Graph Theory

Homework assignment \#2
Due date: Sunday, December 10, 2017

Problem 1. Prove that every two paths of maximum length in a connected graph must have a vertex in common.

Problem 2. Prove that a graph is 2 -connected if and only if for any three vertices x, y, and z, there is a path from x to z that passes through y.

Problem 3. Let G be a 3-regular graph. Prove that $\kappa(G)=\kappa^{\prime}(G)$.
Problem 4. Show that every k-connected graph with at least $2 k$ vertices contains a cycle of length at least $2 k$.

Problem 5. Show that every 3 -connected non-bipartite graph contains at least four odd cycles.
Problem 6. Let G be a connected graph with n vertices. Prove that G contains a path of length $\min \{2 \delta(G), n-1\}$.

Problem 7. Let G be a non-bipartite graph with n vertices. Show that G has an odd cycle of length at most $\max \{3,2 n / \delta(G)\}$.

Problem 8. A tournament is a complete graph in which each edge $u v$ is given a direction, either from u to v or from v to u. Show that a tournament must contain a Hamiltonian path, that is, a directed path through all the vertices. Must it contain a Hamiltonian cycle?

Please do NOT submit written solutions to the following exercises:

Exercise 1. Show that the block graph of a connected graph is a tree.
Exercise 2. Let G be a graph and let $A \subseteq V(G)$. Let H be the graph obtained from G by adding to it a new vertex v with $N_{H}(v)=A$. Show that $\kappa(H) \geqslant \min \{|A|, \kappa(G)\}$.

Exercise 3. Prove that G contains the path of length two as an induced subgraph if and only if G is not a union of vertex-disjoint complete graphs.

Exercise 4. Prove that every connected graph has a vertex that is not a cutvertex.

