## Graph Theory

Homework assignment \#4
Due date: Sunday, January 14, 2018

Problem 1. Let $G$ be a graph obtained from $K_{n, n}$ by replacing one of its edges by a path of length two. Show that $\chi^{\prime}(G)=\Delta(G)+1$, but if $e$ is any edge of $G$, then $\chi^{\prime}(G-e)=\Delta(G-e)$.

Problem 2. Suppose that a cubic (3-regular) graph $G$ has exactly one edge-colouring with $\chi^{\prime}(G)$ colours, up to a permutation of the colours. Show that $\chi^{\prime}(G)=3$ and that $G$ has exactly three Hamilton cycles.

Problem 3. Show that every red/blue-colouring of the edges of $K_{6 n}$ contains $n$ vertex-disjoint triangles with all $3 n$ edges of the same colour.

Problem 4. Given two graphs $G$ and $H$, let $R(G, H)$ denote the smallest integer $n$ such that every red/blue-colouring of the edges of $K_{n}$ contains either a blue copy of $G$ or a red copy of $H$. Determine $R\left(K_{s}, P_{t}\right)$ for all positive $s$ and $t$, where $P_{t}$ is the path with $t$ vertices.

Problem 5. Prove that $R\left(n \cdot K_{2}, n \cdot K_{2}\right)=3 n-1$ for every $n$, where $n \cdot K_{2}$ denotes $n$ independent edges.

Problem 6. Prove that for every tree $T$ and integers $k \geqslant 2$ and $g \geqslant 3$, there exists a graph $G$ without cycles of length up to $g$ and such that every $k$-colouring of the edges of $G$ contains a monochromatic copy of $T$.

Problem 7. Let $H$ be the graph with four vertices and five edges. Prove that $\operatorname{ex}(n, H)=$ $\operatorname{ex}\left(n, K_{3}\right)$ for every $n \geqslant 4$.

Problem 8. Prove that if $n \geqslant 5$, then every graph of order $n$ with $\left\lfloor n^{2} / 4\right\rfloor+2$ edges contains two triangles with exactly one common vertex.

Please do NOT submit written solutions to the following exercises:
Exercise 1. Let $G$ be an $n$-vertex graph with $\left\lfloor n^{2} / 4\right\rfloor-t$ edges and no triangle. Show that one can make $G$ bipartite by deleting from it at most $t$ edges.

Exercise 2. Suppose that $n, m$, and $t$ are the numbers of vertices, edges, and triangles (respectively) of a graph. Show that $3 t \geqslant 4 m^{2} / n-m n$. Note that this implies that ex $\left(n, K_{3}\right) \leqslant n^{2} / 4$.

