

Note that technically every non-edge of a Hamiltonian graph G is a booster by definition.
Boosters advance a graph towards Hamiltonicity when added; adding sequentially n boosters clearly brings any graph on n vertices to Hamiltonicity.
Corollary 19. Let G be a connected non-Hamiltonian ($k, 2$-expander. Then G has at least $\frac{(k+1)^{2}}{2}$ boosters.

Proof. Let P be a path of maximal length m (counting in edges) in G. Again, $|U|>k$. We now seek of $\frac{(k+1)^{2}}{2}$ non-edges which, when added, create a cycle of length $m+1$.
Fix a set u_{1}, \ldots, u_{k+1} of end vertices. For each, let P_{i} be the rotation of P ending at u_{i}. For such i, fix u_{i} as a starting vertex, and let \mathcal{P}_{i} be the set of rotations of P_{i}. Let U_{i} be the set of endpoints retrieved that way. As before, $\left|U_{i}\right|>k$. Let $u_{1}^{(i)}, \ldots, u_{k+1}^{(i)}$ be a set of such end vertices.
Note that for every $i, j \in[k+1], u_{i}, u_{j}^{(i)}$ are not connected, as if they were, we would have a cycle of length $m+1$, and either end up with a Hamilton cycle, or, if $m+1<n$, since G is connected, get a longer path. As each non-edge was counted at most twice that way, we have at least $(k+1)^{2} / 2$ such non-edges, each is a booster.

3 The proof

The outline of the proof is as follows: we split the graph R into $\left\lceil\delta_{0} / 2\right\rceil$ identically distributed random graphs R_{i}. We start with G_{0}, finding enough boosters in R_{1} to get a Hamilton cycle, deleting its edges and end up in G_{1}, and continuing so: given $G_{i-1}\left(1 \leq i \leq\left\lceil\delta_{0} / 2\right\rceil\right)$, we find boosters in R_{i} to get a Hamilton cycle H_{i}, and by deleting it we get G_{i}. During the process, we'll keep the following attributes of G_{i} :
(I1) $\delta\left(G_{i}\right) \geq 2$
(I2) G_{i} is a $(n / 3-c n / \ln n, 2)$-expander (that will follow from (P1)-(P4))
(I3) G_{i} is connected
(I4) G_{i} has a path of length at least $n-c n / \ln n$
(I5) G_{i} has quadratic number of boosters.
If δ_{0} is odd, we'll need a final stage to create a near perfect matching.

3.1 Formal argument

We may assume that $\delta_{0} \geq 2$, otherwise there's nothing new to prove. For $1 \leq i \leq\left\lceil\delta_{0} / 2\right\rceil$ define ρ_{i} by

$$
1-\rho=\left(1-\rho_{i}\right)^{\left\lceil\delta_{0} / 2\right\rceil} .
$$

Observe that

$$
1-\rho=\left(1-\rho_{i}\right)^{\left\lceil\delta_{0} / 2\right\rceil} \geq 1-\rho_{i}\left\lceil\delta_{0} / 2\right\rceil,
$$

and thus

$$
\rho_{i} \geq \frac{\rho}{\left\lceil\delta_{0} / 2\right\rceil}=\frac{2001\left(d_{0}+\ln \ln n\right)}{\left\lceil\delta_{0} / 2\right\rceil n \ln n} \geq \frac{4000}{n \ln n} .
$$

Now let

$$
R=\bigcup_{i=1}^{\left\lceil\delta_{0} / 2\right\rceil} R_{i},
$$

where $R_{i} \sim G\left(n, \rho_{i}\right)$, and let G_{i} be the graph obtained from $G_{0} \cup \bigcup_{j=1}^{i} R_{i}$ after having deleted the first i Hamilton cycles, assuming that the previous $i-1$ stages were indeed successful. Let $i<\left\lfloor\delta_{0} / 2\right\rfloor$. To see (I1), note that every vertex had its degree in G_{0} reduced by at most $2 i$ in G_{i}. Thus,

$$
\delta\left(G_{i}\right) \geq \delta_{0}-2 i \geq \delta_{0}-2\left(\left\lfloor\delta_{0} / 2\right\rfloor-1\right) \geq 2
$$

To see (I2), we now show that G_{i} is a ($k, 2$)-expander for $k=n / 3-100 n /(3 \ln n)$. For that, let X be a vertex set with t vertices. Consider the following two cases:

Figure 3: Case I

Case $1(t \leq 100 n / \ln n)$: Denote $X_{S}=X \cap$ SMALL and $X_{L}=X \backslash X_{S}$. Denote $t_{S}=\left|X_{S}\right|$ and $t_{L}=\left|X_{L}\right|$. Observe that $\left|N_{G_{i}}\left(X_{S}, V \backslash X\right)\right| \geq 2 t_{S}-t_{L}$; indeed, by property (P1), every vertex in X_{S} has at least 2 unique neighbours in $V \backslash X_{S}$, and at most t_{L} of these $2 t_{S}$ neighbours lie in X_{L}. By property (P2), X_{L} spans at most $t_{L}(\ln n)^{1 / 2}$ edges in G_{0}. Recall that the minimal degree of X_{L} in G_{0} is at least $0.1 \ln n$; thus, at least $0.09 t_{L} \ln n$ edges leave X_{L} in G_{0}. But then by (P3), the set of neighbours of X_{L} must be of cardinality greater than $t_{L} \ln n / 10000$. By (P1) again, at most t_{L} of these fall into $X_{S} \cup N_{G_{0}}\left(X_{S}\right)$. As in G_{i} each vertex has lost at most δ_{0} neighbours comparing to what it had in G_{0}, we have that in G_{i}, the set of neighbours of X_{L} outside $X_{S} \cup N_{G_{0}}\left(X_{S}\right)$ is at least $t_{L}\left(\ln n / 10000-1-\delta_{0}\right) \geq t_{L} \ln n / 100000$. Altogether,

$$
\left|N_{G_{i}}(X)\right| \geq 2 t_{S}-t_{L}+t_{L} \ln n / 100000 \geq 2 t_{S}+2 t_{L}=2 t
$$

as claimed.

Case $2(100 n / \ln n \leq t \leq n / 3-100 n /(3 \ln n))$: Assume to the contrary that $\left|N_{G_{i}}(X)\right|<2 t$. In that case we can find a vertex set Y disjoint to $X \cup N_{G_{i}}(X)$ of cardinality $n-3 t$. Thus, in G_{0} there were at most $2\left\lfloor\delta_{0} / 2\right\rfloor \min \{t, n-3 t\}$ edges between X and Y. If $t \leq n / 4$ then $n-3 t \geq n / 4$ and by (P4) we should have had $\left|E_{G_{0}}(X, Y)\right| \geq 0.1 t \ln n \gg \delta_{0} t$. If $t \geq n / 4$ then $n-3 t \geq n-3(n / 3-100 n /(3 \ln n))=$ $100 n / \ln n$, and again by (P4) we should have had $\left|E_{G_{0}}(Y, X)\right| \geq 0.1|Y| \ln n \gg \delta_{0}|Y|$.
The proof of Theorem 2 will follow from:
Lemma 20. Let $G=(V, E)$ be a $(n / 3-k, 2)$-expander on n vertices, where $k=o(n)$. Let R be a random graph $G(n, p)$ with $p=120 k / n^{2}$. Then, $\mathbb{P}(G \cup R$ is not Hamiltonian $)<\exp (-\Omega(k))$.

Proof. Note that the following properties hold for G :
(I3) G is connected (due to Claim 14)
(I4) G has a path of length at least $n-3 k-1$ (due to Corollary 17)
(I5) If a supergraph of G is non-Hamiltonian it has at least $n^{2} / 20$ boosters (due the Corollary 19, and since $\left.(n / 3-k+1)^{2} / 2>n^{2} / 20\right)$.

We split the random graph R into $6 k$ identically distributed graphs

$$
R=\bigcup_{i=1}^{6 k} R_{i}
$$

where $R_{i} \sim G\left(n, p_{i}\right)$ and $p_{i} \geq p /(6 k)=20 / n^{2}$. Set $G_{0}=G$ and for $i \in[6 k]$ let

$$
G_{i}=G \cup \bigcup_{j=1}^{i} R_{j} .
$$

At stage i we add to G_{i-1} the next random graph R_{i}. We call a stage successful if the maximal length of a path in G_{i} is longer than that of G_{i-1}, or if G_{i} is Hamiltonian. Clearly, if at least $3 k+1$ stages are successful then the final graph $G_{6 k}$ is Hamiltonian (due to (I5)). Observe that for stage i to be successful, if G_{i-1} is not yet Hamiltonian, it is enough for the random graph R_{i} to hit one of the boosters of G_{i-1}. Thus, stage i is unsuccessful with probability at most $\left(1-p_{i}\right)^{n^{2} / 20}<1 / e$. Thus, the number of successful stages S is a random variable which stochastically domainates $\operatorname{Bin}(6 k, 1-1 / e)$. Therefore, putting $c=1-1 / e$ and using Chernoff bounds (Theorem 4),

$$
\mathbb{P}(G \cup R \text { is not Hamiltonian }) \leq \mathbb{P}(S \leq 3 k) \leq \exp \left(-\frac{(6 c-3)^{2} k^{2}}{2 \cdot 6 c k}\right)<\exp (-\Omega(k)) .
$$

Proof of Theorem 2. Suppose we have G_{i-1} for $1 \leq i \leq\left\lceil\delta_{0} / 2\right\rceil$. We have shown that G_{i-1} is a $(n / 3-k, 2)$-expander for $k=100 n /(3 \ln n)=o(n) . \quad R_{i}$ is a random graph with probability $\rho_{i} \geq 4000 /(n \ln n)=120 k / n^{2}$. Therefore by the above lemma, $G_{i-1} \cup R_{i}$ is not Hamiltonian with probability at most $\exp (-\Omega(k))$. Union bound over all $\left\lfloor\delta_{0} / 2\right\rfloor$ steps yields the desired result.

References

[1] Miklós Ajtai, János Komlós, and E Szeraerédi, First occurrence of hamilton cycles in random graphs, North-Holland Mathematics Studies 115 (1985), 173-178.
[2] Noga Alon and Joel H. Spencer, The probabilistic method, 3rd ed., Wiley Series in Discrete Mathematics and Optimization, John Wiley \& Sons, 2008.
[3] Béla Bollobás and Alan M Frieze, On matchings and hamiltonian cycles in random graphs, North-Holland Mathematics Studies 118 (1985), 23-46.
[4] Alan Frieze and Michael Krivelevich, On two hamilton cycle problems in random graphs, Israel Journal of Mathematics 166 (2008), no. 1, 221-234.
[5] Svante Janson, Tomasz Luczak, and Andrzej Ruciński, Random graphs, Wiley Series in Discrete Mathematics and Optimization, John Wiley \& Sons, 2000.
[6] Fiachra Knox, Daniela Kühn, and Deryk Osthus, Edge-disjoint hamilton cycles in random graphs, Random Structures \& Algorithms (2013).
[7] János Komlós and Endre Szemerédi, Limit distribution for the existence of hamiltonian cycles in a random graph, Discrete Mathematics 43 (1983), no. 1, 55-63.
[8] Michael Krivelevich and Wojciech Samotij, Optimal packings of hamilton cycles in sparse random graphs, SIAM Journal on Discrete Mathematics 26 (2012), no. 3, 964-982.
[9] Daniela Kuhn and Deryk Osthus, Hamilton decompositions of regular expanders (2013).
[10] Lajos Pósa, Hamiltonian circuits in random graphs, Discrete Mathematics 14 (1976), no. 4, 359-364.

[^0]: ${ }^{0}$ Git revison 94a18287

